// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "hydrogen.h" #include "codegen.h" #include "data-flow.h" #include "full-codegen.h" #include "hashmap.h" #include "lithium-allocator.h" #include "parser.h" #include "scopes.h" #include "stub-cache.h" #if V8_TARGET_ARCH_IA32 #include "ia32/lithium-codegen-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/lithium-codegen-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/lithium-codegen-arm.h" #else #error Unsupported target architecture. #endif namespace v8 { namespace internal { HBasicBlock::HBasicBlock(HGraph* graph) : block_id_(graph->GetNextBlockID()), graph_(graph), phis_(4), first_(NULL), last_(NULL), end_(NULL), loop_information_(NULL), predecessors_(2), dominator_(NULL), dominated_blocks_(4), last_environment_(NULL), argument_count_(-1), first_instruction_index_(-1), last_instruction_index_(-1), deleted_phis_(4), is_inline_return_target_(false) { } void HBasicBlock::AttachLoopInformation() { ASSERT(!IsLoopHeader()); loop_information_ = new HLoopInformation(this); } void HBasicBlock::DetachLoopInformation() { ASSERT(IsLoopHeader()); loop_information_ = NULL; } void HBasicBlock::AddPhi(HPhi* phi) { ASSERT(!IsStartBlock()); phis_.Add(phi); phi->SetBlock(this); } void HBasicBlock::RemovePhi(HPhi* phi) { ASSERT(phi->block() == this); ASSERT(phis_.Contains(phi)); ASSERT(phi->HasNoUses()); phi->ClearOperands(); phis_.RemoveElement(phi); phi->SetBlock(NULL); } void HBasicBlock::AddInstruction(HInstruction* instr) { ASSERT(!IsStartBlock() || !IsFinished()); ASSERT(!instr->IsLinked()); ASSERT(!IsFinished()); if (first_ == NULL) { HBlockEntry* entry = new HBlockEntry(); entry->InitializeAsFirst(this); first_ = entry; } instr->InsertAfter(GetLastInstruction()); } HInstruction* HBasicBlock::GetLastInstruction() { if (end_ != NULL) return end_->previous(); if (first_ == NULL) return NULL; if (last_ == NULL) last_ = first_; while (last_->next() != NULL) last_ = last_->next(); return last_; } HSimulate* HBasicBlock::CreateSimulate(int id) { ASSERT(HasEnvironment()); HEnvironment* environment = last_environment(); ASSERT(id == AstNode::kNoNumber || environment->closure()->shared()->VerifyBailoutId(id)); int push_count = environment->push_count(); int pop_count = environment->pop_count(); int length = environment->length(); HSimulate* instr = new HSimulate(id, pop_count, length); for (int i = push_count - 1; i >= 0; --i) { instr->AddPushedValue(environment->ExpressionStackAt(i)); } for (int i = 0; i < environment->assigned_variables()->length(); ++i) { int index = environment->assigned_variables()->at(i); instr->AddAssignedValue(index, environment->Lookup(index)); } environment->ClearHistory(); return instr; } void HBasicBlock::Finish(HControlInstruction* end) { ASSERT(!IsFinished()); AddInstruction(end); end_ = end; if (end->FirstSuccessor() != NULL) { end->FirstSuccessor()->RegisterPredecessor(this); if (end->SecondSuccessor() != NULL) { end->SecondSuccessor()->RegisterPredecessor(this); } } } void HBasicBlock::Goto(HBasicBlock* block, bool include_stack_check) { AddSimulate(AstNode::kNoNumber); HGoto* instr = new HGoto(block); instr->set_include_stack_check(include_stack_check); Finish(instr); } void HBasicBlock::SetInitialEnvironment(HEnvironment* env) { ASSERT(!HasEnvironment()); ASSERT(first() == NULL); UpdateEnvironment(env); } void HBasicBlock::SetJoinId(int id) { int length = predecessors_.length(); ASSERT(length > 0); for (int i = 0; i < length; i++) { HBasicBlock* predecessor = predecessors_[i]; ASSERT(predecessor->end()->IsGoto()); HSimulate* simulate = HSimulate::cast(predecessor->GetLastInstruction()); // We only need to verify the ID once. ASSERT(i != 0 || predecessor->last_environment()->closure()->shared() ->VerifyBailoutId(id)); simulate->set_ast_id(id); } } bool HBasicBlock::Dominates(HBasicBlock* other) const { HBasicBlock* current = other->dominator(); while (current != NULL) { if (current == this) return true; current = current->dominator(); } return false; } void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) { ASSERT(IsLoopHeader()); SetJoinId(stmt->EntryId()); if (predecessors()->length() == 1) { // This is a degenerated loop. DetachLoopInformation(); return; } // Only the first entry into the loop is from outside the loop. All other // entries must be back edges. for (int i = 1; i < predecessors()->length(); ++i) { loop_information()->RegisterBackEdge(predecessors()->at(i)); } } void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) { if (!predecessors_.is_empty()) { // Only loop header blocks can have a predecessor added after // instructions have been added to the block (they have phis for all // values in the environment, these phis may be eliminated later). ASSERT(IsLoopHeader() || first_ == NULL); HEnvironment* incoming_env = pred->last_environment(); if (IsLoopHeader()) { ASSERT(phis()->length() == incoming_env->length()); for (int i = 0; i < phis_.length(); ++i) { phis_[i]->AddInput(incoming_env->values()->at(i)); } } else { last_environment()->AddIncomingEdge(this, pred->last_environment()); } } else if (!HasEnvironment() && !IsFinished()) { ASSERT(!IsLoopHeader()); SetInitialEnvironment(pred->last_environment()->Copy()); } predecessors_.Add(pred); } void HBasicBlock::AddDominatedBlock(HBasicBlock* block) { ASSERT(!dominated_blocks_.Contains(block)); // Keep the list of dominated blocks sorted such that if there is two // succeeding block in this list, the predecessor is before the successor. int index = 0; while (index < dominated_blocks_.length() && dominated_blocks_[index]->block_id() < block->block_id()) { ++index; } dominated_blocks_.InsertAt(index, block); } void HBasicBlock::AssignCommonDominator(HBasicBlock* other) { if (dominator_ == NULL) { dominator_ = other; other->AddDominatedBlock(this); } else if (other->dominator() != NULL) { HBasicBlock* first = dominator_; HBasicBlock* second = other; while (first != second) { if (first->block_id() > second->block_id()) { first = first->dominator(); } else { second = second->dominator(); } ASSERT(first != NULL && second != NULL); } if (dominator_ != first) { ASSERT(dominator_->dominated_blocks_.Contains(this)); dominator_->dominated_blocks_.RemoveElement(this); dominator_ = first; first->AddDominatedBlock(this); } } } int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const { for (int i = 0; i < predecessors_.length(); ++i) { if (predecessors_[i] == predecessor) return i; } UNREACHABLE(); return -1; } #ifdef DEBUG void HBasicBlock::Verify() { // Check that every block is finished. ASSERT(IsFinished()); ASSERT(block_id() >= 0); // Verify that all blocks targetting a branch target, have the same boolean // value on top of their expression stack. if (!cond().is_null()) { ASSERT(predecessors()->length() > 0); for (int i = 1; i < predecessors()->length(); i++) { HBasicBlock* pred = predecessors()->at(i); HValue* top = pred->last_environment()->Top(); ASSERT(top->IsConstant()); Object* a = *HConstant::cast(top)->handle(); Object* b = *cond(); ASSERT(a == b); } } } #endif void HLoopInformation::RegisterBackEdge(HBasicBlock* block) { this->back_edges_.Add(block); AddBlock(block); } HBasicBlock* HLoopInformation::GetLastBackEdge() const { int max_id = -1; HBasicBlock* result = NULL; for (int i = 0; i < back_edges_.length(); ++i) { HBasicBlock* cur = back_edges_[i]; if (cur->block_id() > max_id) { max_id = cur->block_id(); result = cur; } } return result; } void HLoopInformation::AddBlock(HBasicBlock* block) { if (block == loop_header()) return; if (block->parent_loop_header() == loop_header()) return; if (block->parent_loop_header() != NULL) { AddBlock(block->parent_loop_header()); } else { block->set_parent_loop_header(loop_header()); blocks_.Add(block); for (int i = 0; i < block->predecessors()->length(); ++i) { AddBlock(block->predecessors()->at(i)); } } } #ifdef DEBUG // Checks reachability of the blocks in this graph and stores a bit in // the BitVector "reachable()" for every block that can be reached // from the start block of the graph. If "dont_visit" is non-null, the given // block is treated as if it would not be part of the graph. "visited_count()" // returns the number of reachable blocks. class ReachabilityAnalyzer BASE_EMBEDDED { public: ReachabilityAnalyzer(HBasicBlock* entry_block, int block_count, HBasicBlock* dont_visit) : visited_count_(0), stack_(16), reachable_(block_count), dont_visit_(dont_visit) { PushBlock(entry_block); Analyze(); } int visited_count() const { return visited_count_; } const BitVector* reachable() const { return &reachable_; } private: void PushBlock(HBasicBlock* block) { if (block != NULL && block != dont_visit_ && !reachable_.Contains(block->block_id())) { reachable_.Add(block->block_id()); stack_.Add(block); visited_count_++; } } void Analyze() { while (!stack_.is_empty()) { HControlInstruction* end = stack_.RemoveLast()->end(); PushBlock(end->FirstSuccessor()); PushBlock(end->SecondSuccessor()); } } int visited_count_; ZoneList stack_; BitVector reachable_; HBasicBlock* dont_visit_; }; void HGraph::Verify() const { for (int i = 0; i < blocks_.length(); i++) { HBasicBlock* block = blocks_.at(i); block->Verify(); // Check that every block contains at least one node and that only the last // node is a control instruction. HInstruction* current = block->first(); ASSERT(current != NULL && current->IsBlockEntry()); while (current != NULL) { ASSERT((current->next() == NULL) == current->IsControlInstruction()); ASSERT(current->block() == block); current->Verify(); current = current->next(); } // Check that successors are correctly set. HBasicBlock* first = block->end()->FirstSuccessor(); HBasicBlock* second = block->end()->SecondSuccessor(); ASSERT(second == NULL || first != NULL); // Check that the predecessor array is correct. if (first != NULL) { ASSERT(first->predecessors()->Contains(block)); if (second != NULL) { ASSERT(second->predecessors()->Contains(block)); } } // Check that phis have correct arguments. for (int j = 0; j < block->phis()->length(); j++) { HPhi* phi = block->phis()->at(j); phi->Verify(); } // Check that all join blocks have predecessors that end with an // unconditional goto and agree on their environment node id. if (block->predecessors()->length() >= 2) { int id = block->predecessors()->first()->last_environment()->ast_id(); for (int k = 0; k < block->predecessors()->length(); k++) { HBasicBlock* predecessor = block->predecessors()->at(k); ASSERT(predecessor->end()->IsGoto()); ASSERT(predecessor->last_environment()->ast_id() == id); } } } // Check special property of first block to have no predecessors. ASSERT(blocks_.at(0)->predecessors()->is_empty()); // Check that the graph is fully connected. ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL); ASSERT(analyzer.visited_count() == blocks_.length()); // Check that entry block dominator is NULL. ASSERT(entry_block_->dominator() == NULL); // Check dominators. for (int i = 0; i < blocks_.length(); ++i) { HBasicBlock* block = blocks_.at(i); if (block->dominator() == NULL) { // Only start block may have no dominator assigned to. ASSERT(i == 0); } else { // Assert that block is unreachable if dominator must not be visited. ReachabilityAnalyzer dominator_analyzer(entry_block_, blocks_.length(), block->dominator()); ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id())); } } } #endif HConstant* HGraph::GetConstant(SetOncePointer* pointer, Object* value) { if (!pointer->is_set()) { HConstant* constant = new HConstant(Handle(value), Representation::Tagged()); constant->InsertAfter(GetConstantUndefined()); pointer->set(constant); } return pointer->get(); } HConstant* HGraph::GetConstant1() { return GetConstant(&constant_1_, Smi::FromInt(1)); } HConstant* HGraph::GetConstantMinus1() { return GetConstant(&constant_minus1_, Smi::FromInt(-1)); } HConstant* HGraph::GetConstantTrue() { return GetConstant(&constant_true_, Heap::true_value()); } HConstant* HGraph::GetConstantFalse() { return GetConstant(&constant_false_, Heap::false_value()); } void HSubgraph::AppendOptional(HSubgraph* graph, bool on_true_branch, HValue* value) { ASSERT(HasExit() && graph->HasExit()); HBasicBlock* other_block = graph_->CreateBasicBlock(); HBasicBlock* join_block = graph_->CreateBasicBlock(); HTest* test = on_true_branch ? new HTest(value, graph->entry_block(), other_block) : new HTest(value, other_block, graph->entry_block()); exit_block_->Finish(test); other_block->Goto(join_block); graph->exit_block()->Goto(join_block); exit_block_ = join_block; } void HSubgraph::AppendJoin(HSubgraph* then_graph, HSubgraph* else_graph, AstNode* node) { if (then_graph->HasExit() && else_graph->HasExit()) { // We need to merge, create new merge block. HBasicBlock* join_block = graph_->CreateBasicBlock(); then_graph->exit_block()->Goto(join_block); else_graph->exit_block()->Goto(join_block); join_block->SetJoinId(node->id()); exit_block_ = join_block; } else if (then_graph->HasExit()) { exit_block_ = then_graph->exit_block_; } else if (else_graph->HasExit()) { exit_block_ = else_graph->exit_block_; } else { exit_block_ = NULL; } } void HSubgraph::ResolveContinue(IterationStatement* statement) { HBasicBlock* continue_block = BundleContinue(statement); if (continue_block != NULL) { exit_block_ = JoinBlocks(exit_block(), continue_block, statement->ContinueId()); } } HBasicBlock* HSubgraph::BundleBreak(BreakableStatement* statement) { return BundleBreakContinue(statement, false, statement->ExitId()); } HBasicBlock* HSubgraph::BundleContinue(IterationStatement* statement) { return BundleBreakContinue(statement, true, statement->ContinueId()); } HBasicBlock* HSubgraph::BundleBreakContinue(BreakableStatement* statement, bool is_continue, int join_id) { HBasicBlock* result = NULL; const ZoneList* infos = break_continue_info(); for (int i = 0; i < infos->length(); ++i) { BreakContinueInfo* info = infos->at(i); if (info->is_continue() == is_continue && info->target() == statement && !info->IsResolved()) { if (result == NULL) { result = graph_->CreateBasicBlock(); } info->block()->Goto(result); info->Resolve(); } } if (result != NULL) result->SetJoinId(join_id); return result; } HBasicBlock* HSubgraph::JoinBlocks(HBasicBlock* a, HBasicBlock* b, int id) { if (a == NULL) return b; if (b == NULL) return a; HBasicBlock* target = graph_->CreateBasicBlock(); a->Goto(target); b->Goto(target); target->SetJoinId(id); return target; } void HSubgraph::AppendEndless(HSubgraph* body, IterationStatement* statement) { ConnectExitTo(body->entry_block()); body->ResolveContinue(statement); body->ConnectExitTo(body->entry_block(), true); exit_block_ = body->BundleBreak(statement); body->entry_block()->PostProcessLoopHeader(statement); } void HSubgraph::AppendDoWhile(HSubgraph* body, IterationStatement* statement, HSubgraph* go_back, HSubgraph* exit) { ConnectExitTo(body->entry_block()); go_back->ConnectExitTo(body->entry_block(), true); HBasicBlock* break_block = body->BundleBreak(statement); exit_block_ = JoinBlocks(exit->exit_block(), break_block, statement->ExitId()); body->entry_block()->PostProcessLoopHeader(statement); } void HSubgraph::AppendWhile(HSubgraph* condition, HSubgraph* body, IterationStatement* statement, HSubgraph* continue_subgraph, HSubgraph* exit) { ConnectExitTo(condition->entry_block()); HBasicBlock* break_block = body->BundleBreak(statement); exit_block_ = JoinBlocks(exit->exit_block(), break_block, statement->ExitId()); if (continue_subgraph != NULL) { body->ConnectExitTo(continue_subgraph->entry_block(), true); continue_subgraph->entry_block()->SetJoinId(statement->EntryId()); exit_block_ = JoinBlocks(exit_block_, continue_subgraph->exit_block(), statement->ExitId()); } else { body->ConnectExitTo(condition->entry_block(), true); } condition->entry_block()->PostProcessLoopHeader(statement); } void HSubgraph::Append(HSubgraph* next, BreakableStatement* stmt) { exit_block_->Goto(next->entry_block()); exit_block_ = next->exit_block_; if (stmt != NULL) { next->entry_block()->SetJoinId(stmt->EntryId()); HBasicBlock* break_block = next->BundleBreak(stmt); exit_block_ = JoinBlocks(exit_block(), break_block, stmt->ExitId()); } } void HSubgraph::FinishExit(HControlInstruction* instruction) { ASSERT(HasExit()); exit_block_->Finish(instruction); exit_block_->ClearEnvironment(); exit_block_ = NULL; } void HSubgraph::FinishBreakContinue(BreakableStatement* target, bool is_continue) { ASSERT(!exit_block_->IsFinished()); BreakContinueInfo* info = new BreakContinueInfo(target, exit_block_, is_continue); break_continue_info_.Add(info); exit_block_ = NULL; } HGraph::HGraph(CompilationInfo* info) : HSubgraph(this), next_block_id_(0), info_(info), blocks_(8), values_(16), phi_list_(NULL) { start_environment_ = new HEnvironment(NULL, info->scope(), info->closure()); start_environment_->set_ast_id(info->function()->id()); } bool HGraph::AllowCodeMotion() const { return info()->shared_info()->opt_count() + 1 < Compiler::kDefaultMaxOptCount; } Handle HGraph::Compile() { int values = GetMaximumValueID(); if (values > LAllocator::max_initial_value_ids()) { if (FLAG_trace_bailout) PrintF("Function is too big\n"); return Handle::null(); } LAllocator allocator(values, this); LChunkBuilder builder(this, &allocator); LChunk* chunk = builder.Build(); if (chunk == NULL) return Handle::null(); if (!FLAG_alloc_lithium) return Handle::null(); allocator.Allocate(chunk); if (!FLAG_use_lithium) return Handle::null(); MacroAssembler assembler(NULL, 0); LCodeGen generator(chunk, &assembler, info()); if (FLAG_eliminate_empty_blocks) { chunk->MarkEmptyBlocks(); } if (generator.GenerateCode()) { if (FLAG_trace_codegen) { PrintF("Crankshaft Compiler - "); } CodeGenerator::MakeCodePrologue(info()); Code::Flags flags = Code::ComputeFlags(Code::OPTIMIZED_FUNCTION, NOT_IN_LOOP); Handle code = CodeGenerator::MakeCodeEpilogue(&assembler, flags, info()); generator.FinishCode(code); CodeGenerator::PrintCode(code, info()); return code; } return Handle::null(); } HBasicBlock* HGraph::CreateBasicBlock() { HBasicBlock* result = new HBasicBlock(this); blocks_.Add(result); return result; } void HGraph::Canonicalize() { HPhase phase("Canonicalize", this); if (FLAG_use_canonicalizing) { for (int i = 0; i < blocks()->length(); ++i) { HBasicBlock* b = blocks()->at(i); for (HInstruction* insn = b->first(); insn != NULL; insn = insn->next()) { HValue* value = insn->Canonicalize(); if (value != insn) { if (value != NULL) { insn->ReplaceAndDelete(value); } else { insn->Delete(); } } } } } } void HGraph::OrderBlocks() { HPhase phase("Block ordering"); BitVector visited(blocks_.length()); ZoneList reverse_result(8); HBasicBlock* start = blocks_[0]; Postorder(start, &visited, &reverse_result, NULL); blocks_.Clear(); int index = 0; for (int i = reverse_result.length() - 1; i >= 0; --i) { HBasicBlock* b = reverse_result[i]; blocks_.Add(b); b->set_block_id(index++); } } void HGraph::PostorderLoopBlocks(HLoopInformation* loop, BitVector* visited, ZoneList* order, HBasicBlock* loop_header) { for (int i = 0; i < loop->blocks()->length(); ++i) { HBasicBlock* b = loop->blocks()->at(i); Postorder(b->end()->SecondSuccessor(), visited, order, loop_header); Postorder(b->end()->FirstSuccessor(), visited, order, loop_header); if (b->IsLoopHeader() && b != loop->loop_header()) { PostorderLoopBlocks(b->loop_information(), visited, order, loop_header); } } } void HGraph::Postorder(HBasicBlock* block, BitVector* visited, ZoneList* order, HBasicBlock* loop_header) { if (block == NULL || visited->Contains(block->block_id())) return; if (block->parent_loop_header() != loop_header) return; visited->Add(block->block_id()); if (block->IsLoopHeader()) { PostorderLoopBlocks(block->loop_information(), visited, order, loop_header); Postorder(block->end()->SecondSuccessor(), visited, order, block); Postorder(block->end()->FirstSuccessor(), visited, order, block); } else { Postorder(block->end()->SecondSuccessor(), visited, order, loop_header); Postorder(block->end()->FirstSuccessor(), visited, order, loop_header); } ASSERT(block->end()->FirstSuccessor() == NULL || order->Contains(block->end()->FirstSuccessor()) || block->end()->FirstSuccessor()->IsLoopHeader()); ASSERT(block->end()->SecondSuccessor() == NULL || order->Contains(block->end()->SecondSuccessor()) || block->end()->SecondSuccessor()->IsLoopHeader()); order->Add(block); } void HGraph::AssignDominators() { HPhase phase("Assign dominators", this); for (int i = 0; i < blocks_.length(); ++i) { if (blocks_[i]->IsLoopHeader()) { blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->first()); } else { for (int j = 0; j < blocks_[i]->predecessors()->length(); ++j) { blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j)); } } } } void HGraph::EliminateRedundantPhis() { HPhase phase("Phi elimination", this); ZoneList uses_to_replace(2); // Worklist of phis that can potentially be eliminated. Initialized // with all phi nodes. When elimination of a phi node modifies // another phi node the modified phi node is added to the worklist. ZoneList worklist(blocks_.length()); for (int i = 0; i < blocks_.length(); ++i) { worklist.AddAll(*blocks_[i]->phis()); } while (!worklist.is_empty()) { HPhi* phi = worklist.RemoveLast(); HBasicBlock* block = phi->block(); // Skip phi node if it was already replaced. if (block == NULL) continue; // Get replacement value if phi is redundant. HValue* value = phi->GetRedundantReplacement(); if (value != NULL) { // Iterate through uses finding the ones that should be // replaced. const ZoneList* uses = phi->uses(); for (int i = 0; i < uses->length(); ++i) { HValue* use = uses->at(i); if (!use->block()->IsStartBlock()) { uses_to_replace.Add(use); } } // Replace the uses and add phis modified to the work list. for (int i = 0; i < uses_to_replace.length(); ++i) { HValue* use = uses_to_replace[i]; phi->ReplaceAtUse(use, value); if (use->IsPhi()) worklist.Add(HPhi::cast(use)); } uses_to_replace.Rewind(0); block->RemovePhi(phi); } else if (phi->HasNoUses() && !phi->HasReceiverOperand() && FLAG_eliminate_dead_phis) { // We can't eliminate phis that have the receiver as an operand // because in case of throwing an error we need the correct // receiver value in the environment to construct a corrent // stack trace. block->RemovePhi(phi); block->RecordDeletedPhi(phi->merged_index()); } } } bool HGraph::CollectPhis() { const ZoneList* blocks = graph_->blocks(); phi_list_ = new ZoneList(blocks->length()); for (int i = 0; i < blocks->length(); ++i) { for (int j = 0; j < blocks->at(i)->phis()->length(); j++) { HPhi* phi = blocks->at(i)->phis()->at(j); phi_list_->Add(phi); // We don't support phi uses of arguments for now. if (phi->CheckFlag(HValue::kIsArguments)) return false; } } return true; } void HGraph::InferTypes(ZoneList* worklist) { BitVector in_worklist(GetMaximumValueID()); for (int i = 0; i < worklist->length(); ++i) { ASSERT(!in_worklist.Contains(worklist->at(i)->id())); in_worklist.Add(worklist->at(i)->id()); } while (!worklist->is_empty()) { HValue* current = worklist->RemoveLast(); in_worklist.Remove(current->id()); if (current->UpdateInferredType()) { for (int j = 0; j < current->uses()->length(); j++) { HValue* use = current->uses()->at(j); if (!in_worklist.Contains(use->id())) { in_worklist.Add(use->id()); worklist->Add(use); } } } } } class HRangeAnalysis BASE_EMBEDDED { public: explicit HRangeAnalysis(HGraph* graph) : graph_(graph), changed_ranges_(16) {} void Analyze(); private: void TraceRange(const char* msg, ...); void Analyze(HBasicBlock* block); void InferControlFlowRange(HTest* test, HBasicBlock* dest); void InferControlFlowRange(Token::Value op, HValue* value, HValue* other); void InferPhiRange(HPhi* phi); void InferRange(HValue* value); void RollBackTo(int index); void AddRange(HValue* value, Range* range); HGraph* graph_; ZoneList changed_ranges_; }; void HRangeAnalysis::TraceRange(const char* msg, ...) { if (FLAG_trace_range) { va_list arguments; va_start(arguments, msg); OS::VPrint(msg, arguments); va_end(arguments); } } void HRangeAnalysis::Analyze() { HPhase phase("Range analysis", graph_); Analyze(graph_->blocks()->at(0)); } void HRangeAnalysis::Analyze(HBasicBlock* block) { TraceRange("Analyzing block B%d\n", block->block_id()); int last_changed_range = changed_ranges_.length() - 1; // Infer range based on control flow. if (block->predecessors()->length() == 1) { HBasicBlock* pred = block->predecessors()->first(); if (pred->end()->IsTest()) { InferControlFlowRange(HTest::cast(pred->end()), block); } } // Process phi instructions. for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); InferPhiRange(phi); } // Go through all instructions of the current block. HInstruction* instr = block->first(); while (instr != block->end()) { InferRange(instr); instr = instr->next(); } // Continue analysis in all dominated blocks. for (int i = 0; i < block->dominated_blocks()->length(); ++i) { Analyze(block->dominated_blocks()->at(i)); } RollBackTo(last_changed_range); } void HRangeAnalysis::InferControlFlowRange(HTest* test, HBasicBlock* dest) { ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest)); if (test->value()->IsCompare()) { HCompare* compare = HCompare::cast(test->value()); Token::Value op = compare->token(); if (test->SecondSuccessor() == dest) { op = Token::NegateCompareOp(op); } Token::Value inverted_op = Token::InvertCompareOp(op); InferControlFlowRange(op, compare->left(), compare->right()); InferControlFlowRange(inverted_op, compare->right(), compare->left()); } } // We know that value [op] other. Use this information to update the range on // value. void HRangeAnalysis::InferControlFlowRange(Token::Value op, HValue* value, HValue* other) { Range* range = other->range(); if (range == NULL) range = new Range(); Range* new_range = NULL; TraceRange("Control flow range infer %d %s %d\n", value->id(), Token::Name(op), other->id()); if (op == Token::EQ || op == Token::EQ_STRICT) { // The same range has to apply for value. new_range = range->Copy(); } else if (op == Token::LT || op == Token::LTE) { new_range = range->CopyClearLower(); if (op == Token::LT) { new_range->AddConstant(-1); } } else if (op == Token::GT || op == Token::GTE) { new_range = range->CopyClearUpper(); if (op == Token::GT) { new_range->AddConstant(1); } } if (new_range != NULL && !new_range->IsMostGeneric()) { AddRange(value, new_range); } } void HRangeAnalysis::InferPhiRange(HPhi* phi) { // TODO(twuerthinger): Infer loop phi ranges. InferRange(phi); } void HRangeAnalysis::InferRange(HValue* value) { ASSERT(!value->HasRange()); if (!value->representation().IsNone()) { value->ComputeInitialRange(); Range* range = value->range(); TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n", value->id(), value->Mnemonic(), range->lower(), range->upper()); } } void HRangeAnalysis::RollBackTo(int index) { for (int i = index + 1; i < changed_ranges_.length(); ++i) { changed_ranges_[i]->RemoveLastAddedRange(); } changed_ranges_.Rewind(index + 1); } void HRangeAnalysis::AddRange(HValue* value, Range* range) { Range* original_range = value->range(); value->AddNewRange(range); changed_ranges_.Add(value); Range* new_range = value->range(); TraceRange("Updated range of %d set to [%d,%d]\n", value->id(), new_range->lower(), new_range->upper()); if (original_range != NULL) { TraceRange("Original range was [%d,%d]\n", original_range->lower(), original_range->upper()); } TraceRange("New information was [%d,%d]\n", range->lower(), range->upper()); } void TraceGVN(const char* msg, ...) { if (FLAG_trace_gvn) { va_list arguments; va_start(arguments, msg); OS::VPrint(msg, arguments); va_end(arguments); } } HValueMap::HValueMap(const HValueMap* other) : array_size_(other->array_size_), lists_size_(other->lists_size_), count_(other->count_), present_flags_(other->present_flags_), array_(Zone::NewArray(other->array_size_)), lists_(Zone::NewArray(other->lists_size_)), free_list_head_(other->free_list_head_) { memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement)); memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement)); } void HValueMap::Kill(int flags) { int depends_flags = HValue::ConvertChangesToDependsFlags(flags); if ((present_flags_ & depends_flags) == 0) return; present_flags_ = 0; for (int i = 0; i < array_size_; ++i) { HValue* value = array_[i].value; if (value != NULL) { // Clear list of collisions first, so we know if it becomes empty. int kept = kNil; // List of kept elements. int next; for (int current = array_[i].next; current != kNil; current = next) { next = lists_[current].next; if ((lists_[current].value->flags() & depends_flags) != 0) { // Drop it. count_--; lists_[current].next = free_list_head_; free_list_head_ = current; } else { // Keep it. lists_[current].next = kept; kept = current; present_flags_ |= lists_[current].value->flags(); } } array_[i].next = kept; // Now possibly drop directly indexed element. if ((array_[i].value->flags() & depends_flags) != 0) { // Drop it. count_--; int head = array_[i].next; if (head == kNil) { array_[i].value = NULL; } else { array_[i].value = lists_[head].value; array_[i].next = lists_[head].next; lists_[head].next = free_list_head_; free_list_head_ = head; } } else { present_flags_ |= array_[i].value->flags(); // Keep it. } } } } HValue* HValueMap::Lookup(HValue* value) const { uint32_t hash = static_cast(value->Hashcode()); uint32_t pos = Bound(hash); if (array_[pos].value != NULL) { if (array_[pos].value->Equals(value)) return array_[pos].value; int next = array_[pos].next; while (next != kNil) { if (lists_[next].value->Equals(value)) return lists_[next].value; next = lists_[next].next; } } return NULL; } void HValueMap::Resize(int new_size) { ASSERT(new_size > count_); // Hashing the values into the new array has no more collisions than in the // old hash map, so we can use the existing lists_ array, if we are careful. // Make sure we have at least one free element. if (free_list_head_ == kNil) { ResizeLists(lists_size_ << 1); } HValueMapListElement* new_array = Zone::NewArray(new_size); memset(new_array, 0, sizeof(HValueMapListElement) * new_size); HValueMapListElement* old_array = array_; int old_size = array_size_; int old_count = count_; count_ = 0; // Do not modify present_flags_. It is currently correct. array_size_ = new_size; array_ = new_array; if (old_array != NULL) { // Iterate over all the elements in lists, rehashing them. for (int i = 0; i < old_size; ++i) { if (old_array[i].value != NULL) { int current = old_array[i].next; while (current != kNil) { Insert(lists_[current].value); int next = lists_[current].next; lists_[current].next = free_list_head_; free_list_head_ = current; current = next; } // Rehash the directly stored value. Insert(old_array[i].value); } } } USE(old_count); ASSERT(count_ == old_count); } void HValueMap::ResizeLists(int new_size) { ASSERT(new_size > lists_size_); HValueMapListElement* new_lists = Zone::NewArray(new_size); memset(new_lists, 0, sizeof(HValueMapListElement) * new_size); HValueMapListElement* old_lists = lists_; int old_size = lists_size_; lists_size_ = new_size; lists_ = new_lists; if (old_lists != NULL) { memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement)); } for (int i = old_size; i < lists_size_; ++i) { lists_[i].next = free_list_head_; free_list_head_ = i; } } void HValueMap::Insert(HValue* value) { ASSERT(value != NULL); // Resizing when half of the hashtable is filled up. if (count_ >= array_size_ >> 1) Resize(array_size_ << 1); ASSERT(count_ < array_size_); count_++; uint32_t pos = Bound(static_cast(value->Hashcode())); if (array_[pos].value == NULL) { array_[pos].value = value; array_[pos].next = kNil; } else { if (free_list_head_ == kNil) { ResizeLists(lists_size_ << 1); } int new_element_pos = free_list_head_; ASSERT(new_element_pos != kNil); free_list_head_ = lists_[free_list_head_].next; lists_[new_element_pos].value = value; lists_[new_element_pos].next = array_[pos].next; ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL); array_[pos].next = new_element_pos; } } class HStackCheckEliminator BASE_EMBEDDED { public: explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { } void Process(); private: void RemoveStackCheck(HBasicBlock* block); HGraph* graph_; }; void HStackCheckEliminator::Process() { // For each loop block walk the dominator tree from the backwards branch to // the loop header. If a call instruction is encountered the backwards branch // is dominated by a call and the stack check in the backwards branch can be // removed. for (int i = 0; i < graph_->blocks()->length(); i++) { HBasicBlock* block = graph_->blocks()->at(i); if (block->IsLoopHeader()) { HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge(); HBasicBlock* dominator = back_edge; bool back_edge_dominated_by_call = false; while (dominator != block && !back_edge_dominated_by_call) { HInstruction* instr = dominator->first(); while (instr != NULL && !back_edge_dominated_by_call) { if (instr->IsCall()) { RemoveStackCheck(back_edge); back_edge_dominated_by_call = true; } instr = instr->next(); } dominator = dominator->dominator(); } } } } void HStackCheckEliminator::RemoveStackCheck(HBasicBlock* block) { HInstruction* instr = block->first(); while (instr != NULL) { if (instr->IsGoto()) { HGoto::cast(instr)->set_include_stack_check(false); return; } instr = instr->next(); } } class HGlobalValueNumberer BASE_EMBEDDED { public: explicit HGlobalValueNumberer(HGraph* graph) : graph_(graph), block_side_effects_(graph_->blocks()->length()), loop_side_effects_(graph_->blocks()->length()) { ASSERT(Heap::allow_allocation(false)); block_side_effects_.AddBlock(0, graph_->blocks()->length()); loop_side_effects_.AddBlock(0, graph_->blocks()->length()); } ~HGlobalValueNumberer() { ASSERT(!Heap::allow_allocation(true)); } void Analyze(); private: void AnalyzeBlock(HBasicBlock* block, HValueMap* map); void ComputeBlockSideEffects(); void LoopInvariantCodeMotion(); void ProcessLoopBlock(HBasicBlock* block, HBasicBlock* before_loop, int loop_kills); bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header); HGraph* graph_; // A map of block IDs to their side effects. ZoneList block_side_effects_; // A map of loop header block IDs to their loop's side effects. ZoneList loop_side_effects_; }; void HGlobalValueNumberer::Analyze() { ComputeBlockSideEffects(); if (FLAG_loop_invariant_code_motion) { LoopInvariantCodeMotion(); } HValueMap* map = new HValueMap(); AnalyzeBlock(graph_->blocks()->at(0), map); } void HGlobalValueNumberer::ComputeBlockSideEffects() { for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { // Compute side effects for the block. HBasicBlock* block = graph_->blocks()->at(i); HInstruction* instr = block->first(); int id = block->block_id(); int side_effects = 0; while (instr != NULL) { side_effects |= (instr->flags() & HValue::ChangesFlagsMask()); instr = instr->next(); } block_side_effects_[id] |= side_effects; // Loop headers are part of their loop. if (block->IsLoopHeader()) { loop_side_effects_[id] |= side_effects; } // Propagate loop side effects upwards. if (block->HasParentLoopHeader()) { int header_id = block->parent_loop_header()->block_id(); loop_side_effects_[header_id] |= block->IsLoopHeader() ? loop_side_effects_[id] : side_effects; } } } void HGlobalValueNumberer::LoopInvariantCodeMotion() { for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { HBasicBlock* block = graph_->blocks()->at(i); if (block->IsLoopHeader()) { int side_effects = loop_side_effects_[block->block_id()]; TraceGVN("Try loop invariant motion for block B%d effects=0x%x\n", block->block_id(), side_effects); HBasicBlock* last = block->loop_information()->GetLastBackEdge(); for (int j = block->block_id(); j <= last->block_id(); ++j) { ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects); } } } } void HGlobalValueNumberer::ProcessLoopBlock(HBasicBlock* block, HBasicBlock* loop_header, int loop_kills) { HBasicBlock* pre_header = loop_header->predecessors()->at(0); int depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills); TraceGVN("Loop invariant motion for B%d depends_flags=0x%x\n", block->block_id(), depends_flags); HInstruction* instr = block->first(); while (instr != NULL) { HInstruction* next = instr->next(); if (instr->CheckFlag(HValue::kUseGVN) && (instr->flags() & depends_flags) == 0) { TraceGVN("Checking instruction %d (%s)\n", instr->id(), instr->Mnemonic()); bool inputs_loop_invariant = true; for (int i = 0; i < instr->OperandCount(); ++i) { if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) { inputs_loop_invariant = false; } } if (inputs_loop_invariant && ShouldMove(instr, loop_header)) { TraceGVN("Found loop invariant instruction %d\n", instr->id()); // Move the instruction out of the loop. instr->Unlink(); instr->InsertBefore(pre_header->end()); } } instr = next; } } bool HGlobalValueNumberer::ShouldMove(HInstruction* instr, HBasicBlock* loop_header) { // If we've disabled code motion, don't move any instructions. if (!graph_->AllowCodeMotion()) return false; // If --aggressive-loop-invariant-motion, move everything except change // instructions. if (FLAG_aggressive_loop_invariant_motion && !instr->IsChange()) { return true; } // Otherwise only move instructions that postdominate the loop header // (i.e. are always executed inside the loop). This is to avoid // unnecessary deoptimizations assuming the loop is executed at least // once. TODO(fschneider): Better type feedback should give us // information about code that was never executed. HBasicBlock* block = instr->block(); bool result = true; if (block != loop_header) { for (int i = 1; i < loop_header->predecessors()->length(); ++i) { bool found = false; HBasicBlock* pred = loop_header->predecessors()->at(i); while (pred != loop_header) { if (pred == block) found = true; pred = pred->dominator(); } if (!found) { result = false; break; } } } return result; } void HGlobalValueNumberer::AnalyzeBlock(HBasicBlock* block, HValueMap* map) { TraceGVN("Analyzing block B%d\n", block->block_id()); // If this is a loop header kill everything killed by the loop. if (block->IsLoopHeader()) { map->Kill(loop_side_effects_[block->block_id()]); } // Go through all instructions of the current block. HInstruction* instr = block->first(); while (instr != NULL) { HInstruction* next = instr->next(); int flags = (instr->flags() & HValue::ChangesFlagsMask()); if (flags != 0) { ASSERT(!instr->CheckFlag(HValue::kUseGVN)); // Clear all instructions in the map that are affected by side effects. map->Kill(flags); TraceGVN("Instruction %d kills\n", instr->id()); } else if (instr->CheckFlag(HValue::kUseGVN)) { HValue* other = map->Lookup(instr); if (other != NULL) { ASSERT(instr->Equals(other) && other->Equals(instr)); TraceGVN("Replacing value %d (%s) with value %d (%s)\n", instr->id(), instr->Mnemonic(), other->id(), other->Mnemonic()); instr->ReplaceValue(other); instr->Delete(); } else { map->Add(instr); } } instr = next; } // Recursively continue analysis for all immediately dominated blocks. int length = block->dominated_blocks()->length(); for (int i = 0; i < length; ++i) { HBasicBlock* dominated = block->dominated_blocks()->at(i); // No need to copy the map for the last child in the dominator tree. HValueMap* successor_map = (i == length - 1) ? map : map->Copy(); // If the dominated block is not a successor to this block we have to // kill everything killed on any path between this block and the // dominated block. Note we rely on the block ordering. bool is_successor = false; int predecessor_count = dominated->predecessors()->length(); for (int j = 0; !is_successor && j < predecessor_count; ++j) { is_successor = (dominated->predecessors()->at(j) == block); } if (!is_successor) { int side_effects = 0; for (int j = block->block_id() + 1; j < dominated->block_id(); ++j) { side_effects |= block_side_effects_[j]; } successor_map->Kill(side_effects); } AnalyzeBlock(dominated, successor_map); } } class HInferRepresentation BASE_EMBEDDED { public: explicit HInferRepresentation(HGraph* graph) : graph_(graph), worklist_(8), in_worklist_(graph->GetMaximumValueID()) {} void Analyze(); private: Representation TryChange(HValue* current); void AddToWorklist(HValue* current); void InferBasedOnInputs(HValue* current); void AddDependantsToWorklist(HValue* current); void InferBasedOnUses(HValue* current); HGraph* graph_; ZoneList worklist_; BitVector in_worklist_; }; void HInferRepresentation::AddToWorklist(HValue* current) { if (current->representation().IsSpecialization()) return; if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return; if (in_worklist_.Contains(current->id())) return; worklist_.Add(current); in_worklist_.Add(current->id()); } // This method tries to specialize the representation type of the value // given as a parameter. The value is asked to infer its representation type // based on its inputs. If the inferred type is more specialized, then this // becomes the new representation type of the node. void HInferRepresentation::InferBasedOnInputs(HValue* current) { Representation r = current->representation(); if (r.IsSpecialization()) return; ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation)); Representation