You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

300 lines
11 KiB

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_UNITTESTS_COMPILER_INSTRUCTION_SELECTOR_UNITTEST_H_
#define V8_UNITTESTS_COMPILER_INSTRUCTION_SELECTOR_UNITTEST_H_
#include <deque>
#include <set>
#include "src/base/utils/random-number-generator.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/raw-machine-assembler.h"
#include "src/macro-assembler.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
class InstructionSelectorTest : public TestWithContext,
public TestWithIsolateAndZone {
public:
InstructionSelectorTest();
~InstructionSelectorTest() override;
base::RandomNumberGenerator* rng() { return &rng_; }
class Stream;
enum StreamBuilderMode {
kAllInstructions,
kTargetInstructions,
kAllExceptNopInstructions
};
class StreamBuilder final : public RawMachineAssembler {
public:
StreamBuilder(InstructionSelectorTest* test, MachineType return_type)
: RawMachineAssembler(test->isolate(),
new (test->zone()) Graph(test->zone()),
MakeCallDescriptor(test->zone(), return_type),
MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps),
test_(test) {}
StreamBuilder(InstructionSelectorTest* test, MachineType return_type,
MachineType parameter0_type)
: RawMachineAssembler(
test->isolate(), new (test->zone()) Graph(test->zone()),
MakeCallDescriptor(test->zone(), return_type, parameter0_type),
MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps),
test_(test) {}
StreamBuilder(InstructionSelectorTest* test, MachineType return_type,
MachineType parameter0_type, MachineType parameter1_type)
: RawMachineAssembler(
test->isolate(), new (test->zone()) Graph(test->zone()),
MakeCallDescriptor(test->zone(), return_type, parameter0_type,
parameter1_type),
MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps),
test_(test) {}
StreamBuilder(InstructionSelectorTest* test, MachineType return_type,
MachineType parameter0_type, MachineType parameter1_type,
MachineType parameter2_type)
: RawMachineAssembler(
test->isolate(), new (test->zone()) Graph(test->zone()),
MakeCallDescriptor(test->zone(), return_type, parameter0_type,
parameter1_type, parameter2_type),
MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps),
test_(test) {}
Stream Build(CpuFeature feature) {
return Build(InstructionSelector::Features(feature));
}
Stream Build(CpuFeature feature1, CpuFeature feature2) {
return Build(InstructionSelector::Features(feature1, feature2));
}
Stream Build(StreamBuilderMode mode = kTargetInstructions) {
return Build(InstructionSelector::Features(), mode);
}
Stream Build(InstructionSelector::Features features,
StreamBuilderMode mode = kTargetInstructions,
InstructionSelector::SourcePositionMode source_position_mode =
InstructionSelector::kAllSourcePositions);
const FrameStateFunctionInfo* GetFrameStateFunctionInfo(int parameter_count,
int local_count);
private:
CallDescriptor* MakeCallDescriptor(Zone* zone, MachineType return_type) {
MachineSignature::Builder builder(zone, 1, 0);
builder.AddReturn(return_type);
return MakeSimpleCallDescriptor(zone, builder.Build());
}
CallDescriptor* MakeCallDescriptor(Zone* zone, MachineType return_type,
MachineType parameter0_type) {
MachineSignature::Builder builder(zone, 1, 1);
builder.AddReturn(return_type);
builder.AddParam(parameter0_type);
return MakeSimpleCallDescriptor(zone, builder.Build());
}
CallDescriptor* MakeCallDescriptor(Zone* zone, MachineType return_type,
MachineType parameter0_type,
MachineType parameter1_type) {
MachineSignature::Builder builder(zone, 1, 2);
builder.AddReturn(return_type);
builder.AddParam(parameter0_type);
builder.AddParam(parameter1_type);
return MakeSimpleCallDescriptor(zone, builder.Build());
}
CallDescriptor* MakeCallDescriptor(Zone* zone, MachineType return_type,
MachineType parameter0_type,
MachineType parameter1_type,
MachineType parameter2_type) {
MachineSignature::Builder builder(zone, 1, 3);
builder.AddReturn(return_type);
builder.AddParam(parameter0_type);
builder.AddParam(parameter1_type);
builder.AddParam(parameter2_type);
return MakeSimpleCallDescriptor(zone, builder.Build());
}
private:
InstructionSelectorTest* test_;
// Create a simple call descriptor for testing.
