// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) { // TODO(1238487): Don't pass the function in a static variable. ExternalReference passed = ExternalReference::builtin_passed_function(); __ mov(Operand::StaticVariable(passed), edi); // The actual argument count has already been loaded into register // eax, but JumpToBuiltin expects eax to contain the number of // arguments including the receiver. __ inc(eax); __ JumpToBuiltin(ExternalReference(id)); } void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // ----------------------------------- Label non_function_call; // Check that function is not a smi. __ test(edi, Immediate(kSmiTagMask)); __ j(zero, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &non_function_call); // Enter a construct frame. __ EnterConstructFrame(); // Store a smi-tagged arguments count on the stack. __ shl(eax, kSmiTagSize); __ push(eax); // Push the function to invoke on the stack. __ push(edi); // Try to allocate the object without transitioning into C code. If any of the // preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(); __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0)); __ j(not_equal, &rt_call); #endif // Verified that the constructor is a JSFunction. // Load the initial map and verify that it is in fact a map. // edi: constructor __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &rt_call); // edi: constructor // eax: initial map (if proven valid below) __ CmpObjectType(eax, MAP_TYPE, ebx); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see comments // in Runtime_NewObject in runtime.cc). In which case the initial map's // instance type would be JS_FUNCTION_TYPE. // edi: constructor // eax: initial map __ CmpInstanceType(eax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); // Now allocate the JSObject on the heap. // edi: constructor // eax: initial map __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset)); __ shl(edi, kPointerSizeLog2); // Make sure that the maximum heap object size will never cause us // problem here, because it is always greater than the maximum // instance size that can be represented in a byte. ASSERT(Heap::MaxHeapObjectSize() >= (1 << kBitsPerByte)); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); __ mov(ebx, Operand::StaticVariable(new_space_allocation_top)); __ add(edi, Operand(ebx)); // Calculate new top ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); __ cmp(edi, Operand::StaticVariable(new_space_allocation_limit)); __ j(greater_equal, &rt_call); // Allocated the JSObject, now initialize the fields. // eax: initial map // ebx: JSObject // edi: start of next object __ mov(Operand(ebx, JSObject::kMapOffset), eax); __ mov(ecx, Factory::empty_fixed_array()); __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx); __ mov(Operand(ebx, JSObject::kElementsOffset), ecx); // Set extra fields in the newly allocated object. // eax: initial map // ebx: JSObject // edi: start of next object { Label loop, entry; __ mov(edx, Factory::undefined_value()); __ lea(ecx, Operand(ebx, JSObject::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ mov(Operand(ecx, 0), edx); __ add(Operand(ecx), Immediate(kPointerSize)); __ bind(&entry); __ cmp(ecx, Operand(edi)); __ j(less, &loop); } // Mostly done with the JSObject. Add the heap tag and store the new top, so // that we can continue and jump into the continuation code at any time from // now on. Any failures need to undo the setting of the new top, so that the // heap is in a consistent state and verifiable. // eax: initial map // ebx: JSObject // edi: start of next object __ or_(Operand(ebx), Immediate(kHeapObjectTag)); __ mov(Operand::StaticVariable(new_space_allocation_top), edi); // Check if a properties array should be setup and allocate one if needed. // Otherwise initialize the properties to the empty_fixed_array as well. // eax: initial map // ebx: JSObject // edi: start of next object __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset)); __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset)); // Calculate unused properties past the end of the in-object properties. __ sub(edx, Operand(ecx)); __ test(edx, Operand(edx)); // Done if no extra properties are to be allocated. __ j(zero, &allocated); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // eax: initial map // ebx: JSObject // edi: start of next object (will be start of FixedArray) // edx: number of elements in properties array ASSERT(Heap::MaxHeapObjectSize() > (FixedArray::kHeaderSize + 255*kPointerSize)); __ lea(ecx, Operand(edi, edx, times_4, FixedArray::kHeaderSize)); __ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit)); __ j(greater_equal, &undo_allocation); __ mov(Operand::StaticVariable(new_space_allocation_top), ecx); // Initialize the FixedArray. // ebx: JSObject // edi: FixedArray // edx: number of elements // ecx: start of next object __ mov(eax, Factory::fixed_array_map()); __ mov(Operand(edi, JSObject::kMapOffset), eax); // setup the map __ mov(Operand(edi, Array::kLengthOffset), edx); // and length // Initialize the fields to undefined. // ebx: JSObject // edi: FixedArray // ecx: start of next object { Label loop, entry; __ mov(edx, Factory::undefined_value()); __ lea(eax, Operand(edi, FixedArray::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ mov(Operand(eax, 0), edx); __ add(Operand(eax), Immediate(kPointerSize)); __ bind(&entry); __ cmp(eax, Operand(ecx)); __ j(less, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // ebx: JSObject // edi: FixedArray __ or_(Operand(edi), Immediate(kHeapObjectTag)); // add the heap tag __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi); // Continue with JSObject being successfully allocated // ebx: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // ebx: JSObject (previous new top) __ bind(&undo_allocation); __ xor_(Operand(ebx), Immediate(kHeapObjectTag)); // clear the heap tag __ mov(Operand::StaticVariable(new_space_allocation_top), ebx); } // Allocate the new receiver object using the runtime call. // edi: function (constructor) __ bind(&rt_call); // Must restore edi (constructor) before calling runtime. __ mov(edi, Operand(esp, 0)); __ push(edi); __ CallRuntime(Runtime::kNewObject, 1); __ mov(ebx, Operand(eax)); // store result in ebx // New object allocated. // ebx: newly allocated object __ bind(&allocated); // Retrieve the function from the stack. __ pop(edi); // Retrieve smi-tagged arguments count from the stack. __ mov(eax, Operand(esp, 0)); __ shr(eax, kSmiTagSize); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(ebx); __ push(ebx); // Setup pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, Operand(eax)); __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION); // Restore context from the frame. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &use_receiver, not_taken); // If the type of the result (stored in its map) is less than // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense. __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(greater_equal, &exit, not_taken); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0)); // Restore the arguments count and leave the construct frame. __ bind(&exit); __ mov(ebx, Operand(esp, kPointerSize)); // get arguments count __ LeaveConstructFrame(); // Remove caller arguments from the stack and return. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); __ ret(0); // edi: called object // eax: number of arguments __ bind(&non_function_call); // Set expected number of arguments to zero (not changing eax). __ Set(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ jmp(Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Clear the context before we push it when entering the JS frame. __ xor_(esi, Operand(esi)); // clear esi // Enter an internal frame. __ EnterInternalFrame(); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Get the function from the frame and setup the context. __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ push(ecx); __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); // Copy arguments to the stack in a loop. Label loop, entry; __ xor_(ecx, Operand(ecx)); // clear ecx __ jmp(&entry); __ bind(&loop); __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv __ push(Operand(edx, 0)); // dereference handle __ inc(Operand(ecx)); __ bind(&entry); __ cmp(ecx, Operand(eax)); __ j(not_equal, &loop); // Get the function from the stack and call it. __ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize)); // +1 ~ receiver // Invoke the code. if (is_construct) { __ call(Handle(Builtins::builtin(Builtins::JSConstructCall)), RelocInfo::CODE_TARGET); } else { ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION); } // Exit