inferred = current->InferredRepresentation(); if (inferred.IsSpecialization()) { current->ChangeRepresentation(inferred); AddDependantsToWorklist(current); } } void HInferRepresentation::AddDependantsToWorklist(HValue* current) { for (int i = 0; i < current->uses()->length(); ++i) { AddToWorklist(current->uses()->at(i)); } for (int i = 0; i < current->OperandCount(); ++i) { AddToWorklist(current->OperandAt(i)); } } // This method calculates whether specializing the representation of the value // given as the parameter has a benefit in terms of less necessary type // conversions. If there is a benefit, then the representation of the value is // specialized. void HInferRepresentation::InferBasedOnUses(HValue* current) { Representation r = current->representation(); if (r.IsSpecialization() || current->HasNoUses()) return; ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation)); Representation new_rep = TryChange(current); if (!new_rep.IsNone()) { if (!current->representation().Equals(new_rep)) { current->ChangeRepresentation(new_rep); AddDependantsToWorklist(current); } } } Representation HInferRepresentation::TryChange(HValue* current) { // Array of use counts for each representation. int use_count[Representation::kNumRepresentations]; for (int i = 0; i < Representation::kNumRepresentations; i++) { use_count[i] = 0; } for (int i = 0; i < current->uses()->length(); ++i) { HValue* use = current->uses()->at(i); int index = use->LookupOperandIndex(0, current); Representation req_rep = use->RequiredInputRepresentation(index); if (req_rep.IsNone()) continue; if (use->IsPhi()) { HPhi* phi = HPhi::cast(use); phi->AddIndirectUsesTo(&use_count[0]); } use_count[req_rep.kind()]++; } int tagged_count = use_count[Representation::kTagged]; int double_count = use_count[Representation::kDouble]; int int32_count = use_count[Representation::kInteger32]; int non_tagged_count = double_count + int32_count; // If a non-loop phi has tagged uses, don't convert it to untagged. if (current->IsPhi() && !current->block()->IsLoopHeader()) { if (tagged_count > 0) return Representation::None(); } if (non_tagged_count >= tagged_count) { // More untagged than tagged. if (double_count > 0) { // There is at least one usage that is a double => guess that the // correct representation is double. return Representation::Double(); } else if (int32_count > 0) { return Representation::Integer32(); } } return Representation::None(); } void HInferRepresentation::Analyze() { HPhase phase("Infer representations", graph_); // (1) Initialize bit vectors and count real uses. Each phi // gets a bit-vector of length . const ZoneList* phi_list = graph_->phi_list(); int num_phis = phi_list->length(); ScopedVector connected_phis(num_phis); for (int i = 0; i < num_phis; i++) { phi_list->at(i)->InitRealUses(i); connected_phis[i] = new BitVector(num_phis); connected_phis[i]->Add(i); } // (2) Do a fixed point iteration to find the set of connected phis. // A phi is connected to another phi if its value is used either // directly or indirectly through a transitive closure of the def-use // relation. bool change = true; while (change) { change = false; for (int i = 0; i < num_phis; i++) { HPhi* phi = phi_list->at(i); for (int j = 0; j < phi->uses()->length(); j++) { HValue* use = phi->uses()->at(j); if (use->IsPhi()) { int phi_use = HPhi::cast(use)->phi_id(); if (connected_phis[i]->UnionIsChanged(*connected_phis[phi_use])) { change = true; } } } } } // (3) Sum up the non-phi use counts of all connected phis. // Don't include the non-phi uses of the phi itself. for (int i = 0; i < num_phis; i++) { HPhi* phi = phi_list->at(i); for (BitVector::Iterator it(connected_phis.at(i)); !it.Done(); it.Advance()) { int index = it.Current(); if (index != i) { HPhi* it_use = phi_list->at(it.Current()); phi->AddNonPhiUsesFrom(it_use); } } } for (int i = 0; i < graph_->blocks()->length(); ++i) { HBasicBlock* block = graph_->blocks()->at(i); const ZoneList* phis = block->phis(); for (int j = 0; j < phis->length(); ++j) { AddToWorklist(phis->at(j)); } HInstruction* current = block->first(); while (current != NULL) { AddToWorklist(current); current = current->next(); } } while (!worklist_.is_empty()) { HValue* current = worklist_.RemoveLast(); in_worklist_.Remove(current->id()); InferBasedOnInputs(current); InferBasedOnUses(current); } } void HGraph::InitializeInferredTypes() { HPhase phase("Inferring types", this); InitializeInferredTypes(0, this->blocks_.length() - 1); } void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) { for (int i = from_inclusive; i <= to_inclusive; ++i) { HBasicBlock* block = blocks_[i]; const ZoneList* phis = block->phis(); for (int j = 0; j < phis->length(); j++) { phis->at(j)->UpdateInferredType(); } HInstruction* current = block->first(); while (current != NULL) { current->UpdateInferredType(); current = current->next(); } if (block->IsLoopHeader()) { HBasicBlock* last_back_edge = block->loop_information()->GetLastBackEdge(); InitializeInferredTypes(i + 1, last_back_edge->block_id()); // Skip all blocks already processed by the recursive call. i = last_back_edge->block_id(); // Update phis of the loop header now after the whole loop body is // guaranteed to be processed. ZoneList worklist(block->phis()->length()); for (int j = 0; j < block->phis()->length(); ++j) { worklist.Add(block->phis()->at(j)); } InferTypes(&worklist); } } } void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) { HValue* current = value; while (current != NULL) { if (visited->Contains(current->id())) return; // For phis, we must propagate the check to all of its inputs. if (current->IsPhi()) { visited->Add(current->id()); HPhi* phi = HPhi::cast(current); for (int i = 0; i < phi->OperandCount(); ++i) { PropagateMinusZeroChecks(phi->OperandAt(i), visited); } break; } // For multiplication and division, we must propagate to the left and // the right side. if (current->IsMul()) { HMul* mul = HMul::cast(current); mul->EnsureAndPropagateNotMinusZero(visited); PropagateMinusZeroChecks(mul->left(), visited); PropagateMinusZeroChecks(mul->right(), visited); } else if (current->IsDiv()) { HDiv* div = HDiv::cast(current); div->EnsureAndPropagateNotMinusZero(visited); PropagateMinusZeroChecks(div->left(), visited); PropagateMinusZeroChecks(div->right(), visited); } current = current->EnsureAndPropagateNotMinusZero(visited); } } void HGraph::InsertRepresentationChangeForUse(HValue* value, HValue* use, Representation to, bool is_truncating) { // Propagate flags for negative zero checks upwards from conversions // int32-to-tagged and int32-to-double. Representation from = value->representation(); if (from.IsInteger32()) { ASSERT(to.IsTagged() || to.IsDouble()); BitVector visited(GetMaximumValueID()); PropagateMinusZeroChecks(value, &visited); } // Insert the representation change right before its use. For phi-uses we // insert at the end of the corresponding predecessor. HBasicBlock* insert_block = use->block(); if (use->IsPhi()) { int index = 0; while (use->OperandAt(index) != value) ++index; insert_block = insert_block->predecessors()->at(index); } HInstruction* next = (insert_block == use->block()) ? HInstruction::cast(use) : insert_block->end(); // For constants we try to make the representation change at compile // time. When a representation change is not possible without loss of // information we treat constants like normal instructions and insert the // change instructions for them. HInstruction* new_value = NULL; if (value->IsConstant()) { HConstant* constant = HConstant::cast(value); // Try to create a new copy of the constant with the new representation. new_value = is_truncating ? constant->CopyToTruncatedInt32() : constant->CopyToRepresentation(to); } if (new_value == NULL) { new_value = new HChange(value, value->representation(), to); } new_value->InsertBefore(next); value->ReplaceFirstAtUse(use, new_value, to); } int CompareConversionUses(HValue* a, HValue* b, Representation a_rep, Representation b_rep) { if (a_rep.kind() > b_rep.kind()) { // Make sure specializations are separated in the result array. return 1; } // Put truncating conversions before non-truncating conversions. bool a_truncate = a->CheckFlag(HValue::kTruncatingToInt32); bool b_truncate = b->CheckFlag(HValue::kTruncatingToInt32); if (a_truncate != b_truncate) { return a_truncate ? -1 : 1; } // Sort by increasing block ID. return a->block()->block_id() - b->block()->block_id(); } void HGraph::InsertRepresentationChanges(HValue* current) { Representation r = current->representation(); if (r.IsNone()) return; if (current->uses()->length() == 0) return; // Collect the representation changes in a sorted list. This allows // us to avoid duplicate changes without searching the list. ZoneList to_convert(2); ZoneList to_convert_reps(2); for (int i = 0; i < current->uses()->length(); ++i) { HValue* use = current->uses()->at(i); // The occurrences index means the index within the operand array of "use" // at which "current" is used. While iterating through the use array we // also have to iterate over the different occurrence indices. int occurrence_index = 0; if (use->UsesMultipleTimes(current)) { occurrence_index = current->uses()->CountOccurrences(use, 0, i - 1); if (FLAG_trace_representation) { PrintF("Instruction %d is used multiple times at %d; occurrence=%d\n", current->id(), use->id(), occurrence_index); } } int operand_index = use->LookupOperandIndex(occurrence_index, current); Representation req = use->RequiredInputRepresentation(operand_index); if (req.IsNone() || req.Equals(r)) continue; int index = 0; while (to_convert.length() > index && CompareConversionUses(to_convert[index], use, to_convert_reps[index], req) < 0) { ++index; } if (FLAG_trace_representation) { PrintF("Inserting a representation change to %s of %d for use at %d\n", req.Mnemonic(), current->id(), use->id()); } to_convert.InsertAt(index, use); to_convert_reps.InsertAt(index, req); } for (int i = 0; i < to_convert.length(); ++i) { HValue* use = to_convert[i]; Representation r_to = to_convert_reps[i]; bool is_truncating = use->CheckFlag(HValue::kTruncatingToInt32); InsertRepresentationChangeForUse(current, use, r_to, is_truncating); } if (current->uses()->is_empty()) { ASSERT(current->IsConstant()); current->Delete(); } } void HGraph::InsertRepresentationChanges() { HPhase phase("Insert representation changes", this); // Compute truncation flag for phis: Initially assume that all // int32-phis allow truncation and iteratively remove the ones that // are used in an operation that does not allow a truncating // conversion. // TODO(fschneider): Replace this with a worklist-based iteration. for (int i = 0; i < phi_list()->length(); i++) { HPhi* phi = phi_list()->at(i); if (phi->representation().IsInteger32()) { phi->SetFlag(HValue::kTruncatingToInt32); } } bool change = true; while (change) { change = false; for (int i = 0; i < phi_list()->length(); i++) { HPhi* phi = phi_list()->at(i); if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue; for (int j = 0; j < phi->uses()->length(); j++) { HValue* use = phi->uses()->at(j); if (!use->CheckFlag(HValue::kTruncatingToInt32)) { phi->ClearFlag(HValue::kTruncatingToInt32); change = true; break; } } } } for (int i = 0; i < blocks_.length(); ++i) { // Process phi instructions first. for (int j = 0; j < blocks_[i]->phis()->length(); j++) { HPhi* phi = blocks_[i]->phis()->at(j); InsertRepresentationChanges(phi); } // Process normal instructions. HInstruction* current = blocks_[i]->first(); while (current != NULL) { InsertRepresentationChanges(current); current = current->next(); } } } // Implementation of utility classes to represent an expression's context in // the AST. AstContext::AstContext(HGraphBuilder* owner, Expression::Context kind) : owner_(owner), kind_(kind), outer_(owner->ast_context()) { owner->set_ast_context(this); // Push. #ifdef DEBUG original_length_ = owner->environment()->length(); #endif } AstContext::~AstContext() { owner_->set_ast_context(outer_); // Pop. } EffectContext::~EffectContext() { ASSERT(owner()->HasStackOverflow() || !owner()->subgraph()->HasExit() || owner()->environment()->length() == original_length_); } ValueContext::~ValueContext() { ASSERT(owner()->HasStackOverflow() || !owner()->subgraph()->HasExit() || owner()->environment()->length() == original_length_ + 1); } void EffectContext::ReturnValue(HValue* value) { // The value is simply ignored. } void ValueContext::ReturnValue(HValue* value) { // The value is tracked in the bailout environment, and communicated // through the environment as the result of the expression. owner()->Push(value); } void TestContext::ReturnValue(HValue* value) { BuildBranch(value); } void EffectContext::ReturnInstruction(HInstruction* instr, int ast_id) { owner()->AddInstruction(instr); if (instr->HasSideEffects()) owner()->AddSimulate(ast_id); } void ValueContext::ReturnInstruction(HInstruction* instr, int ast_id) { owner()->AddInstruction(instr); owner()->Push(instr); if (instr->HasSideEffects()) owner()->AddSimulate(ast_id); } void TestContext::ReturnInstruction(HInstruction* instr, int ast_id) { HGraphBuilder* builder = owner(); builder->AddInstruction(instr); // We expect a simulate after every expression with side effects, though // this one isn't actually needed (and wouldn't work if it were targeted). if (instr->HasSideEffects()) { builder->Push(instr); builder->AddSimulate(ast_id); builder->Pop(); } BuildBranch(instr); } void TestContext::BuildBranch(HValue* value) { // We expect the graph to be in edge-split form: there is no edge that // connects a branch node to a join node. We conservatively ensure that // property by always adding an empty block on the outgoing edges of this // branch. HGraphBuilder* builder = owner(); HBasicBlock* empty_true = builder->graph()->CreateBasicBlock(); HBasicBlock* empty_false = builder->graph()->CreateBasicBlock(); HTest* test = new HTest(value, empty_true, empty_false); builder->CurrentBlock()->Finish(test); HValue* const no_return_value = NULL; HBasicBlock* true_target = if_true(); if (true_target->IsInlineReturnTarget()) { empty_true->AddLeaveInlined(no_return_value, true_target); } else { empty_true->Goto(true_target); } HBasicBlock* false_target = if_false(); if (false_target->IsInlineReturnTarget()) { empty_false->AddLeaveInlined(no_return_value, false_target); } else { empty_false->Goto(false_target); } builder->subgraph()->set_exit_block(NULL); } // HGraphBuilder infrastructure for bailing out and checking bailouts. #define BAILOUT(reason) \ do { \ Bailout(reason); \ return; \ } while (false) #define CHECK_BAILOUT \ do { \ if (HasStackOverflow()) return; \ } while (false) #define VISIT_FOR_EFFECT(expr) \ do { \ VisitForEffect(expr); \ if (HasStackOverflow()) return; \ } while (false) #define VISIT_FOR_VALUE(expr) \ do { \ VisitForValue(expr); \ if (HasStackOverflow()) return; \ } while (false) #define VISIT_FOR_CONTROL(expr, true_block, false_block) \ do { \ VisitForControl(expr, true_block, false_block); \ if (HasStackOverflow()) return; \ } while (false) // 'thing' could be an expression, statement, or list of statements. #define ADD_TO_SUBGRAPH(graph, thing) \ do { \ AddToSubgraph(graph, thing); \ if (HasStackOverflow()) return; \ } while (false) class HGraphBuilder::SubgraphScope BASE_EMBEDDED { public: SubgraphScope(HGraphBuilder* builder, HSubgraph* new_subgraph) : builder_(builder) { old_subgraph_ = builder_->current_subgraph_; subgraph_ = new_subgraph; builder_->current_subgraph_ = subgraph_; } ~SubgraphScope() { old_subgraph_->AddBreakContinueInfo(subgraph_); builder_->current_subgraph_ = old_subgraph_; } HSubgraph* subgraph() const { return subgraph_; } private: HGraphBuilder* builder_; HSubgraph* old_subgraph_; HSubgraph* subgraph_; }; void HGraphBuilder::Bailout(const char* reason) { if (FLAG_trace_bailout) { SmartPointer debug_name = graph()->debug_name()->ToCString(); PrintF("Bailout in HGraphBuilder: @\"%s\": %s\n", *debug_name, reason); } SetStackOverflow(); } void HGraphBuilder::VisitForEffect(Expression* expr) { EffectContext for_effect(this); Visit(expr); } void HGraphBuilder::VisitForValue(Expression* expr) { ValueContext for_value(this); Visit(expr); } void HGraphBuilder::VisitForControl(Expression* expr, HBasicBlock* true_block, HBasicBlock* false_block) { TestContext for_test(this, true_block, false_block); Visit(expr); } HValue* HGraphBuilder::VisitArgument(Expression* expr) { VisitForValue(expr); if (HasStackOverflow() || !subgraph()->HasExit()) return NULL; return environment()->Top(); } void HGraphBuilder::VisitArgumentList(ZoneList* arguments) { for (int i = 0; i < arguments->length(); i++) { VisitArgument(arguments->at(i)); if (HasStackOverflow() || !current_subgraph_->HasExit()) return; } } HGraph* HGraphBuilder::CreateGraph(CompilationInfo* info) { ASSERT(current_subgraph_ == NULL); graph_ = new HGraph(info); { HPhase phase("Block building"); graph_->Initialize(CreateBasicBlock(graph_->start_environment())); current_subgraph_ = graph_; Scope* scope = info->scope(); SetupScope(scope); VisitDeclarations(scope->declarations()); AddInstruction(new HStackCheck()); ZoneList* stmts = info->function()->body(); HSubgraph* body = CreateGotoSubgraph(environment()); AddToSubgraph(body, stmts); if (HasStackOverflow()) return NULL; current_subgraph_->Append(body, NULL); body->entry_block()->SetJoinId(info->function()->id()); if (graph_->HasExit()) { graph_->FinishExit(new HReturn(graph_->GetConstantUndefined())); } } graph_->OrderBlocks(); graph_->AssignDominators(); graph_->EliminateRedundantPhis(); if (!graph_->CollectPhis()) { Bailout("Phi-use of arguments object"); return NULL; } HInferRepresentation rep(graph_); rep.Analyze(); if (FLAG_use_range) { HRangeAnalysis rangeAnalysis(graph_); rangeAnalysis.Analyze(); } graph_->InitializeInferredTypes(); graph_->Canonicalize(); graph_->InsertRepresentationChanges(); // Eliminate redundant stack checks on backwards branches. HStackCheckEliminator sce(graph_); sce.Process(); // Perform common subexpression elimination and loop-invariant code motion. if (FLAG_use_gvn) { HPhase phase("Global value numbering", graph_); HGlobalValueNumberer gvn(graph_); gvn.Analyze(); } return graph_; } void HGraphBuilder::AddToSubgraph(HSubgraph* graph, Statement* stmt) { SubgraphScope scope(this, graph); Visit(stmt); } void HGraphBuilder::AddToSubgraph(HSubgraph* graph, Expression* expr) { SubgraphScope scope(this, graph); VisitForValue(expr); } void HGraphBuilder::AddToSubgraph(HSubgraph* graph, ZoneList* stmts) { SubgraphScope scope(this, graph); VisitStatements(stmts); } HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) { ASSERT(current_subgraph_->HasExit()); current_subgraph_->exit_block()->AddInstruction(instr); return instr; } void HGraphBuilder::AddSimulate(int id) { ASSERT(current_subgraph_->HasExit()); current_subgraph_->exit_block()->AddSimulate(id); } void HGraphBuilder::AddPhi(HPhi* instr) { ASSERT(current_subgraph_->HasExit()); current_subgraph_->exit_block()->AddPhi(instr); } void HGraphBuilder::PushAndAdd(HInstruction* instr) { Push(instr); AddInstruction(instr); } void HGraphBuilder::PushArgumentsForStubCall(int argument_count) { const int kMaxStubArguments = 4; ASSERT_GE(kMaxStubArguments, argument_count); // Push the arguments on the stack. HValue* arguments[kMaxStubArguments]; for (int i = argument_count - 1; i >= 0; i--) { arguments[i] = Pop(); } for (int i = 0; i < argument_count; i++) { AddInstruction(new HPushArgument(arguments[i])); } } void HGraphBuilder::ProcessCall(HCall* call) { for (int i = call->argument_count() - 1; i >= 0; --i) { HValue* value = Pop(); HPushArgument* push = new HPushArgument(value); call->SetArgumentAt(i, push); } for (int i = 0; i < call->argument_count(); ++i) { AddInstruction(call->PushArgumentAt(i)); } } void HGraphBuilder::SetupScope(Scope* scope) { // We don't yet handle the function name for named function expressions. if (scope->function() != NULL) BAILOUT("named function expression"); // We can't handle heap-allocated locals. if (scope->num_heap_slots() > 0) BAILOUT("heap allocated locals"); HConstant* undefined_constant = new HConstant(Factory::undefined_value(), Representation::Tagged()); AddInstruction(undefined_constant); graph_->set_undefined_constant(undefined_constant); // Set the initial values of parameters including "this". "This" has // parameter index 0. int count = scope->num_parameters() + 1; for (int i = 0; i < count; ++i) { HInstruction* parameter = AddInstruction(new HParameter(i)); environment()->Bind(i, parameter); } // Set