// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
#include <iostream>  // NOLINT(readability/streams)

#include "src/v8.h"
#include "test/cctest/cctest.h"

#include "src/base/utils/random-number-generator.h"
#include "src/macro-assembler.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/mips64/simulator-mips64.h"


using namespace v8::internal;

typedef void* (*F)(int64_t x, int64_t y, int p2, int p3, int p4);
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);

#define __ masm->


static byte to_non_zero(int n) {
  return static_cast<unsigned>(n) % 255 + 1;
}


static bool all_zeroes(const byte* beg, const byte* end) {
  CHECK(beg);
  CHECK(beg <= end);
  while (beg < end) {
    if (*beg++ != 0)
      return false;
  }
  return true;
}


TEST(CopyBytes) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope handles(isolate);

  const int data_size = 1 * KB;
  size_t act_size;

  // Allocate two blocks to copy data between.
  byte* src_buffer =
      static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
  CHECK(src_buffer);
  CHECK(act_size >= static_cast<size_t>(data_size));
  byte* dest_buffer =
      static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
  CHECK(dest_buffer);
  CHECK(act_size >= static_cast<size_t>(data_size));

  // Storage for a0 and a1.
  byte* a0_;
  byte* a1_;

  MacroAssembler assembler(isolate, NULL, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  // Code to be generated: The stuff in CopyBytes followed by a store of a0 and
  // a1, respectively.
  __ CopyBytes(a0, a1, a2, a3);
  __ li(a2, Operand(reinterpret_cast<int64_t>(&a0_)));
  __ li(a3, Operand(reinterpret_cast<int64_t>(&a1_)));
  __ sd(a0, MemOperand(a2));
  __ jr(ra);
  __ sd(a1, MemOperand(a3));

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  ::F f = FUNCTION_CAST< ::F>(code->entry());

  // Initialise source data with non-zero bytes.
  for (int i = 0; i < data_size; i++) {
    src_buffer[i] = to_non_zero(i);
  }

  const int fuzz = 11;

  for (int size = 0; size < 600; size++) {
    for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
      for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
        memset(dest_buffer, 0, data_size);
        CHECK(dest + size < dest_buffer + data_size);
        (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int64_t>(src),
                                  reinterpret_cast<int64_t>(dest), size, 0, 0);
        // a0 and a1 should point at the first byte after the copied data.
        CHECK_EQ(src + size, a0_);
        CHECK_EQ(dest + size, a1_);
        // Check that we haven't written outside the target area.
        CHECK(all_zeroes(dest_buffer, dest));
        CHECK(all_zeroes(dest + size, dest_buffer + data_size));
        // Check the target area.
        CHECK_EQ(0, memcmp(src, dest, size));
      }
    }
  }

  // Check that the source data hasn't been clobbered.
  for (int i = 0; i < data_size; i++) {
    CHECK(src_buffer[i] == to_non_zero(i));
  }
}


TEST(LoadConstants) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope handles(isolate);

  int64_t refConstants[64];
  int64_t result[64];

  int64_t mask = 1;
  for (int i = 0; i < 64; i++) {
    refConstants[i] = ~(mask << i);
  }

  MacroAssembler assembler(isolate, NULL, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  __ mov(a4, a0);
  for (int i = 0; i < 64; i++) {
    // Load constant.
    __ li(a5, Operand(refConstants[i]));
    __ sd(a5, MemOperand(a4));
    __ Daddu(a4, a4, Operand(kPointerSize));
  }

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  ::F f = FUNCTION_CAST< ::F>(code->entry());
  (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int64_t>(result), 0, 0,
                            0, 0);
  // Check results.
  for (int i = 0; i < 64; i++) {
    CHECK(refConstants[i] == result[i]);
  }
}


TEST(LoadAddress) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope handles(isolate);

  MacroAssembler assembler(isolate, NULL, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;
  Label to_jump, skip;
  __ mov(a4, a0);

  __ Branch(&skip);
  __ bind(&to_jump);
  __ nop();
  __ nop();
  __ jr(ra);
  __ nop();
  __ bind(&skip);
  __ li(a4, Operand(masm->jump_address(&to_jump)), ADDRESS_LOAD);
  int check_size = masm->InstructionsGeneratedSince(&skip);
  CHECK_EQ(check_size, 4);
  __ jr(a4);
  __ nop();
  __ stop("invalid");
  __ stop("invalid");
  __ stop("invalid");
  __ stop("invalid");
  __ stop("invalid");