the JS frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. __ LeaveInternalFrame(); __ ret(1 * kPointerSize); // remove receiver } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. { Label done; __ test(eax, Operand(eax)); __ j(not_zero, &done, taken); __ pop(ebx); __ push(Immediate(Factory::undefined_value())); __ push(ebx); __ inc(eax); __ bind(&done); } // 2. Get the function to call from the stack. { Label done, non_function, function; // +1 ~ return address. __ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize)); __ test(edi, Immediate(kSmiTagMask)); __ j(zero, &non_function, not_taken); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(equal, &function, taken); // Non-function called: Clear the function to force exception. __ bind(&non_function); __ xor_(edi, Operand(edi)); __ jmp(&done); // Function called: Change context eagerly to get the right global object. __ bind(&function); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); __ bind(&done); } // 3. Make sure first argument is an object; convert if necessary. { Label call_to_object, use_global_receiver, patch_receiver, done; __ mov(ebx, Operand(esp, eax, times_4, 0)); __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &call_to_object); __ cmp(ebx, Factory::null_value()); __ j(equal, &use_global_receiver); __ cmp(ebx, Factory::undefined_value()); __ j(equal, &use_global_receiver); __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &call_to_object); __ cmp(ecx, LAST_JS_OBJECT_TYPE); __ j(less_equal, &done); __ bind(&call_to_object); __ EnterInternalFrame(); // preserves eax, ebx, edi // Store the arguments count on the stack (smi tagged). ASSERT(kSmiTag == 0); __ shl(eax, kSmiTagSize); __ push(eax); __ push(edi); // save edi across the call __ push(ebx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(ebx, eax); __ pop(edi); // restore edi after the call // Get the arguments count and untag it. __ pop(eax); __ shr(eax, kSmiTagSize); __ LeaveInternalFrame(); __ jmp(&patch_receiver); // Use the global receiver object from the called function as the receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ mov(ebx, FieldOperand(esi, kGlobalIndex)); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ mov(Operand(esp, eax, times_4, 0), ebx); __ bind(&done); } // 4. Shift stuff one slot down the stack. { Label loop; __ lea(ecx, Operand(eax, +1)); // +1 ~ copy receiver too __ bind(&loop); __ mov(ebx, Operand(esp, ecx, times_4, 0)); __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx); __ dec(ecx); __ j(not_zero, &loop); } // 5. Remove TOS (copy of last arguments), but keep return address. __ pop(ebx); __ pop(ecx); __ push(ebx); __ dec(eax); // 6. Check that function really was a function and get the code to // call from the function and check that the number of expected // arguments matches what we're providing. { Label invoke; __ test(edi, Operand(edi)); __ j(not_zero, &invoke, taken); __ xor_(ebx, Operand(ebx)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); __ jmp(Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); __ bind(&invoke); __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ cmp(eax, Operand(ebx)); __ j(not_equal, Handle(builtin(ArgumentsAdaptorTrampoline))); } // 7. Jump (tail-call) to the code in register edx without checking arguments. ParameterCount expected(0); __ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { __ EnterInternalFrame(); __ push(Operand(ebp, 4 * kPointerSize)); // push this __ push(Operand(ebp, 2 * kPointerSize)); // push arguments __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); if (FLAG_check_stack) { // We need to catch preemptions right here, otherwise an unlucky preemption // could show up as a failed apply. ExternalReference stack_guard_limit = ExternalReference::address_of_stack_guard_limit(); Label retry_preemption; Label no_preemption; __ bind(&retry_preemption); __ mov(edi, Operand::StaticVariable(stack_guard_limit)); __ cmp(esp, Operand(edi)); __ j(above, &no_preemption, taken); // Preemption! // Because builtins always remove the receiver from the stack, we // have to fake one to avoid underflowing the stack. __ push(eax); __ push(Immediate(Smi::FromInt(0))); // Do call to runtime routine. __ CallRuntime(Runtime::kStackGuard, 1); __ pop(eax); __ jmp(&retry_preemption); __ bind(&no_preemption); Label okay; // Make ecx the space we have left. __ mov(ecx, Operand(esp)); __ sub(ecx, Operand(edi)); // Make edx the space we need for the array when it is unrolled onto the // stack. __ mov(edx, Operand(eax)); __ shl(edx, kPointerSizeLog2 - kSmiTagSize); __ cmp(ecx, Operand(edx)); __ j(greater, &okay, taken); // Too bad: Out of stack space. __ push(Operand(ebp, 4 * kPointerSize)); // push this __ push(eax); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); __ bind(&okay); } // Push current index and limit. const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ push(eax); // limit __ push(Immediate(0)); // index // Change context eagerly to get the right global object if // necessary. __ mov(edi, Operand(ebp, 4 * kPointerSize)); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Compute the receiver. Label call_to_object, use_global_receiver, push_receiver; __ mov(ebx, Operand(ebp, 3 * kPointerSize)); __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &call_to_object); __ cmp(ebx, Factory::null_value()); __ j(equal, &use_global_receiver); __ cmp(ebx, Factory::undefined_value()); __ j(equal, &use_global_receiver); // If given receiver is already a JavaScript object then there's no // reason for converting it. __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &call_to_object); __ cmp(ecx, LAST_JS_OBJECT_TYPE); __ j(less_equal, &push_receiver); // Convert the receiver to an object. __ bind(&call_to_object); __ push(ebx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(ebx, Operand(eax)); __ jmp(&push_receiver); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ mov(ebx, FieldOperand(esi, kGlobalOffset)); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. __ bind(&push_receiver); __ push(ebx); // Copy all arguments from the array to the stack. Label entry, loop; __ mov(eax, Operand(ebp, kIndexOffset)); __ jmp(&entry); __ bind(&loop); __ mov(ecx, Operand(ebp, 2 * kPointerSize)); // load arguments __ push(ecx); __ push(eax); // Use inline caching to speed up access to arguments. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Remove IC arguments from the stack and push the nth argument. __ add(Operand(esp), Immediate(2 * kPointerSize)); __ push(eax); // Update the index on the stack and in register eax. __ mov(eax, Operand(ebp, kIndexOffset)); __ add(Operand(eax), Immediate(1 << kSmiTagSize)); __ mov(Operand(ebp, kIndexOffset), eax); __ bind(&entry); __ cmp(eax, Operand(ebp, kLimitOffset)); __ j(not_equal, &loop); // Invoke the function. ParameterCount actual(eax); __ shr(eax, kSmiTagSize); __ mov(edi, Operand(ebp, 4 * kPointerSize)); __ InvokeFunction(edi, actual, CALL_FUNCTION); __ LeaveInternalFrame(); __ ret(3 * kPointerSize); // remove this, receiver, and arguments } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, Operand(esp)); // Store the arguments adaptor context sentinel. __ push(Immediate(ArgumentsAdaptorFrame::SENTINEL)); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve both // eax and ebx because these registers are used when copying the // arguments and the receiver. ASSERT(kSmiTagSize == 1); __ lea(ecx, Operand(eax, eax, times_1, kSmiTag)); __ push(ecx); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- edx : code entry to call // ----------------------------------- Label invoke, dont_adapt_arguments; __ IncrementCounter(&Counters::arguments_adaptors, 1); Label enough, too_few; __ cmp(eax, Operand(ebx)); __ j(less, &too_few); __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(eax, Operand(ebp, eax, times_4, offset)); __ mov(ecx, -1); // account for receiver Label copy; __ bind(©); __ inc(ecx); __ push(Operand(eax, 0)); __ sub(Operand(eax), Immediate(kPointerSize)); __ cmp(ecx, Operand(ebx)); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); __ mov(ecx, -1); // account for receiver Label copy; __ bind(©); __ inc(ecx); __ push(Operand(edi, 0)); __ sub(Operand(edi), Immediate(kPointerSize)); __ cmp(ecx, Operand(eax)); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(ecx); __ push(Immediate(Factory::undefined_value())); __ cmp(ecx, Operand(ebx)); __ j(less, &fill); // Restore function pointer. __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ call(Operand(edx)); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(Operand(edx)); } #undef __ } } // namespace v8::internal