the initial values of stack-allocated locals. for (int i = count; i < environment()->length(); ++i) { environment()->Bind(i, undefined_constant); } // Handle the arguments and arguments shadow variables specially (they do // not have declarations). if (scope->arguments() != NULL) { HArgumentsObject* object = new HArgumentsObject; AddInstruction(object); graph()->SetArgumentsObject(object); environment()->Bind(scope->arguments(), object); environment()->Bind(scope->arguments_shadow(), object); } } void HGraphBuilder::VisitStatements(ZoneList* statements) { for (int i = 0; i < statements->length(); i++) { Visit(statements->at(i)); if (HasStackOverflow() || !current_subgraph_->HasExit()) break; } } HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) { HBasicBlock* b = graph()->CreateBasicBlock(); b->SetInitialEnvironment(env); return b; } HSubgraph* HGraphBuilder::CreateInlinedSubgraph(HEnvironment* outer, Handle target, FunctionLiteral* function) { HConstant* undefined = graph()->GetConstantUndefined(); HEnvironment* inner = outer->CopyForInlining(target, function, true, undefined); HSubgraph* subgraph = new HSubgraph(graph()); subgraph->Initialize(CreateBasicBlock(inner)); return subgraph; } HSubgraph* HGraphBuilder::CreateGotoSubgraph(HEnvironment* env) { HSubgraph* subgraph = new HSubgraph(graph()); HEnvironment* new_env = env->CopyWithoutHistory(); subgraph->Initialize(CreateBasicBlock(new_env)); return subgraph; } HSubgraph* HGraphBuilder::CreateEmptySubgraph() { HSubgraph* subgraph = new HSubgraph(graph()); subgraph->Initialize(graph()->CreateBasicBlock()); return subgraph; } HSubgraph* HGraphBuilder::CreateBranchSubgraph(HEnvironment* env) { HSubgraph* subgraph = new HSubgraph(graph()); HEnvironment* new_env = env->Copy(); subgraph->Initialize(CreateBasicBlock(new_env)); return subgraph; } HSubgraph* HGraphBuilder::CreateLoopHeaderSubgraph(HEnvironment* env) { HSubgraph* subgraph = new HSubgraph(graph()); HBasicBlock* block = graph()->CreateBasicBlock(); HEnvironment* new_env = env->CopyAsLoopHeader(block); block->SetInitialEnvironment(new_env); subgraph->Initialize(block); subgraph->entry_block()->AttachLoopInformation(); return subgraph; } void HGraphBuilder::VisitBlock(Block* stmt) { if (stmt->labels() != NULL) { HSubgraph* block_graph = CreateGotoSubgraph(environment()); ADD_TO_SUBGRAPH(block_graph, stmt->statements()); current_subgraph_->Append(block_graph, stmt); } else { VisitStatements(stmt->statements()); } } void HGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) { VisitForEffect(stmt->expression()); } void HGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) { } void HGraphBuilder::VisitIfStatement(IfStatement* stmt) { if (stmt->condition()->ToBooleanIsTrue()) { AddSimulate(stmt->ThenId()); Visit(stmt->then_statement()); } else if (stmt->condition()->ToBooleanIsFalse()) { AddSimulate(stmt->ElseId()); Visit(stmt->else_statement()); } else { HSubgraph* then_graph = CreateEmptySubgraph(); HSubgraph* else_graph = CreateEmptySubgraph(); VISIT_FOR_CONTROL(stmt->condition(), then_graph->entry_block(), else_graph->entry_block()); then_graph->entry_block()->SetJoinId(stmt->ThenId()); ADD_TO_SUBGRAPH(then_graph, stmt->then_statement()); else_graph->entry_block()->SetJoinId(stmt->ElseId()); ADD_TO_SUBGRAPH(else_graph, stmt->else_statement()); current_subgraph_->AppendJoin(then_graph, else_graph, stmt); } } void HGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) { current_subgraph_->FinishBreakContinue(stmt->target(), true); } void HGraphBuilder::VisitBreakStatement(BreakStatement* stmt) { current_subgraph_->FinishBreakContinue(stmt->target(), false); } void HGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) { AstContext* context = call_context(); if (context == NULL) { // Not an inlined return, so an actual one. VISIT_FOR_VALUE(stmt->expression()); HValue* result = environment()->Pop(); subgraph()->FinishExit(new HReturn(result)); } else { // Return from an inlined function, visit the subexpression in the // expression context of the call. if (context->IsTest()) { TestContext* test = TestContext::cast(context); VisitForControl(stmt->expression(), test->if_true(), test->if_false()); } else { HValue* return_value = NULL; if (context->IsEffect()) { VISIT_FOR_EFFECT(stmt->expression()); return_value = graph()->GetConstantUndefined(); } else { ASSERT(context->IsValue()); VISIT_FOR_VALUE(stmt->expression()); return_value = environment()->Pop(); } subgraph()->exit_block()->AddLeaveInlined(return_value, function_return_); subgraph()->set_exit_block(NULL); } } } void HGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) { BAILOUT("WithEnterStatement"); } void HGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) { BAILOUT("WithExitStatement"); } HCompare* HGraphBuilder::BuildSwitchCompare(HSubgraph* subgraph, HValue* switch_value, CaseClause* clause) { AddToSubgraph(subgraph, clause->label()); if (HasStackOverflow()) return NULL; HValue* clause_value = subgraph->environment()->Pop(); HCompare* compare = new HCompare(switch_value, clause_value, Token::EQ_STRICT); compare->SetInputRepresentation(Representation::Integer32()); subgraph->exit_block()->AddInstruction(compare); return compare; } void HGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) { VISIT_FOR_VALUE(stmt->tag()); // TODO(3168478): simulate added for tag should be enough. AddSimulate(stmt->EntryId()); HValue* switch_value = Pop(); ZoneList* clauses = stmt->cases(); int num_clauses = clauses->length(); if (num_clauses == 0) return; if (num_clauses > 128) BAILOUT("SwitchStatement: too many clauses"); int num_smi_clauses = num_clauses; for (int i = 0; i < num_clauses; i++) { CaseClause* clause = clauses->at(i); if (clause->is_default()) continue; clause->RecordTypeFeedback(oracle()); if (!clause->IsSmiCompare()) { if (i == 0) BAILOUT("SwitchStatement: no smi compares"); // We will deoptimize if the first non-smi compare is reached. num_smi_clauses = i; break; } if (!clause->label()->IsSmiLiteral()) { BAILOUT("SwitchStatement: non-literal switch label"); } } // The single exit block of the whole switch statement. HBasicBlock* single_exit_block = graph_->CreateBasicBlock(); // Build a series of empty subgraphs for the comparisons. // The default clause does not have a comparison subgraph. ZoneList compare_graphs(num_smi_clauses); for (int i = 0; i < num_smi_clauses; i++) { if (clauses->at(i)->is_default()) { compare_graphs.Add(NULL); } else { compare_graphs.Add(CreateEmptySubgraph()); } } HSubgraph* prev_graph = current_subgraph_; HCompare* prev_compare_inst = NULL; for (int i = 0; i < num_smi_clauses; i++) { CaseClause* clause = clauses->at(i); if (clause->is_default()) continue; // Finish the previous graph by connecting it to the current. HSubgraph* subgraph = compare_graphs.at(i); if (prev_compare_inst == NULL) { ASSERT(prev_graph == current_subgraph_); prev_graph->exit_block()->Finish(new HGoto(subgraph->entry_block())); } else { HBasicBlock* empty = graph()->CreateBasicBlock(); prev_graph->exit_block()->Finish(new HTest(prev_compare_inst, empty, subgraph->entry_block())); } // Build instructions for current subgraph. ASSERT(clause->IsSmiCompare()); prev_compare_inst = BuildSwitchCompare(subgraph, switch_value, clause); if (HasStackOverflow()) return; prev_graph = subgraph; } // Finish last comparison if there was at least one comparison. // last_false_block is the (empty) false-block of the last comparison. If // there are no comparisons at all (a single default clause), it is just // the last block of the current subgraph. HBasicBlock* last_false_block = current_subgraph_->exit_block(); if (prev_graph != current_subgraph_) { last_false_block = graph()->CreateBasicBlock(); HBasicBlock* empty = graph()->CreateBasicBlock(); prev_graph->exit_block()->Finish(new HTest(prev_compare_inst, empty, last_false_block)); } // If we have a non-smi compare clause, we deoptimize after trying // all the previous compares. if (num_smi_clauses < num_clauses) { last_false_block->Finish(new HDeoptimize); } // Build statement blocks, connect them to their comparison block and // to the previous statement block, if there is a fall-through. HSubgraph* previous_subgraph = NULL; for (int i = 0; i < num_clauses; i++) { CaseClause* clause = clauses->at(i); // Subgraph for the statements of the clause is only created when // it's reachable either from the corresponding compare or as a // fall-through from previous statements. HSubgraph* subgraph = NULL; if (i < num_smi_clauses) { if (clause->is_default()) { if (!last_false_block->IsFinished()) { // Default clause: Connect it to the last false block. subgraph = CreateEmptySubgraph(); last_false_block->Finish(new HGoto(subgraph->entry_block())); } } else { ASSERT(clause->IsSmiCompare()); // Connect with the corresponding comparison. subgraph = CreateEmptySubgraph(); HBasicBlock* empty = compare_graphs.at(i)->exit_block()->end()->FirstSuccessor(); empty->Finish(new HGoto(subgraph->entry_block())); } } // Check for fall-through from previous statement block. if (previous_subgraph != NULL && previous_subgraph->HasExit()) { if (subgraph == NULL) subgraph = CreateEmptySubgraph(); previous_subgraph->exit_block()-> Finish(new HGoto(subgraph->entry_block())); } if (subgraph != NULL) { ADD_TO_SUBGRAPH(subgraph, clause->statements()); HBasicBlock* break_block = subgraph->BundleBreak(stmt); if (break_block != NULL) { break_block->Finish(new HGoto(single_exit_block)); } } previous_subgraph = subgraph; } // If the last statement block has a fall-through, connect it to the // single exit block. if (previous_subgraph != NULL && previous_subgraph->HasExit()) { previous_subgraph->exit_block()->Finish(new HGoto(single_exit_block)); } // If there is no default clause finish the last comparison's false target. if (!last_false_block->IsFinished()) { last_false_block->Finish(new HGoto(single_exit_block)); } if (single_exit_block->HasPredecessor()) { current_subgraph_->set_exit_block(single_exit_block); } else { current_subgraph_->set_exit_block(NULL); } } bool HGraph::HasOsrEntryAt(IterationStatement* statement) { return statement->OsrEntryId() == info()->osr_ast_id(); } void HSubgraph::PreProcessOsrEntry(IterationStatement* statement) { if (!graph()->HasOsrEntryAt(statement)) return; HBasicBlock* non_osr_entry = graph()->CreateBasicBlock(); HBasicBlock* osr_entry = graph()->CreateBasicBlock(); HValue* true_value = graph()->GetConstantTrue(); HTest* test = new HTest(true_value, non_osr_entry, osr_entry); exit_block()->Finish(test); HBasicBlock* loop_predecessor = graph()->CreateBasicBlock(); non_osr_entry->Goto(loop_predecessor); int osr_entry_id = statement->OsrEntryId(); // We want the correct environment at the OsrEntry instruction. Build // it explicitly. The expression stack should be empty. int count = osr_entry->last_environment()->length(); ASSERT(count == (osr_entry->last_environment()->parameter_count() + osr_entry->last_environment()->local_count())); for (int i = 0; i < count; ++i) { HUnknownOSRValue* unknown = new HUnknownOSRValue; osr_entry->AddInstruction(unknown); osr_entry->last_environment()->Bind(i, unknown); } osr_entry->AddSimulate(osr_entry_id); osr_entry->AddInstruction(new HOsrEntry(osr_entry_id)); osr_entry->Goto(loop_predecessor); loop_predecessor->SetJoinId(statement->EntryId()); set_exit_block(loop_predecessor); } void HGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) { ASSERT(subgraph()->HasExit()); subgraph()->PreProcessOsrEntry(stmt); HSubgraph* body_graph = CreateLoopHeaderSubgraph(environment()); ADD_TO_SUBGRAPH(body_graph, stmt->body()); body_graph->ResolveContinue(stmt); if (!body_graph->HasExit() || stmt->cond()->ToBooleanIsTrue()) { current_subgraph_->AppendEndless(body_graph, stmt); } else { HSubgraph* go_back = CreateEmptySubgraph(); HSubgraph* exit = CreateEmptySubgraph(); { SubgraphScope scope(this, body_graph); VISIT_FOR_CONTROL(stmt->cond(), go_back->entry_block(), exit->entry_block()); go_back->entry_block()->SetJoinId(stmt->BackEdgeId()); exit->entry_block()->SetJoinId(stmt->ExitId()); } current_subgraph_->AppendDoWhile(body_graph, stmt, go_back, exit); } } bool HGraphBuilder::ShouldPeel(HSubgraph* cond, HSubgraph* body) { return FLAG_use_peeling; } void HGraphBuilder::VisitWhileStatement(WhileStatement* stmt) { ASSERT(subgraph()->HasExit()); subgraph()->PreProcessOsrEntry(stmt); HSubgraph* cond_graph = NULL; HSubgraph* body_graph = NULL; HSubgraph* exit_graph = NULL; // If the condition is constant true, do not generate a condition subgraph. if (stmt->cond()->ToBooleanIsTrue()) { body_graph = CreateLoopHeaderSubgraph(environment()); ADD_TO_SUBGRAPH(body_graph, stmt->body()); } else { cond_graph = CreateLoopHeaderSubgraph(environment()); body_graph = CreateEmptySubgraph(); exit_graph = CreateEmptySubgraph(); { SubgraphScope scope(this, cond_graph); VISIT_FOR_CONTROL(stmt->cond(), body_graph->entry_block(), exit_graph->entry_block()); body_graph->entry_block()->SetJoinId(stmt->BodyId()); exit_graph->entry_block()->SetJoinId(stmt->ExitId()); } ADD_TO_SUBGRAPH(body_graph, stmt->body()); } body_graph->ResolveContinue(stmt); if (cond_graph != NULL) { AppendPeeledWhile(stmt, cond_graph, body_graph, exit_graph); } else { // TODO(fschneider): Implement peeling for endless loops as well. current_subgraph_->AppendEndless(body_graph, stmt); } } void HGraphBuilder::AppendPeeledWhile(IterationStatement* stmt, HSubgraph* cond_graph, HSubgraph* body_graph, HSubgraph* exit_graph) { HSubgraph* loop = NULL; if (body_graph->HasExit() && stmt != peeled_statement_ && ShouldPeel(cond_graph, body_graph)) { // Save the last peeled iteration statement to prevent infinite recursion. IterationStatement* outer_peeled_statement = peeled_statement_; peeled_statement_ = stmt; loop = CreateGotoSubgraph(body_graph->environment()); ADD_TO_SUBGRAPH(loop, stmt); peeled_statement_ = outer_peeled_statement; } current_subgraph_->AppendWhile(cond_graph, body_graph, stmt, loop, exit_graph); } void HGraphBuilder::VisitForStatement(ForStatement* stmt) { // Only visit the init statement in the peeled part of the loop. if (stmt->init() != NULL && peeled_statement_ != stmt) { Visit(stmt->init()); CHECK_BAILOUT; } ASSERT(subgraph()->HasExit()); subgraph()->PreProcessOsrEntry(stmt); HSubgraph* cond_graph = NULL; HSubgraph* body_graph = NULL; HSubgraph* exit_graph = NULL; if (stmt->cond() != NULL) { cond_graph = CreateLoopHeaderSubgraph(environment()); body_graph = CreateEmptySubgraph(); exit_graph = CreateEmptySubgraph(); { SubgraphScope scope(this, cond_graph); VISIT_FOR_CONTROL(stmt->cond(), body_graph->entry_block(), exit_graph->entry_block()); body_graph->entry_block()->SetJoinId(stmt->BodyId()); exit_graph->entry_block()->SetJoinId(stmt->ExitId()); } } else { body_graph = CreateLoopHeaderSubgraph(environment()); } ADD_TO_SUBGRAPH(body_graph, stmt->body()); HSubgraph* next_graph = NULL; body_graph->ResolveContinue(stmt); if (stmt->next() != NULL && body_graph->HasExit()) { next_graph = CreateGotoSubgraph(body_graph->environment()); ADD_TO_SUBGRAPH(next_graph, stmt->next()); body_graph->Append(next_graph, NULL); next_graph->entry_block()->SetJoinId(stmt->ContinueId()); } if (cond_graph != NULL) { AppendPeeledWhile(stmt, cond_graph, body_graph, exit_graph); } else { current_subgraph_->AppendEndless(body_graph, stmt); } } void HGraphBuilder::VisitForInStatement(ForInStatement* stmt) { BAILOUT("ForInStatement"); } void HGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) { BAILOUT("TryCatchStatement"); } void HGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) { BAILOUT("TryFinallyStatement"); } void HGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) { BAILOUT("DebuggerStatement"); } void HGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) { Handle shared_info = Compiler::BuildFunctionInfo(expr, graph_->info()->script()); CHECK_BAILOUT; HFunctionLiteral* instr = new HFunctionLiteral(shared_info, expr->pretenure()); ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { BAILOUT("SharedFunctionInfoLiteral"); } void HGraphBuilder::VisitConditional(Conditional* expr) { HSubgraph* then_graph = CreateEmptySubgraph(); HSubgraph* else_graph = CreateEmptySubgraph(); VISIT_FOR_CONTROL(expr->condition(), then_graph->entry_block(), else_graph->entry_block()); then_graph->entry_block()->SetJoinId(expr->ThenId()); ADD_TO_SUBGRAPH(then_graph, expr->then_expression()); else_graph->entry_block()->SetJoinId(expr->ElseId()); ADD_TO_SUBGRAPH(else_graph, expr->else_expression()); current_subgraph_->AppendJoin(then_graph, else_graph, expr); ast_context()->ReturnValue(Pop()); } void HGraphBuilder::LookupGlobalPropertyCell(Variable* var, LookupResult* lookup, bool is_store) { if (var->is_this()) { BAILOUT("global this reference"); } if (!graph()->info()->has_global_object()) { BAILOUT("no global object to optimize VariableProxy"); } Handle global(graph()->info()->global_object()); global->Lookup(*var->name(), lookup); if (!lookup->IsProperty()) { BAILOUT("global variable cell not yet introduced"); } if (lookup->type() != NORMAL) { BAILOUT("global variable has accessors"); } if (is_store && lookup->IsReadOnly()) { BAILOUT("read-only global variable"); } } void HGraphBuilder::VisitVariableProxy(VariableProxy* expr) { Variable* variable = expr->AsVariable(); if (variable == NULL) { BAILOUT("reference to rewritten variable"); } else if (variable->IsStackAllocated()) { if (environment()->Lookup(variable)->CheckFlag(HValue::kIsArguments)) { BAILOUT("unsupported context for arguments object"); } ast_context()->ReturnValue(environment()->Lookup(variable)); } else if (variable->IsContextSlot()) { if (variable->mode() == Variable::CONST) { BAILOUT("reference to const context slot"); } Slot* slot = variable->AsSlot(); CompilationInfo* info = graph()->info(); int context_chain_length = info->function()->scope()-> ContextChainLength(slot->var()->scope()); ASSERT(context_chain_length >= 0); // TODO(antonm): if slot's value is not modified by closures, instead // of reading it out of context, we could just embed the value as // a constant. HLoadContextSlot* instr = new HLoadContextSlot(context_chain_length, slot->index()); ast_context()->ReturnInstruction(instr, expr->id()); } else if (variable->is_global()) { LookupResult lookup; LookupGlobalPropertyCell(variable, &lookup, false); CHECK_BAILOUT; Handle global(graph()->info()->global_object()); // TODO(3039103): Handle global property load through an IC call when access // checks are enabled. if (global->IsAccessCheckNeeded()) { BAILOUT("global object requires access check"); } Handle cell(global->GetPropertyCell(&lookup)); bool check_hole = !lookup.IsDontDelete() || lookup.IsReadOnly(); HLoadGlobal* instr = new HLoadGlobal(cell, check_hole); ast_context()->ReturnInstruction(instr, expr->id()); } else { BAILOUT("reference to a variable which requires dynamic lookup"); } } void HGraphBuilder::VisitLiteral(Literal* expr) { HConstant* instr = new HConstant(expr->handle(), Representation::Tagged()); ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) { HRegExpLiteral* instr = new HRegExpLiteral(expr->pattern(), expr->flags(), expr->literal_index()); ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) { HObjectLiteral* literal = (new HObjectLiteral(expr->constant_properties(), expr->fast_elements(), expr->literal_index(), expr->depth())); // The object is expected in the bailout environment during computation // of the property values and is the value of the entire expression. PushAndAdd(literal); expr->CalculateEmitStore(); for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); switch (property->kind()) { case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { if (property->emit_store()) { VISIT_FOR_VALUE(value); HValue* value = Pop(); Handle name = Handle::cast(key->handle()); AddInstruction(new HStoreNamedGeneric(literal, name, value)); AddSimulate(key->id()); } else { VISIT_FOR_EFFECT(value); } break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: case ObjectLiteral::Property::SETTER: case ObjectLiteral::Property::GETTER: BAILOUT("Object literal with complex property"); default: UNREACHABLE(); } } ast_context()->ReturnValue(Pop()); } void HGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) { ZoneList* subexprs = expr->values(); int length = subexprs->length(); HArrayLiteral* literal = new HArrayLiteral(expr->constant_elements(), length, expr->literal_index(), expr->depth()); // The array is expected in the bailout environment during computation // of the property values and is the value of the