  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  ::F f = FUNCTION_CAST< ::F>(code->entry());
  (void)CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0);
  // Check results.
}


TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
    int64_t res = reinterpret_cast<int64_t>(
        CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
    ::printf("f(%d) = %" PRId64 "\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


TEST(jump_tables5) {
  if (kArchVariant != kMips64r6) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

  __ Push(ra);

  // Opposite of Align(8) as we have unaligned number of instructions in the
  // following block before the first dd().
  if ((masm->pc_offset() & 7) == 0) {
    __ nop();
  }

  {
    __ BlockTrampolinePoolFor(kNumCases * 2 + 6 + 1);
    PredictableCodeSizeScope predictable(
        masm, kNumCases * kPointerSize + ((6 + 1) * Assembler::kInstrSize));

    __ addiupc(at, 6 + 1);
    __ Dlsa(at, at, a0, 3);
    __ ld(at, MemOperand(at));
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)) so the first label goes to an 8 bytes aligned
    // location.
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
    int64_t res = reinterpret_cast<int64_t>(
        CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
    ::printf("f(%d) = %" PRId64 "\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


static uint64_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assembler.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F1 f = FUNCTION_CAST<F1>(code->entry());

  uint64_t res = reinterpret_cast<uint64_t>(
      CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint64_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
                             {0x4, 0x1, 3, 0xc},
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
                             {0x4, INT32_MAX >> 2, 3, 0xfffffffffffffffc},
                             {0x4, INT32_MAX >> 3, 4, 0xfffffffffffffff4},
                             {0x4, INT32_MAX >> 4, 5, 0xffffffffffffffe4},

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0xffffffff80000000},
                             {INT32_MAX - 3, 0x1, 2, 0xffffffff80000000},
                             {INT32_MAX - 7, 0x1, 3, 0xffffffff80000000},
                             {INT32_MAX - 15, 0x1, 4, 0xffffffff80000000},
                             {INT32_MAX - 31, 0x1, 5, 0xffffffff80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint64_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Lsa(v0, %x, %x, %hhu)\n",
           tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}


static uint64_t run_dlsa(uint64_t rt, uint64_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  __ Dlsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assembler.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  ::F f = FUNCTION_CAST<::F>(code->entry());

  uint64_t res = reinterpret_cast<uint64_t>(
      CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));

  return res;
}


TEST(Dlsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int64_t rt;
    int64_t rs;
    uint8_t sa;
    uint64_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
                             {0x4, 0x1, 3, 0xc},
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT64_MAX, 1, 0x2},
                             {0x4, INT64_MAX >> 1, 2, 0x0},
                             {0x4, INT64_MAX >> 2, 3, 0xfffffffffffffffc},
                             {0x4, INT64_MAX >> 3, 4, 0xfffffffffffffff4},
                             {0x4, INT64_MAX >> 4, 5, 0xffffffffffffffe4},

                             // Signed addition overflow.
                             {INT64_MAX - 1, 0x1, 1, 0x8000000000000000},
                             {INT64_MAX - 3, 0x1, 2, 0x8000000000000000},
                             {INT64_MAX - 7, 0x1, 3, 0x8000000000000000},
                             {INT64_MAX - 15, 0x1, 4, 0x8000000000000000},
                             {INT64_MAX - 31, 0x1, 5, 0x8000000000000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint64_t res = run_dlsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64
           ", %hhu)\n",
           tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

static const std::vector<uint32_t> uint32_test_values() {
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00,
                                     0x7fffffff, 0x80000000, 0x80000001,
                                     0x80ffff00, 0x8fffffff, 0xffffffff};
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> int32_test_values() {
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0x00ffff00), static_cast<int32_t>(0x7fffffff),
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
      static_cast<int32_t>(0x80ffff00), static_cast<int32_t>(0x8fffffff),
      static_cast<int32_t>(0xffffffff)};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<uint64_t> uint64_test_values() {
  static const uint64_t kValues[] = {
      0x0000000000000000, 0x0000000000000001, 0x0000ffffffff0000,
      0x7fffffffffffffff, 0x8000000000000000, 0x8000000000000001,
      0x8000ffffffff0000, 0x8fffffffffffffff, 0xffffffffffffffff};
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int64_t> int64_test_values() {
  static const int64_t kValues[] = {static_cast<int64_t>(0x0000000000000000),
                                    static_cast<int64_t>(0x0000000000000001),
                                    static_cast<int64_t>(0x0000ffffffff0000),
                                    static_cast<int64_t>(0x7fffffffffffffff),
                                    static_cast<int64_t>(0x8000000000000000),
                                    static_cast<int64_t>(0x8000000000000001),
                                    static_cast<int64_t>(0x8000ffffffff0000),
                                    static_cast<int64_t>(0x8fffffffffffffff),
                                    static_cast<int64_t>(0xffffffffffffffff)};
  return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
#define FOR_INPUTS(ctype, itype, var)                        \
  std::vector<ctype> var##_vec = itype##_test_values();      \
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