entire expression. PushAndAdd(literal); HLoadElements* elements = NULL; for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; VISIT_FOR_VALUE(subexpr); HValue* value = Pop(); if (!Smi::IsValid(i)) BAILOUT("Non-smi key in array literal"); // Load the elements array before the first store. if (elements == NULL) { elements = new HLoadElements(literal); AddInstruction(elements); } HValue* key = AddInstruction(new HConstant(Handle(Smi::FromInt(i)), Representation::Integer32())); AddInstruction(new HStoreKeyedFastElement(elements, key, value)); AddSimulate(expr->GetIdForElement(i)); } ast_context()->ReturnValue(Pop()); } void HGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) { BAILOUT("CatchExtensionObject"); } HBasicBlock* HGraphBuilder::BuildTypeSwitch(ZoneMapList* maps, ZoneList* subgraphs, HValue* receiver, int join_id) { ASSERT(subgraphs->length() == (maps->length() + 1)); // Build map compare subgraphs for all but the first map. ZoneList map_compare_subgraphs(maps->length() - 1); for (int i = maps->length() - 1; i > 0; --i) { HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); HSubgraph* else_subgraph = (i == (maps->length() - 1)) ? subgraphs->last() : map_compare_subgraphs.last(); HCompareMap* compare = new HCompareMap(receiver, maps->at(i), subgraphs->at(i)->entry_block(), else_subgraph->entry_block()); current_subgraph_->exit_block()->Finish(compare); map_compare_subgraphs.Add(subgraph); } // Generate first map check to end the current block. AddInstruction(new HCheckNonSmi(receiver)); HSubgraph* else_subgraph = (maps->length() == 1) ? subgraphs->at(1) : map_compare_subgraphs.last(); HCompareMap* compare = new HCompareMap(receiver, Handle(maps->first()), subgraphs->first()->entry_block(), else_subgraph->entry_block()); current_subgraph_->exit_block()->Finish(compare); // Join all the call subgraphs in a new basic block and make // this basic block the current basic block. HBasicBlock* join_block = graph_->CreateBasicBlock(); for (int i = 0; i < subgraphs->length(); ++i) { HSubgraph* subgraph = subgraphs->at(i); if (subgraph->HasExit()) { // In an effect context the value of the type switch is not needed. // There is no need to merge it at the join block only to discard it. HBasicBlock* subgraph_exit = subgraph->exit_block(); if (ast_context()->IsEffect()) { subgraph_exit->last_environment()->Drop(1); } subgraph_exit->Goto(join_block); } } if (join_block->predecessors()->is_empty()) return NULL; join_block->SetJoinId(join_id); return join_block; } // Sets the lookup result and returns true if the store can be inlined. static bool ComputeStoredField(Handle type, Handle name, LookupResult* lookup) { type->LookupInDescriptors(NULL, *name, lookup); if (!lookup->IsPropertyOrTransition()) return false; if (lookup->type() == FIELD) return true; return (lookup->type() == MAP_TRANSITION) && (type->unused_property_fields() > 0); } static int ComputeStoredFieldIndex(Handle type, Handle name, LookupResult* lookup) { ASSERT(lookup->type() == FIELD || lookup->type() == MAP_TRANSITION); if (lookup->type() == FIELD) { return lookup->GetLocalFieldIndexFromMap(*type); } else { Map* transition = lookup->GetTransitionMapFromMap(*type); return transition->PropertyIndexFor(*name) - type->inobject_properties(); } } HInstruction* HGraphBuilder::BuildStoreNamedField(HValue* object, Handle name, HValue* value, Handle type, LookupResult* lookup, bool smi_and_map_check) { if (smi_and_map_check) { AddInstruction(new HCheckNonSmi(object)); AddInstruction(new HCheckMap(object, type)); } int index = ComputeStoredFieldIndex(type, name, lookup); bool is_in_object = index < 0; int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. offset += type->instance_size(); } else { offset += FixedArray::kHeaderSize; } HStoreNamedField* instr = new HStoreNamedField(object, name, value, is_in_object, offset); if (lookup->type() == MAP_TRANSITION) { Handle transition(lookup->GetTransitionMapFromMap(*type)); instr->set_transition(transition); // TODO(fschneider): Record the new map type of the object in the IR to // enable elimination of redundant checks after the transition store. instr->SetFlag(HValue::kChangesMaps); } return instr; } HInstruction* HGraphBuilder::BuildStoreNamedGeneric(HValue* object, Handle name, HValue* value) { return new HStoreNamedGeneric(object, name, value); } HInstruction* HGraphBuilder::BuildStoreNamed(HValue* object, HValue* value, Expression* expr) { Property* prop = (expr->AsProperty() != NULL) ? expr->AsProperty() : expr->AsAssignment()->target()->AsProperty(); Literal* key = prop->key()->AsLiteral(); Handle name = Handle::cast(key->handle()); ASSERT(!name.is_null()); LookupResult lookup; ZoneMapList* types = expr->GetReceiverTypes(); bool is_monomorphic = expr->IsMonomorphic() && ComputeStoredField(types->first(), name, &lookup); return is_monomorphic ? BuildStoreNamedField(object, name, value, types->first(), &lookup, true) // Needs smi and map check. : BuildStoreNamedGeneric(object, name, value); } void HGraphBuilder::HandlePolymorphicStoreNamedField(Assignment* expr, HValue* object, HValue* value, ZoneMapList* types, Handle name) { int number_of_types = Min(types->length(), kMaxStorePolymorphism); ZoneMapList maps(number_of_types); ZoneList subgraphs(number_of_types + 1); bool needs_generic = (types->length() > kMaxStorePolymorphism); // Build subgraphs for each of the specific maps. // // TODO(ager): We should recognize when the prototype chains for // different maps are identical. In that case we can avoid // repeatedly generating the same prototype map checks. for (int i = 0; i < number_of_types; ++i) { Handle map = types->at(i); LookupResult lookup; if (ComputeStoredField(map, name, &lookup)) { maps.Add(map); HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); HInstruction* instr = BuildStoreNamedField(object, name, value, map, &lookup, false); Push(value); instr->set_position(expr->position()); AddInstruction(instr); subgraphs.Add(subgraph); } else { needs_generic = true; } } // If none of the properties were named fields we generate a // generic store. if (maps.length() == 0) { HInstruction* instr = new HStoreNamedGeneric(object, name, value); Push(value); instr->set_position(expr->position()); AddInstruction(instr); if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId()); ast_context()->ReturnValue(Pop()); } else { // Build subgraph for generic store through IC. { HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); if (!needs_generic && FLAG_deoptimize_uncommon_cases) { subgraph->FinishExit(new HDeoptimize()); } else { HInstruction* instr = new HStoreNamedGeneric(object, name, value); Push(value); instr->set_position(expr->position()); AddInstruction(instr); } subgraphs.Add(subgraph); } HBasicBlock* new_exit_block = BuildTypeSwitch(&maps, &subgraphs, object, expr->id()); subgraph()->set_exit_block(new_exit_block); // In an effect context, we did not materialized the value in the // predecessor environments so there's no need to handle it here. if (subgraph()->HasExit() && !ast_context()->IsEffect()) { ast_context()->ReturnValue(Pop()); } } } void HGraphBuilder::HandlePropertyAssignment(Assignment* expr) { Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); expr->RecordTypeFeedback(oracle()); VISIT_FOR_VALUE(prop->obj()); HValue* value = NULL; HInstruction* instr = NULL; if (prop->key()->IsPropertyName()) { // Named store. VISIT_FOR_VALUE(expr->value()); value = Pop(); HValue* object = Pop(); Literal* key = prop->key()->AsLiteral(); Handle name = Handle::cast(key->handle()); ASSERT(!name.is_null()); ZoneMapList* types = expr->GetReceiverTypes(); LookupResult lookup; if (expr->IsMonomorphic()) { instr = BuildStoreNamed(object, value, expr); } else if (types != NULL && types->length() > 1) { HandlePolymorphicStoreNamedField(expr, object, value, types, name); return; } else { instr = new HStoreNamedGeneric(object, name, value); } } else { // Keyed store. VISIT_FOR_VALUE(prop->key()); VISIT_FOR_VALUE(expr->value()); value = Pop(); HValue* key = Pop(); HValue* object = Pop(); bool is_fast_elements = expr->IsMonomorphic() && expr->GetMonomorphicReceiverType()->has_fast_elements(); instr = is_fast_elements ? BuildStoreKeyedFastElement(object, key, value, expr) : BuildStoreKeyedGeneric(object, key, value); } Push(value); instr->set_position(expr->position()); AddInstruction(instr); if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId()); ast_context()->ReturnValue(Pop()); } // Because not every expression has a position and there is not common // superclass of Assignment and CountOperation, we cannot just pass the // owning expression instead of position and ast_id separately. void HGraphBuilder::HandleGlobalVariableAssignment(Variable* var, HValue* value, int position, int ast_id) { LookupResult lookup; LookupGlobalPropertyCell(var, &lookup, true); CHECK_BAILOUT; bool check_hole = !lookup.IsDontDelete() || lookup.IsReadOnly(); Handle global(graph()->info()->global_object()); Handle cell(global->GetPropertyCell(&lookup)); HInstruction* instr = new HStoreGlobal(value, cell, check_hole); instr->set_position(position); AddInstruction(instr); if (instr->HasSideEffects()) AddSimulate(ast_id); } void HGraphBuilder::HandleCompoundAssignment(Assignment* expr) { Expression* target = expr->target(); VariableProxy* proxy = target->AsVariableProxy(); Variable* var = proxy->AsVariable(); Property* prop = target->AsProperty(); ASSERT(var == NULL || prop == NULL); // We have a second position recorded in the FullCodeGenerator to have // type feedback for the binary operation. BinaryOperation* operation = expr->binary_operation(); if (var != NULL) { if (!var->is_global() && !var->IsStackAllocated()) { BAILOUT("non-stack/non-global in compound assignment"); } VISIT_FOR_VALUE(operation); if (var->is_global()) { HandleGlobalVariableAssignment(var, Top(), expr->position(), expr->AssignmentId()); } else { Bind(var, Top()); } ast_context()->ReturnValue(Pop()); } else if (prop != NULL) { prop->RecordTypeFeedback(oracle()); if (prop->key()->IsPropertyName()) { // Named property. VISIT_FOR_VALUE(prop->obj()); HValue* obj = Top(); HInstruction* load = NULL; if (prop->IsMonomorphic()) { Handle name = prop->key()->AsLiteral()->AsPropertyName(); Handle map = prop->GetReceiverTypes()->first(); load = BuildLoadNamed(obj, prop, map, name); } else { load = BuildLoadNamedGeneric(obj, prop); } PushAndAdd(load); if (load->HasSideEffects()) AddSimulate(expr->CompoundLoadId()); VISIT_FOR_VALUE(expr->value()); HValue* right = Pop(); HValue* left = Pop(); HInstruction* instr = BuildBinaryOperation(operation, left, right); PushAndAdd(instr); if (instr->HasSideEffects()) AddSimulate(operation->id()); HInstruction* store = BuildStoreNamed(obj, instr, prop); AddInstruction(store); // Drop the simulated receiver and value. Return the value. Drop(2); Push(instr); if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); ast_context()->ReturnValue(Pop()); } else { // Keyed property. VISIT_FOR_VALUE(prop->obj()); VISIT_FOR_VALUE(prop->key()); HValue* obj = environment()->ExpressionStackAt(1); HValue* key = environment()->ExpressionStackAt(0); bool is_fast_elements = prop->IsMonomorphic() && prop->GetMonomorphicReceiverType()->has_fast_elements(); HInstruction* load = is_fast_elements ? BuildLoadKeyedFastElement(obj, key, prop) : BuildLoadKeyedGeneric(obj, key); PushAndAdd(load); if (load->HasSideEffects()) AddSimulate(expr->CompoundLoadId()); VISIT_FOR_VALUE(expr->value()); HValue* right = Pop(); HValue* left = Pop(); HInstruction* instr = BuildBinaryOperation(operation, left, right); PushAndAdd(instr); if (instr->HasSideEffects()) AddSimulate(operation->id()); HInstruction* store = is_fast_elements ? BuildStoreKeyedFastElement(obj, key, instr, prop) : BuildStoreKeyedGeneric(obj, key, instr); AddInstruction(store); // Drop the simulated receiver, key, and value. Return the value. Drop(3); Push(instr); if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); ast_context()->ReturnValue(Pop()); } } else { BAILOUT("invalid lhs in compound assignment"); } } void HGraphBuilder::VisitAssignment(Assignment* expr) { VariableProxy* proxy = expr->target()->AsVariableProxy(); Variable* var = proxy->AsVariable(); Property* prop = expr->target()->AsProperty(); ASSERT(var == NULL || prop == NULL); if (expr->is_compound()) { HandleCompoundAssignment(expr); return; } if (var != NULL) { if (proxy->IsArguments()) BAILOUT("assignment to arguments"); // Handle the assignment. if (var->is_global()) { VISIT_FOR_VALUE(expr->value()); HandleGlobalVariableAssignment(var, Top(), expr->position(), expr->AssignmentId()); } else if (var->IsStackAllocated()) { // We allow reference to the arguments object only in assignemtns // to local variables to make sure that the arguments object does // not escape and is not modified. VariableProxy* rhs = expr->value()->AsVariableProxy(); if (rhs != NULL && rhs->var()->IsStackAllocated() && environment()->Lookup(rhs->var())->CheckFlag(HValue::kIsArguments)) { Push(environment()->Lookup(rhs->var())); } else { VISIT_FOR_VALUE(expr->value()); } Bind(proxy->var(), Top()); } else { BAILOUT("Assigning to no non-stack-allocated/non-global variable"); } // Return the value. ast_context()->ReturnValue(Pop()); } else if (prop != NULL) { HandlePropertyAssignment(expr); } else { BAILOUT("unsupported invalid lhs"); } } void HGraphBuilder::VisitThrow(Throw* expr) { // We don't optimize functions with invalid left-hand sides in // assignments, count operations, or for-in. Consequently throw can // currently only occur in an effect context. ASSERT(ast_context()->IsEffect()); VISIT_FOR_VALUE(expr->exception()); HValue* value = environment()->Pop(); HControlInstruction* instr = new HThrow(value); instr->set_position(expr->position()); current_subgraph_->FinishExit(instr); } void HGraphBuilder::HandlePolymorphicLoadNamedField(Property* expr, HValue* object, ZoneMapList* types, Handle name) { int number_of_types = Min(types->length(), kMaxLoadPolymorphism); ZoneMapList maps(number_of_types); ZoneList subgraphs(number_of_types + 1); bool needs_generic = (types->length() > kMaxLoadPolymorphism); // Build subgraphs for each of the specific maps. // // TODO(ager): We should recognize when the prototype chains for // different maps are identical. In that case we can avoid // repeatedly generating the same prototype map checks. for (int i = 0; i < number_of_types; ++i) { Handle map = types->at(i); LookupResult lookup; map->LookupInDescriptors(NULL, *name, &lookup); if (lookup.IsProperty() && lookup.type() == FIELD) { maps.Add(map); HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); HLoadNamedField* instr = BuildLoadNamedField(object, expr, map, &lookup, false); instr->set_position(expr->position()); instr->ClearFlag(HValue::kUseGVN); // Don't do GVN on polymorphic loads. PushAndAdd(instr); subgraphs.Add(subgraph); } else { needs_generic = true; } } // If none of the properties were named fields we generate a // generic load. if (maps.length() == 0) { HInstruction* instr = BuildLoadNamedGeneric(object, expr); instr->set_position(expr->position()); ast_context()->ReturnInstruction(instr, expr->id()); } else { // Build subgraph for generic load through IC. { HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); if (!needs_generic && FLAG_deoptimize_uncommon_cases) { subgraph->FinishExit(new HDeoptimize()); } else { HInstruction* instr = BuildLoadNamedGeneric(object, expr); instr->set_position(expr->position()); PushAndAdd(instr); } subgraphs.Add(subgraph); } HBasicBlock* new_exit_block = BuildTypeSwitch(&maps, &subgraphs, object, expr->id()); subgraph()->set_exit_block(new_exit_block); // In an effect context, we did not materialized the value in the // predecessor environments so there's no need to handle it here. if (subgraph()->HasExit() && !ast_context()->IsEffect()) { ast_context()->ReturnValue(Pop()); } } } HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object, Property* expr, Handle type, LookupResult* lookup, bool smi_and_map_check) { if (smi_and_map_check) { AddInstruction(new HCheckNonSmi(object)); AddInstruction(new HCheckMap(object, type)); } int index = lookup->GetLocalFieldIndexFromMap(*type); if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. int offset = (index * kPointerSize) + type->instance_size(); return new HLoadNamedField(object, true, offset); } else { // Non-negative property indices are in the properties array. int offset = (index * kPointerSize) + FixedArray::kHeaderSize; return new HLoadNamedField(object, false, offset); } } HInstruction* HGraphBuilder::BuildLoadNamedGeneric(HValue* obj, Property* expr) { ASSERT(expr->key()->IsPropertyName()); Handle name = expr->key()->AsLiteral()->handle(); return new HLoadNamedGeneric(obj, name); } HInstruction* HGraphBuilder::BuildLoadNamed(HValue* obj, Property* expr, Handle map, Handle name) { LookupResult lookup; map->LookupInDescriptors(NULL, *name, &lookup); if (lookup.IsProperty() && lookup.type() == FIELD) { return BuildLoadNamedField(obj, expr, map, &lookup, true); } else if (lookup.IsProperty() && lookup.type() == CONSTANT_FUNCTION) { AddInstruction(new HCheckNonSmi(obj)); AddInstruction(new HCheckMap(obj, map)); Handle function(lookup.GetConstantFunctionFromMap(*map)); return new HConstant(function, Representation::Tagged()); } else { return BuildLoadNamedGeneric(obj, expr); } } HInstruction* HGraphBuilder::BuildLoadKeyedGeneric(HValue* object, HValue* key) { return new HLoadKeyedGeneric(object, key); } HInstruction* HGraphBuilder::BuildLoadKeyedFastElement(HValue* object, HValue* key, Property* expr) { ASSERT(!expr->key()->IsPropertyName() && expr->IsMonomorphic()); AddInstruction(new HCheckNonSmi(object)); Handle map = expr->GetMonomorphicReceiverType(); ASSERT(map->has_fast_elements()); AddInstruction(new HCheckMap(object, map)); bool is_array = (map->instance_type() == JS_ARRAY_TYPE); HLoadElements* elements = new HLoadElements(object); HInstruction* length = NULL; if (is_array) { length = AddInstruction(new HJSArrayLength(object)); AddInstruction(new HBoundsCheck(key, length)); AddInstruction(elements); } else { AddInstruction(elements); length = AddInstruction(new HFixedArrayLength(elements)); AddInstruction(new HBoundsCheck(key, length)); } return new HLoadKeyedFastElement(elements, key); } HInstruction* HGraphBuilder::BuildStoreKeyedGeneric(HValue* object, HValue* key, HValue* value) { return new HStoreKeyedGeneric(object, key, value); } HInstruction* HGraphBuilder::BuildStoreKeyedFastElement(HValue* object, HValue* key, HValue* val, Expression* expr) { ASSERT(expr->IsMonomorphic()); AddInstruction(new HCheckNonSmi(object)); Handle map = expr->GetMonomorphicReceiverType(); ASSERT(map->has_fast_elements()); AddInstruction(new HCheckMap(object, map)); HInstruction* elements = AddInstruction(new HLoadElements(object)); AddInstruction(new HCheckMap(elements, Factory::fixed_array_map())); bool is_array = (map->instance_type() == JS_ARRAY_TYPE); HInstruction* length = NULL; if (is_array) { length = AddInstruction(new HJSArrayLength(object)); } else { length = AddInstruction(new HFixedArrayLength(elements)); } AddInstruction(new HBoundsCheck(key, length)); return new HStoreKeyedFastElement(elements, key, val); } bool HGraphBuilder::TryArgumentsAccess(Property* expr) { VariableProxy* proxy = expr->obj()->AsVariableProxy(); if (proxy == NULL) return false; if (!proxy->var()->IsStackAllocated()) return false; if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) { return false; } HInstruction* result = NULL; if (expr->key()->IsPropertyName()) { Handle name = expr->key()->AsLiteral()->AsPropertyName(); if (!name->IsEqualTo(CStrVector("length"))) return false; HInstruction* elements = AddInstruction(new HArgumentsElements); result = new HArgumentsLength(elements); } else { VisitForValue(expr->key()); if (HasStackOverflow()) return false; HValue* key = Pop(); HInstruction* elements = AddInstruction(new HArgumentsElements); HInstruction* length = AddInstruction(new HArgumentsLength(elements)); AddInstruction(new HBoundsCheck(key, length)); result = new HAccessArgumentsAt(elements, length, key); } ast_context()->ReturnInstruction(result, expr->id()); return true; } void HGraphBuilder::VisitProperty(Property* expr) { expr->RecordTypeFeedback(oracle()); if (TryArgumentsAccess(expr)) return; CHECK_BAILOUT; VISIT_FOR_VALUE(expr->obj()); HInstruction* instr = NULL; if (expr->IsArrayLength()) { HValue* array = Pop(); AddInstruction(new HCheckNonSmi(array)); AddInstruction(new HCheckInstanceType(array, JS_ARRAY_TYPE, JS_ARRAY_TYPE)); instr = new HJSArrayLength(array); } else if (expr->IsStringLength()) { HValue* string = Pop(); AddInstruction(new HCheckNonSmi(string)); AddInstruction(new HCheckInstanceType(string, FIRST_STRING_TYPE, LAST_STRING_TYPE)); instr = new HStringLength(string); } else if (expr->IsFunctionPrototype()) { HValue* function = Pop(); AddInstruction(new HCheckNonSmi(function)); instr = new HLoadFunctionPrototype(function); } else if (expr->key()->IsPropertyName()) { Handle name = expr->key()->AsLiteral()->AsPropertyName(); ZoneMapList* types = expr->GetReceiverTypes(); HValue* obj = Pop(); if (expr->IsMonomorphic()) { instr = BuildLoadNamed(obj, expr, types->first(), name); } else if (types != NULL && types->length() > 1) { HandlePolymorphicLoadNamedField(expr, obj, types, name); return; } else { instr = BuildLoadNamedGeneric(obj, expr); } } else { VISIT_FOR_VALUE(expr->key()); HValue* key = Pop(); HValue* obj = Pop(); bool is_fast_elements = expr->IsMonomorphic() && expr->GetMonomorphicReceiverType()->has_fast_elements(); instr = is_fast_elements ? BuildLoadKeyedFastElement(obj, key, expr) : BuildLoadKeyedGeneric(obj, key); } instr->set_position(expr->position()); ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::AddCheckConstantFunction(Call* expr, HValue* receiver, Handle receiver_map, bool smi_and_map_check) { // Constant functions have the nice property that the map will change if they // are overwritten. Therefore it is enough to check the map of the holder and // its prototypes. if (smi_and_map_check) { AddInstruction(new HCheckNonSmi(receiver)); AddInstruction(new HCheckMap(receiver, receiver_map)); } if (!expr->holder().is_null()) { AddInstruction(new HCheckPrototypeMaps( Handle(JSObject::cast(receiver_map->prototype())), expr->holder())); } } void HGraphBuilder::HandlePolymorphicCallNamed(Call* expr, HValue* receiver, ZoneMapList* types, Handle name) { int argument_count = expr->arguments()->length() + 1; // Plus receiver. int number_of_types = Min(types->length(), kMaxCallPolymorphism); ZoneMapList maps(number_of_types); ZoneList subgraphs(number_of_types + 1); bool needs_generic = (types->length() > kMaxCallPolymorphism); // Build subgraphs for each of the specific maps. // // TODO(ager): We should recognize when the prototype chains for different // maps are identical. In that case we can avoid repeatedly generating the // same prototype map checks. for (int i = 0; i < number_of_types; ++i) { Handle map = types->at(i); if (expr->ComputeTarget(map, name)) { maps.Add(map); HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); AddCheckConstantFunction(expr, receiver, map, false); if (FLAG_trace_inlining && FLAG_polymorphic_inlining) { PrintF("Trying to inline the polymorphic call to %s\n", *name->ToCString()); } if (!FLAG_polymorphic_inlining || !TryInline(expr)) { // Check for bailout, as trying to inline might fail due to bailout // during hydrogen processing. CHECK_BAILOUT; HCall* call = new HCallConstantFunction(expr->target(), argument_count); call->set_position(expr->position()); ProcessCall(call); PushAndAdd(call); } subgraphs.Add(subgraph); } else { needs_generic = true; } } // If we couldn't compute the target for any of the maps just perform an // IC call. if (maps.length() == 0) { HCall* call = new HCallNamed(name, argument_count); call->set_position(expr->position()); ProcessCall(call); ast_context()->ReturnInstruction(call, expr->id()); } else { // Build subgraph for generic call through IC. { HSubgraph* subgraph = CreateBranchSubgraph(environment()); SubgraphScope scope(this, subgraph); if (!needs_generic && FLAG_deoptimize_uncommon_cases) { subgraph->FinishExit(new HDeoptimize()); } else { HCall* call = new HCallNamed(name, argument_count); call->set_position(expr->position()); ProcessCall(call); PushAndAdd(call); } subgraphs.Add(subgraph); } HBasicBlock* new_exit_block = BuildTypeSwitch(&maps, &subgraphs, receiver, expr->id()); subgraph()->set_exit_block(new_exit_block); // In an effect context, we did not materialized the value in the // predecessor environments so there's no need to handle it here. if (new_exit_block != NULL && !ast_context()->IsEffect()) { ast_context()->ReturnValue(Pop()); } } } void HGraphBuilder::TraceInline(Handle target, bool result) { SmartPointer callee = target->shared()->DebugName()->ToCString(); SmartPointer caller = graph()->info()->function()->debug_name()->ToCString(); if (result) { PrintF("Inlined %s called from %s.\n", *callee, *caller); } else { PrintF("Do not inline %s called from %s.\n", *callee, *caller); } } bool HGraphBuilder::TryInline(Call* expr) { if (!FLAG_use_inlining) return false; // Precondition: call is monomorphic and we have found a target with the // appropriate arity. Handle target = expr->target(); // Do a quick check on source code length to avoid parsing large // inlining candidates. if (FLAG_limit_inlining && target->shared()->SourceSize() > kMaxSourceSize) { if (FLAG_trace_inlining) TraceInline(target, false); return false; } // Target must be inlineable. if (!target->IsInlineable()) return false; // No context change required. CompilationInfo* outer_info = graph()->info(); if (target->context() != outer_info->closure()->context() || outer_info->scope()->contains_with() || outer_info->scope()->num_heap_slots() > 0) { return false; } // Don't inline deeper than two calls. HEnvironment* env = environment(); if (env->outer() != NULL && env->outer()->outer() != NULL) return false; // Don't inline recursive functions. if (target->shared() == outer_info->closure()->shared()) return false; // We don't want to add more than a certain number of nodes from inlining. if (FLAG_limit_inlining && inlined_count_ > kMaxInlinedNodes) { if (FLAG_trace_inlining) TraceInline(target, false); return false; } int count_before = AstNode::Count(); // Parse and allocate variables. CompilationInfo inner_info(target); if (!ParserApi::Parse(&inner_info) || !Scope::Analyze(&inner_info)) { return false; } FunctionLiteral* function = inner_info.function(); // Count the number of AST nodes added by inlining this call. int nodes_added = AstNode::Count() - count_before; if (FLAG_limit_inlining && nodes_added > kMaxInlinedSize) { if (FLAG_trace_inlining) TraceInline(target, false); return false; } // Check if we can handle all declarations in the inlined functions. VisitDeclarations(inner_info.scope()->declarations()); if (HasStackOverflow()) { ClearStackOverflow(); return false; } // Don't inline functions that uses the arguments object or that // have a mismatching number of parameters. Handle shared(target->shared()); int arity = expr->arguments()->length(); if (function->scope()->arguments() != NULL || arity != shared->formal_parameter_count()) { return false; } // All statements in the body must be inlineable. for (int i = 0, count = function->body()->length(); i < count; ++i) { if (!function->body()->at(i)->IsInlineable()) return false; } // Generate the deoptimization data for the unoptimized version of // the target function if we don't already have it. if (!shared->has_deoptimization_support()) { // Note that we compile here using the same AST that we will use for // generating the optimized inline code. inner_info.EnableDeoptimizationSupport(); if (!FullCodeGenerator::MakeCode(&inner_info)) return false; shared->EnableDeoptimizationSupport(*inner_info.code()); Compiler::RecordFunctionCompilation( Logger::FUNCTION_TAG, Handle(shared->DebugName()), shared->start_position(), &inner_info); } // Save the pending call context and type feedback oracle. Set up new ones // for the inlined function. ASSERT(shared->has_deoptimization_support()); AstContext* saved_call_context = call_context(); HBasicBlock* saved_function_return = function_return(); TypeFeedbackOracle* saved_oracle = oracle(); // On-stack replacement cannot target inlined functions. Since we don't // use a separate CompilationInfo structure for the inlined function, we // save and restore the AST ID in the original compilation info. int saved_osr_ast_id = graph()->info()->osr_ast_id(); TestContext* test_context = NULL; if (ast_context()->IsTest()) { // Inlined body is treated as if it occurs in an 'inlined' call context // with true and false blocks that will forward to the real ones. HBasicBlock* if_true = graph()->CreateBasicBlock(); HBasicBlock* if_false = graph()->CreateBasicBlock(); if_true->MarkAsInlineReturnTarget(); if_false->MarkAsInlineReturnTarget(); // AstContext constructor pushes on the context stack. test_context = new TestContext(this, if_true, if_false); function_return_ = NULL; } else { // Inlined body is treated as if it occurs in the original call context. function_return_ = graph()->CreateBasicBlock(); function_return_->MarkAsInlineReturnTarget(); } call_context_ = ast_context(); TypeFeedbackOracle new_oracle( Handle(shared->code()), Handle(target->context()->global_context())); oracle_ = &new_oracle; graph()->info()->SetOsrAstId(AstNode::kNoNumber); HSubgraph* body = CreateInlinedSubgraph(env, target, function); body->exit_block()->AddInstruction(new HEnterInlined(target, function)); AddToSubgraph(body, function->body()); if (HasStackOverflow()) { // Bail out if the inline function did, as we cannot residualize a call // instead. delete test_context; call_context_ = saved_call_context; function_return_ = saved_function_return; oracle_ = saved_oracle; graph()->info()->SetOsrAstId(saved_osr_ast_id); return false; } // Update inlined nodes count. inlined_count_ += nodes_added; if (FLAG_trace_inlining) TraceInline(target, true); if (body->HasExit()) { // Add a return of undefined if control can fall off the body. In a // test context, undefined is false. HValue* return_value = graph()->GetConstantUndefined(); if (test_context == NULL) { ASSERT(function_return_ != NULL); body->exit_block()->AddLeaveInlined(return_value, function_return_); } else { // The graph builder assumes control can reach both branches of a // test, so we materialize the undefined value and test it rather than // simply jumping to the false target. // // TODO(3168478): refactor to avoid this. HBasicBlock* empty_true = graph()->CreateBasicBlock(); HBasicBlock* empty_false = graph()->CreateBasicBlock(); HTest* test = new HTest(return_value, empty_true, empty_false); body->exit_block()->Finish(test); HValue* const no_return_value = NULL; empty_true->AddLeaveInlined(no_return_value, test_context->if_true()); empty_false->AddLeaveInlined(no_return_value, test_context->if_false()); } body->set_exit_block(NULL); } // Record the environment at the inlined function call. AddSimulate(expr->ReturnId()); // Jump to the function entry (without re-recording the environment). subgraph()->exit_block()->Finish(new HGoto(body->entry_block())); // Fix up the function exits. if (test_context != NULL) { HBasicBlock* if_true = test_context->if_true(); HBasicBlock* if_false = test_context->if_false(); if_true->SetJoinId(expr->id()); if_false->SetJoinId(expr->id()); ASSERT(ast_context() == test_context); delete test_context; // Destructor pops from expression context stack. // Forward to the real test context. HValue* const no_return_value = NULL; HBasicBlock* true_target = TestContext::cast(ast_context())->if_true(); if (true_target->IsInlineReturnTarget()) { if_true->AddLeaveInlined(no_return_value, true_target); } else { if_true->Goto(true_target); } HBasicBlock* false_target = TestContext::cast(ast_context())->if_false(); if (false_target->IsInlineReturnTarget()) { if_false->AddLeaveInlined(no_return_value, false_target); } else { if_false->Goto(false_target); } // TODO(kmillikin): Come up with a better way to handle this. It is too // subtle. NULL here indicates that the enclosing context has no control // flow to handle. subgraph()->set_exit_block(NULL); } else { function_return_->SetJoinId(expr->id()); subgraph()->set_exit_block(function_return_); } call_context_ = saved_call_context; function_return_ = saved_function_return; oracle_ = saved_oracle; graph()->info()->SetOsrAstId(saved_osr_ast_id); return true; } void HBasicBlock::AddLeaveInlined(HValue* return_value, HBasicBlock* target) { ASSERT(target->IsInlineReturnTarget()); AddInstruction(new HLeaveInlined); HEnvironment* outer = last_environment()->outer(); if (return_value != NULL) outer->Push(return_value); UpdateEnvironment(outer); Goto(target); } bool HGraphBuilder::TryInlineBuiltinFunction(Call* expr, HValue* receiver, Handle receiver_map, CheckType check_type) { ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null()); // Try to inline calls like Math.* as operations in the calling function. if (!expr->target()->shared()->HasBuiltinFunctionId()) return false; BuiltinFunctionId id = expr->target()->shared()->builtin_function_id(); int argument_count = expr->arguments()->length() + 1; // Plus receiver. switch (id) { case kStringCharCodeAt: if (argument_count == 2 && check_type == STRING_CHECK) { HValue* index = Pop(); HValue* string = Pop(); ASSERT(!expr->holder().is_null()); AddInstruction(new HCheckPrototypeMaps( oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK), expr->holder())); HStringCharCodeAt* result = BuildStringCharCodeAt(string, index); ast_context()->ReturnInstruction(result, expr->id()); return true; } break; case kMathRound: case kMathFloor: case kMathAbs: case kMathSqrt: case kMathLog: case kMathSin: case kMathCos: if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) { AddCheckConstantFunction(expr, receiver, receiver_map, true); HValue* argument = Pop(); Drop(1); // Receiver. HUnaryMathOperation* op = new HUnaryMathOperation(argument, id); op->set_position(expr->position()); ast_context()->ReturnInstruction(op, expr->id()); return true; } break; case kMathPow: if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) { AddCheckConstantFunction(expr, receiver, receiver_map, true); HValue* right = Pop(); HValue* left = Pop(); Pop(); // Pop receiver. HInstruction* result = NULL; // Use sqrt() if exponent is 0.5 or -0.5. if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) { double exponent = HConstant::cast(right)->DoubleValue(); if (exponent == 0.5) { result = new HUnaryMathOperation(left, kMathPowHalf); } else if (exponent == -0.5) { HConstant* double_one = new HConstant(Handle(Smi::FromInt(1)), Representation::Double()); AddInstruction(double_one); HUnaryMathOperation* square_root = new HUnaryMathOperation(left, kMathPowHalf); AddInstruction(square_root); // MathPowHalf doesn't have side effects so there's no need for // an environment simulation here. ASSERT(!square_root->HasSideEffects()); result = new HDiv(double_one, square_root); } else if (exponent == 2.0) { result = new HMul(left, left); } } else if (right->IsConstant() && HConstant::cast(right)->HasInteger32Value() && HConstant::cast(right)->Integer32Value() == 2) { result = new HMul(left, left); } if (result == NULL) { result = new HPower(left, right); } ast_context()->ReturnInstruction(result, expr->id()); return true; } break; default: // Not yet supported for inlining. break; } return false; } bool HGraphBuilder::TryCallApply(Call* expr) { Expression* callee = expr->expression(); Property* prop = callee->AsProperty(); ASSERT(prop != NULL); if (graph()->info()->scope()->arguments() == NULL) return false; Handle name = prop->key()->AsLiteral()->AsPropertyName(); if (!name->IsEqualTo(CStrVector("apply"))) return false; ZoneList* args = expr->arguments(); if (args->length() != 2) return false; VariableProxy* arg_two = args->at(1)->AsVariableProxy(); if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false; HValue* arg_two_value = environment()->Lookup(arg_two->var()); if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false; if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) return false; // Found pattern f.apply(receiver, arguments). VisitForValue(prop->obj()); if (HasStackOverflow()) return false; HValue* function = Pop(); VisitForValue(args->at(0)); if (HasStackOverflow()) return false; HValue* receiver = Pop(); HInstruction* elements = AddInstruction(new HArgumentsElements); HInstruction* length = AddInstruction(new HArgumentsLength(elements)); AddCheckConstantFunction(expr, function, expr->GetReceiverTypes()->first(), true); HInstruction* result = new HApplyArguments(function, receiver, length, elements); result->set_position(expr->position()); ast_context()->ReturnInstruction(result, expr->id()); return true; } static bool HasCustomCallGenerator(Handle function) { SharedFunctionInfo* info = function->shared(); return info->HasBuiltinFunctionId() && CallStubCompiler::HasCustomCallGenerator(info->builtin_function_id()); } void HGraphBuilder::VisitCall(Call* expr) { Expression* callee = expr->expression(); int argument_count = expr->arguments()->length() + 1; // Plus receiver. HCall* call = NULL; Property* prop = callee->AsProperty(); if (prop != NULL) { if (!prop->key()->IsPropertyName()) { // Keyed function call. VisitArgument(prop->obj()); CHECK_BAILOUT; VISIT_FOR_VALUE(prop->key()); // Push receiver and key like the non-optimized code generator expects it. HValue* key = Pop(); HValue* receiver = Pop(); Push(key); Push(receiver); VisitArgumentList(expr->arguments()); CHECK_BAILOUT; call = new HCallKeyed(key, argument_count); call->set_position(expr->position()); ProcessCall(call); Drop(1); // Key. ast_context()->ReturnInstruction(call, expr->id()); return; } // Named function call. expr->RecordTypeFeedback(oracle()); if (TryCallApply(expr)) return; CHECK_BAILOUT; HValue* receiver = VisitArgument(prop->obj()); CHECK_BAILOUT; VisitArgumentList(expr->arguments()); CHECK_BAILOUT; Handle name = prop->key()->AsLiteral()->AsPropertyName(); expr->RecordTypeFeedback(oracle()); ZoneMapList* types = expr->GetReceiverTypes(); if (expr->IsMonomorphic()) { Handle receiver_map = (types == NULL) ? Handle::null() : types->first(); if (TryInlineBuiltinFunction(expr, receiver, receiver_map, expr->check_type())) { return; } if (HasCustomCallGenerator(expr->target()) || expr->check_type() != RECEIVER_MAP_CHECK) { // When the target has a custom call IC generator, use the IC, // because it is likely to generate better code. Also use the // IC when a primitive receiver check is required. call = new HCallNamed(name, argument_count); } else { AddCheckConstantFunction(expr, receiver, receiver_map, true); if (TryInline(expr)) { if (subgraph()->HasExit()) { HValue* return_value = Pop(); // If we inlined a function in a test context then we need to emit // a simulate here to shadow the ones at the end of the // predecessor blocks. Those environments contain the return // value on top and do not correspond to any actual state of the // unoptimized code. if (ast_context()->IsEffect()) AddSimulate(expr->id()); ast_context()->ReturnValue(return_value); } return; } else { // Check for bailout, as the TryInline call in the if condition above // might return false due to bailout during hydrogen processing. CHECK_BAILOUT; call = new HCallConstantFunction(expr->target(), argument_count); } } } else if (types != NULL && types->length() > 1) { ASSERT(expr->check_type() == RECEIVER_MAP_CHECK); HandlePolymorphicCallNamed(expr, receiver, types, name); return; } else { call = new HCallNamed(name, argument_count); } } else { Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); bool global_call = (var != NULL) && var->is_global() && !var->is_this(); if (!global_call) { ++argument_count; VisitArgument(expr->expression()); CHECK_BAILOUT; } if (global_call) { // If there is a global property cell for the name at compile time and // access check is not enabled we assume that the function will not change // and generate optimized code for calling the function. CompilationInfo* info = graph()->info(); bool known_global_function = info->has_global_object() && !info->global_object()->IsAccessCheckNeeded() && expr->ComputeGlobalTarget(Handle(info->global_object()), var->name()); if (known_global_function) { // Push the global object instead of the global receiver because // code generated by the full code generator expects it. PushAndAdd(new HGlobalObject); VisitArgumentList(expr->arguments()); CHECK_BAILOUT; VISIT_FOR_VALUE(expr->expression()); HValue* function = Pop(); AddInstruction(new HCheckFunction(function, expr->target())); // Replace the global object with the global receiver. HGlobalReceiver* global_receiver = new HGlobalReceiver; // Index of the receiver from the top of the expression stack. const int receiver_index = argument_count - 1; AddInstruction(global_receiver); ASSERT(environment()->ExpressionStackAt(receiver_index)-> IsGlobalObject()); environment()->SetExpressionStackAt(receiver_index, global_receiver); if (TryInline(expr)) { if (subgraph()->HasExit()) { HValue* return_value = Pop(); // If we inlined a function in a test context then we need to // emit a simulate here to shadow the ones at the end of the // predecessor blocks. Those environments contain the return // value on top and do not correspond to any actual state of the // unoptimized code. if (ast_context()->IsEffect()) AddSimulate(expr->id()); ast_context()->ReturnValue(return_value); } return; } // Check for bailout, as trying to inline might fail due to bailout // during hydrogen processing. CHECK_BAILOUT; call = new HCallKnownGlobal(expr->target(), argument_count); } else { PushAndAdd(new HGlobalObject); VisitArgumentList(expr->arguments()); CHECK_BAILOUT; call = new HCallGlobal(var->name(), argument_count); } } else { PushAndAdd(new HGlobalReceiver); VisitArgumentList(expr->arguments()); CHECK_BAILOUT; call = new HCallFunction(argument_count); } } call->set_position(expr->position()); ProcessCall(call); ast_context()->ReturnInstruction(call, expr->id()); } void HGraphBuilder::VisitCallNew(CallNew* expr) { // The constructor function is also used as the receiver argument to the // JS construct call builtin. VisitArgument(expr->expression()); CHECK_BAILOUT; VisitArgumentList(expr->arguments()); CHECK_BAILOUT; int argument_count = expr->arguments()->length() + 1; // Plus constructor. HCall* call = new HCallNew(argument_count); call->set_position(expr->position()); ProcessCall(call); ast_context()->ReturnInstruction(call, expr->id()); } // Support for generating inlined runtime functions. // Lookup table for generators for runtime calls that are generated inline. // Elements of the table are member pointers to functions of HGraphBuilder. #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \ &HGraphBuilder::Generate##Name, const HGraphBuilder::InlineFunctionGenerator HGraphBuilder::kInlineFunctionGenerators[] = { INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) }; #undef INLINE_FUNCTION_GENERATOR_ADDRESS void HGraphBuilder::VisitCallRuntime(CallRuntime* expr) { Handle name = expr->name(); if (name->IsEqualTo(CStrVector("_Log"))) { ast_context()->ReturnValue(graph()->GetConstantUndefined()); return; } Runtime::Function* function = expr->function(); if (expr->is_jsruntime()) { BAILOUT("call to a JavaScript runtime function"); } ASSERT(function != NULL); VisitArgumentList(expr->arguments()); CHECK_BAILOUT; int argument_count = expr->arguments()->length(); if (function->intrinsic_type == Runtime::INLINE) { ASSERT(name->length() > 0); ASSERT(name->Get(0) == '_'); // Call to an inline function. int lookup_index = static_cast(function->function_id) - static_cast(Runtime::kFirstInlineFunction); ASSERT(lookup_index >= 0); ASSERT(static_cast(lookup_index) < ARRAY_SIZE(kInlineFunctionGenerators)); InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index]; // Call the inline code generator using the pointer-to-member. (this->*generator)(argument_count, expr->id()); } else { ASSERT(function->intrinsic_type == Runtime::RUNTIME); HCall* call = new HCallRuntime(name, expr->function(), argument_count); call->set_position(RelocInfo::kNoPosition); ProcessCall(call); ast_context()->ReturnInstruction(call, expr->id()); } } void HGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) { Token::Value op = expr->op(); if (op == Token::VOID) { VISIT_FOR_EFFECT(expr->expression()); ast_context()->ReturnValue(graph()->GetConstantUndefined()); } else if (op == Token::DELETE) { Property* prop = expr->expression()->AsProperty(); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (prop == NULL && var == NULL) { // Result of deleting non-property, non-variable reference is true. // Evaluate the subexpression for side effects. VISIT_FOR_EFFECT(expr->expression()); ast_context()->ReturnValue(graph()->GetConstantTrue()); } else if (var != NULL && !var->is_global() && var->AsSlot() != NULL && var->AsSlot()->type() != Slot::LOOKUP) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. ast_context()->ReturnValue(graph()->GetConstantFalse()); } else if (prop != NULL) { VISIT_FOR_VALUE(prop->obj()); VISIT_FOR_VALUE(prop->key()); HValue* key = Pop(); HValue* obj = Pop(); ast_context()->ReturnInstruction(new HDeleteProperty(obj, key), expr->id()); } else if (var->is_global()) { BAILOUT("delete with global variable"); } else { BAILOUT("delete with non-global variable"); } } else if (op == Token::NOT) { if (ast_context()->IsTest()) { TestContext* context = TestContext::cast(ast_context()); VisitForControl(expr->expression(), context->if_false(), context->if_true()); } else { HSubgraph* true_graph = CreateEmptySubgraph(); HSubgraph* false_graph = CreateEmptySubgraph(); VISIT_FOR_CONTROL(expr->expression(), false_graph->entry_block(), true_graph->entry_block()); true_graph->entry_block()->SetJoinId(expr->expression()->id()); true_graph->environment()->Push(graph_->GetConstantTrue()); false_graph->entry_block()->SetJoinId(expr->expression()->id()); false_graph->environment()->Push(graph_->GetConstantFalse()); current_subgraph_->AppendJoin(true_graph, false_graph, expr); ast_context()->ReturnValue(Pop()); } } else if (op == Token::BIT_NOT || op == Token::SUB) { VISIT_FOR_VALUE(expr->expression()); HValue* value = Pop(); HInstruction* instr = NULL; switch (op) { case Token::BIT_NOT: instr = new HBitNot(value); break; case Token::SUB: instr = new HMul(graph_->GetConstantMinus1(), value); break; default: UNREACHABLE(); break; } ast_context()->ReturnInstruction(instr, expr->id()); } else if (op == Token::TYPEOF) { VISIT_FOR_VALUE(expr->expression()); HValue* value = Pop(); ast_context()->ReturnInstruction(new HTypeof(value), expr->id()); } else { BAILOUT("Value: unsupported unary operation"); } } void HGraphBuilder::VisitIncrementOperation(IncrementOperation* expr) { // IncrementOperation is never visited by the visitor. It only // occurs as a subexpression of CountOperation. UNREACHABLE(); } HInstruction* HGraphBuilder::BuildIncrement(HValue* value, bool increment) { HConstant* delta = increment ? graph_->GetConstant1() : graph_->GetConstantMinus1(); HInstruction* instr = new HAdd(value, delta); AssumeRepresentation(instr, Representation::Integer32()); return instr; } void HGraphBuilder::VisitCountOperation(CountOperation* expr) { IncrementOperation* increment = expr->increment(); Expression* target = increment->expression(); VariableProxy* proxy = target->AsVariableProxy(); Variable* var = proxy->AsVariable(); Property* prop = target->AsProperty(); ASSERT(var == NULL || prop == NULL); bool inc = expr->op() == Token::INC; if (var != NULL) { if (!var->is_global() && !var->IsStackAllocated()) { BAILOUT("non-stack/non-global variable in count operation"); } VISIT_FOR_VALUE(target); // Match the full code generator stack by simulating an extra stack // element for postfix operations in a non-effect context. bool has_extra = expr->is_postfix() && !ast_context()->IsEffect(); HValue* before = has_extra ? Top() : Pop(); HInstruction* after = BuildIncrement(before, inc); AddInstruction(after); Push(after); if (var->is_global()) { HandleGlobalVariableAssignment(var, after, expr->position(), expr->AssignmentId()); } else { ASSERT(var->IsStackAllocated()); Bind(var, after); } Drop(has_extra ? 2 : 1); ast_context()->ReturnValue(expr->is_postfix() ? before : after); } else if (prop != NULL) { prop->RecordTypeFeedback(oracle()); if (prop->key()->IsPropertyName()) { // Named property. // Match the full code generator stack by simulating an extra stack // element for postfix operations in a non-effect context. bool has_extra = expr->is_postfix() && !ast_context()->IsEffect(); if (has_extra) Push(graph_->GetConstantUndefined()); VISIT_FOR_VALUE(prop->obj()); HValue* obj = Top(); HInstruction* load = NULL; if (prop->IsMonomorphic()) { Handle name = prop->key()->AsLiteral()->AsPropertyName(); Handle map = prop->GetReceiverTypes()->first(); load = BuildLoadNamed(obj, prop, map, name); } else { load = BuildLoadNamedGeneric(obj, prop); } PushAndAdd(load); if (load->HasSideEffects()) AddSimulate(increment->id()); HValue* before = Pop(); // There is no deoptimization to after the increment, so we don't need // to simulate the expression stack after this instruction. HInstruction* after = BuildIncrement(before, inc); AddInstruction(after); HInstruction* store = BuildStoreNamed(obj, after, prop); AddInstruction(store); // Overwrite the receiver in the bailout environment with the result // of the operation, and the placeholder with the original value if // necessary. environment()->SetExpressionStackAt(0, after); if (has_extra) environment()->SetExpressionStackAt(1, before); if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); Drop(has_extra ? 2 : 1); ast_context()->ReturnValue(expr->is_postfix() ? before : after); } else { // Keyed property. // Match the full code generator stack by simulate an extra stack element // for postfix operations in a non-effect context. bool has_extra = expr->is_postfix() && !ast_context()->IsEffect(); if (has_extra) Push(graph_->GetConstantUndefined()); VISIT_FOR_VALUE(prop->obj()); VISIT_FOR_VALUE(prop->key()); HValue* obj = environment()->ExpressionStackAt(1); HValue* key = environment()->ExpressionStackAt(0); bool is_fast_elements = prop->IsMonomorphic() && prop->GetMonomorphicReceiverType()->has_fast_elements(); HInstruction* load = is_fast_elements ? BuildLoadKeyedFastElement(obj, key, prop) : BuildLoadKeyedGeneric(obj, key); PushAndAdd(load); if (load->HasSideEffects()) AddSimulate(increment->id()); HValue* before = Pop(); // There is no deoptimization to after the increment, so we don't need // to simulate the expression stack after this instruction. HInstruction* after = BuildIncrement(before, inc); AddInstruction(after); HInstruction* store = is_fast_elements ? BuildStoreKeyedFastElement(obj, key, after, prop) : new HStoreKeyedGeneric(obj, key, after); AddInstruction(store); // Drop the key from the bailout environment. Overwrite the receiver // with the result of the operation, and the placeholder with the // original value if necessary. Drop(1); environment()->SetExpressionStackAt(0, after); if (has_extra) environment()->SetExpressionStackAt(1, before); if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); Drop(has_extra ? 2 : 1); ast_context()->ReturnValue(expr->is_postfix() ? before : after); } } else { BAILOUT("invalid lhs in count operation"); } } HStringCharCodeAt* HGraphBuilder::BuildStringCharCodeAt(HValue* string, HValue* index) { AddInstruction(new HCheckNonSmi(string)); AddInstruction(new HCheckInstanceType( string, FIRST_STRING_TYPE, LAST_STRING_TYPE)); HStringLength* length = new HStringLength(string); AddInstruction(length); AddInstruction(new HBoundsCheck(index, length)); return new HStringCharCodeAt(string, index); } HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr, HValue* left, HValue* right) { HInstruction* instr = NULL; switch (expr->op()) { case Token::ADD: instr = new HAdd(left, right); break; case Token::SUB: instr = new HSub(left, right); break; case Token::MUL: instr = new HMul(left, right); break; case Token::MOD: instr = new HMod(left, right); break; case Token::DIV: instr = new HDiv(left, right); break; case Token::BIT_XOR: instr = new HBitXor(left, right); break; case Token::BIT_AND: instr = new HBitAnd(left, right); break; case Token::BIT_OR: instr = new HBitOr(left, right); break; case Token::SAR: instr = new HSar(left, right); break; case Token::SHR: instr = new HShr(left, right); break; case Token::SHL: instr = new HShl(left, right); break; default: UNREACHABLE(); } TypeInfo info = oracle()->BinaryType(expr); // If we hit an uninitialized binary op stub we will get type info // for a smi operation. If one of the operands is a constant string // do not generate code assuming it is a smi operation. if (info.IsSmi() && ((left->IsConstant() && HConstant::cast(left)->HasStringValue()) || (right->IsConstant() && HConstant::cast(right)->HasStringValue()))) { return instr; } if (FLAG_trace_representation) { PrintF("Info: %s/%s\n", info.ToString(), ToRepresentation(info).Mnemonic()); } Representation rep = ToRepresentation(info); // We only generate either int32 or generic tagged bitwise operations. if (instr->IsBitwiseBinaryOperation() && rep.IsDouble()) { rep = Representation::Integer32(); } AssumeRepresentation(instr, rep); return instr; } // Check for the form (%_ClassOf(foo) === 'BarClass'). static bool IsClassOfTest(CompareOperation* expr) { if (expr->op() != Token::EQ_STRICT) return false; CallRuntime* call = expr->left()->AsCallRuntime(); if (call == NULL) return false; Literal* literal = expr->right()->AsLiteral(); if (literal == NULL) return false; if (!literal->handle()->IsString()) return false; if (!call->name()->IsEqualTo(CStrVector("_ClassOf"))) return false; ASSERT(call->arguments()->length() == 1); return true; } void HGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) { if (expr->op() == Token::COMMA) { VISIT_FOR_EFFECT(expr->left()); // Visit the right subexpression in the same AST context as the entire // expression. Visit(expr->right()); } else if (expr->op() == Token::AND || expr->op() == Token::OR) { bool is_logical_and = (expr->op() == Token::AND); if (ast_context()->IsTest()) { TestContext* context = TestContext::cast(ast_context()); // Translate left subexpression. HBasicBlock* eval_right = graph()->CreateBasicBlock(); if (is_logical_and) { VISIT_FOR_CONTROL(expr->left(), eval_right, context->if_false()); } else { VISIT_FOR_CONTROL(expr->left(), context->if_true(), eval_right); } eval_right->SetJoinId(expr->RightId()); // Translate right subexpression by visiting it in the same AST // context as the entire expression. subgraph()->set_exit_block(eval_right); Visit(expr->right()); } else { VISIT_FOR_VALUE(expr->left()); ASSERT(current_subgraph_->HasExit()); HValue* left = Top(); HEnvironment* environment_copy = environment()->Copy(); environment_copy->Pop(); HSubgraph* right_subgraph; right_subgraph = CreateBranchSubgraph(environment_copy); ADD_TO_SUBGRAPH(right_subgraph, expr->right()); current_subgraph_->AppendOptional(right_subgraph, is_logical_and, left); current_subgraph_->exit_block()->SetJoinId(expr->id()); ast_context()->ReturnValue(Pop()); } } else { VISIT_FOR_VALUE(expr->left()); VISIT_FOR_VALUE(expr->right()); HValue* right = Pop(); HValue* left = Pop(); HInstruction* instr = BuildBinaryOperation(expr, left, right); instr->set_position(expr->position()); ast_context()->ReturnInstruction(instr, expr->id()); } } void HGraphBuilder::AssumeRepresentation(HValue* value, Representation r) { if (value->CheckFlag(HValue::kFlexibleRepresentation)) { if (FLAG_trace_representation) { PrintF("Assume representation for %s to be %s (%d)\n", value->Mnemonic(), r.Mnemonic(), graph_->GetMaximumValueID()); } value->ChangeRepresentation(r); // The representation of the value is dictated by type feedback and // will not be changed later. value->ClearFlag(HValue::kFlexibleRepresentation); } else if (FLAG_trace_representation) { PrintF("No representation assumed\n"); } } Representation HGraphBuilder::ToRepresentation(TypeInfo info) { if (info.IsSmi()) return Representation::Integer32(); if (info.IsInteger32()) return Representation::Integer32(); if (info.IsDouble()) return Representation::Double(); if (info.IsNumber()) return Representation::Double(); return Representation::Tagged(); } void HGraphBuilder::VisitCompareOperation(CompareOperation* expr) { if (IsClassOfTest(expr)) { CallRuntime* call = expr->left()->AsCallRuntime(); VISIT_FOR_VALUE(call->arguments()->at(0)); HValue* value = Pop(); Literal* literal = expr->right()->AsLiteral(); Handle rhs = Handle::cast(literal->handle()); HInstruction* instr = new HClassOfTest(value, rhs); instr->set_position(expr->position()); ast_context()->ReturnInstruction(instr, expr->id()); return; } // Check for the pattern: typeof == . UnaryOperation* left_unary = expr->left()->AsUnaryOperation(); Literal* right_literal = expr->right()->AsLiteral(); if ((expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT) && left_unary != NULL && left_unary->op() == Token::TYPEOF && right_literal != NULL && right_literal->handle()->IsString()) { VISIT_FOR_VALUE(left_unary->expression()); HValue* left = Pop(); HInstruction* instr = new HTypeofIs(left, Handle::cast(right_literal->handle())); instr->set_position(expr->position()); ast_context()->ReturnInstruction(instr, expr->id()); return; } VISIT_FOR_VALUE(expr->left()); VISIT_FOR_VALUE(expr->right()); HValue* right = Pop(); HValue* left = Pop(); Token::Value op = expr->op(); TypeInfo info = oracle()->CompareType(expr); HInstruction* instr = NULL; if (op == Token::INSTANCEOF) { // Check to see if the rhs of the instanceof is a global function not // residing in new space. If it is we assume that the function will stay the // same. Handle target = Handle::null(); Variable* var = expr->right()->AsVariableProxy()->AsVariable(); bool global_function = (var != NULL) && var->is_global() && !var->is_this(); CompilationInfo* info = graph()->info(); if (global_function && info->has_global_object() && !info->global_object()->IsAccessCheckNeeded()) { Handle name = var->name(); Handle global(info->global_object()); LookupResult lookup; global->Lookup(*name, &lookup); if (lookup.IsProperty() && lookup.type() == NORMAL && lookup.GetValue()->IsJSFunction()) { Handle candidate(JSFunction::cast(lookup.GetValue())); // If the function is in new space we assume it's more likely to // change and thus prefer the general IC code. if (!Heap::InNewSpace(*candidate)) { target = candidate; } } } // If the target is not null we have found a known global function that is // assumed to stay the same for this instanceof. if (target.is_null()) { instr = new HInstanceOf(left, right); } else { AddInstruction(new HCheckFunction(right, target)); instr = new HInstanceOfKnownGlobal(left, target); } } else if (op == Token::IN) { BAILOUT("Unsupported comparison: in"); } else if (info.IsNonPrimitive()) { switch (op) { case Token::EQ: case Token::EQ_STRICT: { AddInstruction(new HCheckNonSmi(left)); AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(left)); AddInstruction(new HCheckNonSmi(right)); AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(right)); instr = new HCompareJSObjectEq(left, right); break; } default: BAILOUT("Unsupported non-primitive compare"); break; } } else { HCompare* compare = new HCompare(left, right, op); Representation r = ToRepresentation(info); compare->SetInputRepresentation(r); instr = compare; } instr->set_position(expr->position()); ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitCompareToNull(CompareToNull* expr) { VISIT_FOR_VALUE(expr->expression()); HValue* value = Pop(); HIsNull* compare = new HIsNull(value, expr->is_strict()); ast_context()->ReturnInstruction(compare, expr->id()); } void HGraphBuilder::VisitThisFunction(ThisFunction* expr) { BAILOUT("ThisFunction"); } void HGraphBuilder::VisitDeclaration(Declaration* decl) { // We allow only declarations that do not require code generation. // The following all require code generation: global variables and // functions, variables with slot type LOOKUP, declarations with // mode CONST, and functions. Variable* var = decl->proxy()->var(); Slot* slot = var->AsSlot(); if (var->is_global() || (slot != NULL && slot->type() == Slot::LOOKUP) || decl->mode() == Variable::CONST || decl->fun() != NULL) { BAILOUT("unsupported declaration"); } } // Generators for inline runtime functions. // Support for types. void HGraphBuilder::GenerateIsSmi(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HIsSmi* result = new HIsSmi(value); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateIsSpecObject(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HHasInstanceType* result = new HHasInstanceType(value, FIRST_JS_OBJECT_TYPE, LAST_TYPE); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateIsFunction(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HHasInstanceType* result = new HHasInstanceType(value, JS_FUNCTION_TYPE); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateHasCachedArrayIndex(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HHasCachedArrayIndex* result = new HHasCachedArrayIndex(value); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateIsArray(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HHasInstanceType* result = new HHasInstanceType(value, JS_ARRAY_TYPE); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateIsRegExp(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HHasInstanceType* result = new HHasInstanceType(value, JS_REGEXP_TYPE); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateIsObject(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HIsObject* test = new HIsObject(value); ast_context()->ReturnInstruction(test, ast_id); } void HGraphBuilder::GenerateIsNonNegativeSmi(int argument_count, int ast_id) { BAILOUT("inlined runtime function: IsNonNegativeSmi"); } void HGraphBuilder::GenerateIsUndetectableObject(int argument_count, int ast_id) { BAILOUT("inlined runtime function: IsUndetectableObject"); } void HGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf( int argument_count, int ast_id) { BAILOUT("inlined runtime function: IsStringWrapperSafeForDefaultValueOf"); } // Support for construct call checks. void HGraphBuilder::GenerateIsConstructCall(int argument_count, int ast_id) { BAILOUT("inlined runtime function: IsConstructCall"); } // Support for arguments.length and arguments[?]