#define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var)
#define FOR_INT64_INPUTS(var) FOR_INPUTS(int64_t, int64, var)
#define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var)
#define FOR_UINT64_INPUTS(var) FOR_INPUTS(uint64_t, uint64, var)

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
  typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4);

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, nullptr, 0,
                      v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assm;

  GenerateConvertInstructionFunc(masm);
  __ dmfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());

  return reinterpret_cast<RET_TYPE>(
      CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0));
}

TEST(Cvt_s_uw_Trunc_uw_s) {
  CcTest::InitializeVM();
  FOR_UINT32_INPUTS(i) {
    uint32_t input = *i;
    CHECK_EQ(static_cast<float>(input),
             run_Cvt<uint64_t>(input, [](MacroAssembler* masm) {
               __ Cvt_s_uw(f0, a0);
               __ mthc1(zero_reg, f2);
               __ Trunc_uw_s(f2, f0, f1);
             }));
  }
}

TEST(Cvt_s_ul_Trunc_ul_s) {
  CcTest::InitializeVM();
  FOR_UINT64_INPUTS(i) {
    uint64_t input = *i;
    CHECK_EQ(static_cast<float>(input),
             run_Cvt<uint64_t>(input, [](MacroAssembler* masm) {
               __ Cvt_s_ul(f0, a0);
               __ Trunc_ul_s(f2, f0, f1, v0);
             }));
  }
}

TEST(Cvt_d_ul_Trunc_ul_d) {
  CcTest::InitializeVM();
  FOR_UINT64_INPUTS(i) {
    uint64_t input = *i;
    CHECK_EQ(static_cast<double>(input),
             run_Cvt<uint64_t>(input, [](MacroAssembler* masm) {
               __ Cvt_d_ul(f0, a0);
               __ Trunc_ul_d(f2, f0, f1, v0);
             }));
  }
}

TEST(cvt_d_l_Trunc_l_d) {
  CcTest::InitializeVM();
  FOR_INT64_INPUTS(i) {
    int64_t input = *i;
    CHECK_EQ(static_cast<double>(input),
             run_Cvt<int64_t>(input, [](MacroAssembler* masm) {
               __ dmtc1(a0, f4);
               __ cvt_d_l(f0, f4);
               __ Trunc_l_d(f2, f0);
             }));
  }
}

TEST(cvt_d_l_Trunc_l_ud) {
  CcTest::InitializeVM();
  FOR_INT64_INPUTS(i) {
    int64_t input = *i;
    uint64_t abs_input = (input < 0) ? -input : input;
    CHECK_EQ(static_cast<double>(abs_input),
             run_Cvt<uint64_t>(input, [](MacroAssembler* masm) {
               __ dmtc1(a0, f4);
               __ cvt_d_l(f0, f4);
               __ Trunc_l_ud(f2, f0, f6);
             }));
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
  FOR_INT32_INPUTS(i) {
    int32_t input = *i;
    CHECK_EQ(static_cast<double>(input),
             run_Cvt<int64_t>(input, [](MacroAssembler* masm) {
               __ mtc1(a0, f4);
               __ cvt_d_w(f0, f4);
               __ Trunc_w_d(f2, f0);
               __ mfc1(v1, f2);
               __ dmtc1(v1, f2);
             }));
  }
}

TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ LoadRoot(at, Heap::kNanValueRootIndex);
    __ ldc1(dst, FieldMemOperand(at, HeapNumber::kValueOffset));
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
  __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
  __ MinNaNCheck_d(f10, f4, f8, &handle_mind_nan);
  __ bind(&back_mind_nan);
  __ MaxNaNCheck_d(f12, f4, f8, &handle_maxd_nan);
  __ bind(&back_maxd_nan);
  __ MinNaNCheck_s(f14, f2, f6, &handle_mins_nan);
  __ bind(&back_mins_nan);
  __ MaxNaNCheck_s(f16, f2, f6, &handle_maxs_nan);
  __ bind(&back_maxs_nan);
  __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
  __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  ::F3 f = FUNCTION_CAST<::F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

    CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

#undef __