. void HGraphBuilder::GenerateArgumentsLength(int argument_count, int ast_id) { ASSERT(argument_count == 0); HInstruction* elements = AddInstruction(new HArgumentsElements); HArgumentsLength* result = new HArgumentsLength(elements); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateArguments(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* index = Pop(); HInstruction* elements = AddInstruction(new HArgumentsElements); HInstruction* length = AddInstruction(new HArgumentsLength(elements)); HAccessArgumentsAt* result = new HAccessArgumentsAt(elements, length, index); ast_context()->ReturnInstruction(result, ast_id); } // Support for accessing the class and value fields of an object. void HGraphBuilder::GenerateClassOf(int argument_count, int ast_id) { // The special form detected by IsClassOfTest is detected before we get here // and does not cause a bailout. BAILOUT("inlined runtime function: ClassOf"); } void HGraphBuilder::GenerateValueOf(int argument_count, int ast_id) { ASSERT(argument_count == 1); HValue* value = Pop(); HValueOf* result = new HValueOf(value); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateSetValueOf(int argument_count, int ast_id) { BAILOUT("inlined runtime function: SetValueOf"); } // Fast support for charCodeAt(n). void HGraphBuilder::GenerateStringCharCodeAt(int argument_count, int ast_id) { ASSERT(argument_count == 2); HValue* index = Pop(); HValue* string = Pop(); HStringCharCodeAt* result = BuildStringCharCodeAt(string, index); ast_context()->ReturnInstruction(result, ast_id); } // Fast support for string.charAt(n) and string[n]. void HGraphBuilder::GenerateStringCharFromCode(int argument_count, int ast_id) { BAILOUT("inlined runtime function: StringCharFromCode"); } // Fast support for string.charAt(n) and string[n]. void HGraphBuilder::GenerateStringCharAt(int argument_count, int ast_id) { ASSERT_EQ(2, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::StringCharAt, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Fast support for object equality testing. void HGraphBuilder::GenerateObjectEquals(int argument_count, int ast_id) { ASSERT(argument_count == 2); HValue* right = Pop(); HValue* left = Pop(); HCompareJSObjectEq* result = new HCompareJSObjectEq(left, right); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateLog(int argument_count, int ast_id) { UNREACHABLE(); // We caught this in VisitCallRuntime. } // Fast support for Math.random(). void HGraphBuilder::GenerateRandomHeapNumber(int argument_count, int ast_id) { BAILOUT("inlined runtime function: RandomHeapNumber"); } // Fast support for StringAdd. void HGraphBuilder::GenerateStringAdd(int argument_count, int ast_id) { ASSERT_EQ(2, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::StringAdd, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Fast support for SubString. void HGraphBuilder::GenerateSubString(int argument_count, int ast_id) { ASSERT_EQ(3, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::SubString, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Fast support for StringCompare. void HGraphBuilder::GenerateStringCompare(int argument_count, int ast_id) { ASSERT_EQ(2, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::StringCompare, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Support for direct calls from JavaScript to native RegExp code. void HGraphBuilder::GenerateRegExpExec(int argument_count, int ast_id) { ASSERT_EQ(4, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::RegExpExec, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Construct a RegExp exec result with two in-object properties. void HGraphBuilder::GenerateRegExpConstructResult(int argument_count, int ast_id) { ASSERT_EQ(3, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::RegExpConstructResult, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Support for fast native caches. void HGraphBuilder::GenerateGetFromCache(int argument_count, int ast_id) { BAILOUT("inlined runtime function: GetFromCache"); } // Fast support for number to string. void HGraphBuilder::GenerateNumberToString(int argument_count, int ast_id) { ASSERT_EQ(1, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::NumberToString, argument_count); ast_context()->ReturnInstruction(result, ast_id); } // Fast swapping of elements. Takes three expressions, the object and two // indices. This should only be used if the indices are known to be // non-negative and within bounds of the elements array at the call site. void HGraphBuilder::GenerateSwapElements(int argument_count, int ast_id) { BAILOUT("inlined runtime function: SwapElements"); } // Fast call for custom callbacks. void HGraphBuilder::GenerateCallFunction(int argument_count, int ast_id) { BAILOUT("inlined runtime function: CallFunction"); } // Fast call to math functions. void HGraphBuilder::GenerateMathPow(int argument_count, int ast_id) { ASSERT_EQ(2, argument_count); HValue* right = Pop(); HValue* left = Pop(); HPower* result = new HPower(left, right); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateMathSin(int argument_count, int ast_id) { ASSERT_EQ(1, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::TranscendentalCache, argument_count); result->set_transcendental_type(TranscendentalCache::SIN); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateMathCos(int argument_count, int ast_id) { ASSERT_EQ(1, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::TranscendentalCache, argument_count); result->set_transcendental_type(TranscendentalCache::COS); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateMathLog(int argument_count, int ast_id) { ASSERT_EQ(1, argument_count); PushArgumentsForStubCall(argument_count); HCallStub* result = new HCallStub(CodeStub::TranscendentalCache, argument_count); result->set_transcendental_type(TranscendentalCache::LOG); ast_context()->ReturnInstruction(result, ast_id); } void HGraphBuilder::GenerateMathSqrt(int argument_count, int ast_id) { BAILOUT("inlined runtime function: MathSqrt"); } // Check whether two RegExps are equivalent void HGraphBuilder::GenerateIsRegExpEquivalent(int argument_count, int ast_id) { BAILOUT("inlined runtime function: IsRegExpEquivalent"); } void HGraphBuilder::GenerateGetCachedArrayIndex(int argument_count, int ast_id) { BAILOUT("inlined runtime function: GetCachedArrayIndex"); } void HGraphBuilder::GenerateFastAsciiArrayJoin(int argument_count, int ast_id) { BAILOUT("inlined runtime function: FastAsciiArrayJoin"); } #undef BAILOUT #undef CHECK_BAILOUT #undef VISIT_FOR_EFFECT #undef VISIT_FOR_VALUE #undef ADD_TO_SUBGRAPH HEnvironment::HEnvironment(HEnvironment* outer, Scope* scope, Handle closure) : closure_(closure), values_(0), assigned_variables_(4), parameter_count_(0), local_count_(0), outer_(outer), pop_count_(0), push_count_(0), ast_id_(AstNode::kNoNumber) { Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0); } HEnvironment::HEnvironment(const HEnvironment* other) : values_(0), assigned_variables_(0), parameter_count_(0), local_count_(0), outer_(NULL), pop_count_(0), push_count_(0), ast_id_(other->ast_id()) { Initialize(other); } void HEnvironment::Initialize(int parameter_count, int local_count, int stack_height) { parameter_count_ = parameter_count; local_count_ = local_count; // Avoid reallocating the temporaries' backing store on the first Push. int total = parameter_count + local_count + stack_height; values_.Initialize(total + 4); for (int i = 0; i < total; ++i) values_.Add(NULL); } void HEnvironment::Initialize(const HEnvironment* other) { closure_ = other->closure(); values_.AddAll(other->values_); assigned_variables_.AddAll(other->assigned_variables_); parameter_count_ = other->parameter_count_; local_count_ = other->local_count_; if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy. pop_count_ = other->pop_count_; push_count_ = other->push_count_; ast_id_ = other->ast_id_; } void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) { ASSERT(!block->IsLoopHeader()); ASSERT(values_.length() == other->values_.length()); int length = values_.length(); for (int i = 0; i < length; ++i) { HValue* value = values_[i]; if (value != NULL && value->IsPhi() && value->block() == block) { // There is already a phi for the i'th value. HPhi* phi = HPhi::cast(value); // Assert index is correct and that we haven't missed an incoming edge. ASSERT(phi->merged_index() == i); ASSERT(phi->OperandCount() == block->predecessors()->length()); phi->AddInput(other->values_[i]); } else if (values_[i] != other->values_[i]) { // There is a fresh value on the incoming edge, a phi is needed. ASSERT(values_[i] != NULL && other->values_[i] != NULL); HPhi* phi = new HPhi(i); HValue* old_value = values_[i]; for (int j = 0; j < block->predecessors()->length(); j++) { phi->AddInput(old_value); } phi->AddInput(other->values_[i]); this->values_[i] = phi; block->AddPhi(phi); } } } void HEnvironment::Bind(int index, HValue* value) { ASSERT(value != NULL); if (!assigned_variables_.Contains(index)) { assigned_variables_.Add(index); } values_[index] = value; } bool HEnvironment::HasExpressionAt(int index) const { return index >= parameter_count_ + local_count_; } bool HEnvironment::ExpressionStackIsEmpty() const { int first_expression = parameter_count() + local_count(); ASSERT(length() >= first_expression); return length() == first_expression; } void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) { int count = index_from_top + 1; int index = values_.length() - count; ASSERT(HasExpressionAt(index)); // The push count must include at least the element in question or else // the new value will not be included in this environment's history. if (push_count_ < count) { // This is the same effect as popping then re-pushing 'count' elements. pop_count_ += (count - push_count_); push_count_ = count; } values_[index] = value; } void HEnvironment::Drop(int count) { for (int i = 0; i < count; ++i) { Pop(); } } HEnvironment* HEnvironment::Copy() const { return new HEnvironment(this); } HEnvironment* HEnvironment::CopyWithoutHistory() const { HEnvironment* result = Copy(); result->ClearHistory(); return result; } HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const { HEnvironment* new_env = Copy(); for (int i = 0; i < values_.length(); ++i) { HPhi* phi = new HPhi(i); phi->AddInput(values_[i]); new_env->values_[i] = phi; loop_header->AddPhi(phi); } new_env->ClearHistory(); return new_env; } HEnvironment* HEnvironment::CopyForInlining(Handle target, FunctionLiteral* function, bool is_speculative, HConstant* undefined) const { // Outer environment is a copy of this one without the arguments. int arity = function->scope()->num_parameters(); HEnvironment* outer = Copy(); outer->Drop(arity + 1); // Including receiver. outer->ClearHistory(); HEnvironment* inner = new HEnvironment(outer, function->scope(), target); // Get the argument values from the original environment. if (is_speculative) { for (int i = 0; i <= arity; ++i) { // Include receiver. HValue* push = ExpressionStackAt(arity - i); inner->SetValueAt(i, push); } } else { for (int i = 0; i <= arity; ++i) { // Include receiver. inner->SetValueAt(i, ExpressionStackAt(arity - i)); } } // Initialize the stack-allocated locals to undefined. int local_base = arity + 1; int local_count = function->scope()->num_stack_slots(); for (int i = 0; i < local_count; ++i) { inner->SetValueAt(local_base + i, undefined); } inner->set_ast_id(function->id()); return inner; } void HEnvironment::PrintTo(StringStream* stream) { for (int i = 0; i < length(); i++) { if (i == 0) stream->Add("parameters\n"); if (i == parameter_count()) stream->Add("locals\n"); if (i == parameter_count() + local_count()) stream->Add("expressions"); HValue* val = values_.at(i); stream->Add("%d: ", i); if (val != NULL) { val->PrintNameTo(stream); } else { stream->Add("NULL"); } stream->Add("\n"); } } void HEnvironment::PrintToStd() { HeapStringAllocator string_allocator; StringStream trace(&string_allocator); PrintTo(&trace); PrintF("%s", *trace.ToCString()); } void HTracer::TraceCompilation(FunctionLiteral* function) { Tag tag(this, "compilation"); Handle name = function->debug_name(); PrintStringProperty("name", *name->ToCString()); PrintStringProperty("method", *name->ToCString()); PrintLongProperty("date", static_cast(OS::TimeCurrentMillis())); } void HTracer::TraceLithium(const char* name, LChunk* chunk) { Trace(name, chunk->graph(), chunk); } void HTracer::TraceHydrogen(const char* name, HGraph* graph) { Trace(name, graph, NULL); } void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) { Tag tag(this, "cfg"); PrintStringProperty("name", name); const ZoneList* blocks = graph->blocks(); for (int i = 0; i < blocks->length(); i++) { HBasicBlock* current = blocks->at(i); Tag block_tag(this, "block"); PrintBlockProperty("name", current->block_id()); PrintIntProperty("from_bci", -1); PrintIntProperty("to_bci", -1); if (!current->predecessors()->is_empty()) { PrintIndent(); trace_.Add("predecessors"); for (int j = 0; j < current->predecessors()->length(); ++j) { trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id()); } trace_.Add("\n"); } else { PrintEmptyProperty("predecessors"); } if (current->end() == NULL || current->end()->FirstSuccessor() == NULL) { PrintEmptyProperty("successors"); } else if (current->end()->SecondSuccessor() == NULL) { PrintBlockProperty("successors", current->end()->FirstSuccessor()->block_id()); } else { PrintBlockProperty("successors", current->end()->FirstSuccessor()->block_id(), current->end()->SecondSuccessor()->block_id()); } PrintEmptyProperty("xhandlers"); PrintEmptyProperty("flags"); if (current->dominator() != NULL) { PrintBlockProperty("dominator", current->dominator()->block_id()); } if (chunk != NULL) { int first_index = current->first_instruction_index(); int last_index = current->last_instruction_index(); PrintIntProperty( "first_lir_id", LifetimePosition::FromInstructionIndex(first_index).Value()); PrintIntProperty( "last_lir_id", LifetimePosition::FromInstructionIndex(last_index).Value()); } { Tag states_tag(this, "states"); Tag locals_tag(this, "locals"); int total = current->phis()->length(); trace_.Add("size %d\n", total); trace_.Add("method \"None\""); for (int j = 0; j < total; ++j) { HPhi* phi = current->phis()->at(j); trace_.Add("%d ", phi->merged_index()); phi->PrintNameTo(&trace_); trace_.Add(" "); phi->PrintTo(&trace_); trace_.Add("\n"); } } { Tag HIR_tag(this, "HIR"); HInstruction* instruction = current->first(); while (instruction != NULL) { int bci = 0; int uses = instruction->uses()->length(); trace_.Add("%d %d ", bci, uses); instruction->PrintNameTo(&trace_); trace_.Add(" "); instruction->PrintTo(&trace_); trace_.Add(" <|@\n"); instruction = instruction->next(); } } if (chunk != NULL) { Tag LIR_tag(this, "LIR"); int first_index = current->first_instruction_index(); int last_index = current->last_instruction_index(); if (first_index != -1 && last_index != -1) { const ZoneList* instructions = chunk->instructions(); for (int i = first_index; i <= last_index; ++i) { LInstruction* linstr = instructions->at(i); if (linstr != NULL) { trace_.Add("%d ", LifetimePosition::FromInstructionIndex(i).Value()); linstr->PrintTo(&trace_); trace_.Add(" <|@\n"); } } } } } } void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) { Tag tag(this, "intervals"); PrintStringProperty("name", name); const ZoneList* fixed_d = allocator->fixed_double_live_ranges(); for (int i = 0; i < fixed_d->length(); ++i) { TraceLiveRange(fixed_d->at(i), "fixed"); } const ZoneList* fixed = allocator->fixed_live_ranges(); for (int i = 0; i < fixed->length(); ++i) { TraceLiveRange(fixed->at(i), "fixed"); } const ZoneList* live_ranges = allocator->live_ranges(); for (int i = 0; i < live_ranges->length(); ++i) { TraceLiveRange(live_ranges->at(i), "object"); } } void HTracer::TraceLiveRange(LiveRange* range, const char* type) { if (range != NULL && !range->IsEmpty()) { trace_.Add("%d %s", range->id(), type); if (range->HasRegisterAssigned()) { LOperand* op = range->CreateAssignedOperand(); int assigned_reg = op->index(); if (op->IsDoubleRegister()) { trace_.Add(" \"%s\"", DoubleRegister::AllocationIndexToString(assigned_reg)); } else { ASSERT(op->IsRegister()); trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg)); } } else if (range->IsSpilled()) { LOperand* op = range->TopLevel()->GetSpillOperand(); if (op->IsDoubleStackSlot()) { trace_.Add(" \"double_stack:%d\"", op->index()); } else { ASSERT(op->IsStackSlot()); trace_.Add(" \"stack:%d\"", op->index()); } } int parent_index = -1; if (range->IsChild()) { parent_index = range->parent()->id(); } else { parent_index = range->id(); } LOperand* op = range->FirstHint(); int hint_index = -1; if (op != NULL && op->IsUnallocated()) hint_index = op->VirtualRegister(); trace_.Add(" %d %d", parent_index, hint_index); UseInterval* cur_interval = range->first_interval(); while (cur_interval != NULL) { trace_.Add(" [%d, %d[", cur_interval->start().Value(), cur_interval->end().Value()); cur_interval = cur_interval->next(); } UsePosition* current_pos = range->first_pos(); while (current_pos != NULL) { if (current_pos->RegisterIsBeneficial()) { trace_.Add(" %d M", current_pos->pos().Value()); } current_pos = current_pos->next(); } trace_.Add(" \"\"\n"); } } void HTracer::FlushToFile() { AppendChars(filename_, *trace_.ToCString(), trace_.length(), false); trace_.Reset(); } void HStatistics::Print() { PrintF("Timing results:\n"); int64_t sum = 0; for (int i = 0; i < timing_.length(); ++i) { sum += timing_[i]; } for (int i = 0; i < names_.length(); ++i) { PrintF("%30s", names_[i]); double ms = static_cast(timing_[i]) / 1000; double percent = static_cast(timing_[i]) * 100 / sum; PrintF(" - %7.3f ms / %4.1f %% ", ms, percent); unsigned size = sizes_[i]; double size_percent = static_cast(size) * 100 / total_size_; PrintF(" %8u bytes / %4.1f %%\n", size, size_percent); } PrintF("%30s - %7.3f ms %8u bytes\n", "Sum", static_cast(sum) / 1000, total_size_); PrintF("---------------------------------------------------------------\n"); PrintF("%30s - %7.3f ms (%.1f times slower than full code gen)\n", "Total", static_cast(total_) / 1000, static_cast(total_) / full_code_gen_); } void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) { if (name == HPhase::kFullCodeGen) { full_code_gen_ += ticks; } else if (name == HPhase::kTotal) { total_ += ticks; } else { total_size_ += size; for (int i = 0; i < names_.length(); ++i) { if (names_[i] == name) { timing_[i] += ticks; sizes_[i] += size; return; } } names_.Add(name); timing_.Add(ticks); sizes_.Add(size); } } const char* const HPhase::kFullCodeGen = "Full code generator"; const char* const HPhase::kTotal = "Total"; void HPhase::Begin(const char* name, HGraph* graph, LChunk* chunk, LAllocator* allocator) { name_ = name; graph_ = graph; chunk_ = chunk; allocator_ = allocator; if (allocator != NULL && chunk_ == NULL) { chunk_ = allocator->chunk(); } if (FLAG_time_hydrogen) start_ = OS::Ticks(); start_allocation_size_ = Zone::allocation_size_; } void HPhase::End() const { if (FLAG_time_hydrogen) { int64_t end = OS::Ticks(); unsigned size = Zone::allocation_size_ - start_allocation_size_; HStatistics::Instance()->SaveTiming(name_, end - start_, size); } if (FLAG_trace_hydrogen) { if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_); if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_); if (allocator_ != NULL) { HTracer::Instance()->TraceLiveRanges(name_, allocator_); } } #ifdef DEBUG if (graph_ != NULL) graph_->Verify(); if (allocator_ != NULL) allocator_->Verify(); #endif } } } // namespace v8::internal