CallDescriptor* MakeSimpleCallDescriptor(Zone* zone,
MachineSignature* msig) {
LocationSignature::Builder locations(zone, msig->return_count(),
msig->parameter_count());
// Add return location(s).
const int return_count = static_cast<int>(msig->return_count());
for (int i = 0; i < return_count; i++) {
locations.AddReturn(
LinkageLocation::ForCallerFrameSlot(-1 - i, msig->GetReturn(i)));
}
// Just put all parameters on the stack.
const int parameter_count = static_cast<int>(msig->parameter_count());
for (int i = 0; i < parameter_count; i++) {
locations.AddParam(
LinkageLocation::ForCallerFrameSlot(-1 - i, msig->GetParam(i)));
}
const RegList kCalleeSaveRegisters = 0;
const RegList kCalleeSaveFPRegisters = 0;
MachineType target_type = MachineType::Pointer();
LinkageLocation target_loc = LinkageLocation::ForAnyRegister();
return new (zone) CallDescriptor( // --
CallDescriptor::kCallAddress, // kind
target_type, // target MachineType
target_loc, // target location
locations.Build(), // location_sig
0, // stack_parameter_count
Operator::kNoProperties, // properties
kCalleeSaveRegisters, // callee-saved registers
kCalleeSaveFPRegisters, // callee-saved fp regs
CallDescriptor::kNoFlags, // flags
"iselect-test-call");
}
};
class Stream final {
public:
size_t size() const { return instructions_.size(); }
const Instruction* operator[](size_t index) const {
EXPECT_LT(index, size());
return instructions_[index];
}
bool IsDouble(const InstructionOperand* operand) const {
return IsDouble(ToVreg(operand));
}
bool IsDouble(const Node* node) const { return IsDouble(ToVreg(node)); }
bool IsInteger(const InstructionOperand* operand) const {
return IsInteger(ToVreg(operand));
}
bool IsInteger(const Node* node) const { return IsInteger(ToVreg(node)); }
bool IsReference(const InstructionOperand* operand) const {
return IsReference(ToVreg(operand));
}
bool IsReference(const Node* node) const {
return IsReference(ToVreg(node));
}
float ToFloat32(const InstructionOperand* operand) const {
return ToConstant(operand).ToFloat32();
}
double ToFloat64(const InstructionOperand* operand) const {
return ToConstant(operand).ToFloat64();
}
int32_t ToInt32(const InstructionOperand* operand) const {
return ToConstant(operand).ToInt32();
}
int64_t ToInt64(const InstructionOperand* operand) const {
return ToConstant(operand).ToInt64();
}
Handle<HeapObject> ToHeapObject(const InstructionOperand* operand) const {
return ToConstant(operand).ToHeapObject();
}
int ToVreg(const InstructionOperand* operand) const {
if (operand->IsConstant()) {
return ConstantOperand::cast(operand)->virtual_register();
}
EXPECT_EQ(InstructionOperand::UNALLOCATED, operand->kind());
return UnallocatedOperand::cast(operand)->virtual_register();
}
int ToVreg(const Node* node) const;
bool IsFixed(const InstructionOperand* operand, Register reg) const;
bool IsSameAsFirst(const InstructionOperand* operand) const;
bool IsUsedAtStart(const InstructionOperand* operand) const;
FrameStateDescriptor* GetFrameStateDescriptor(int deoptimization_id) {
EXPECT_LT(deoptimization_id, GetFrameStateDescriptorCount());
return deoptimization_entries_[deoptimization_id];
}
int GetFrameStateDescriptorCount() {
return static_cast<int>(deoptimization_entries_.size());
}
private:
bool IsDouble(int virtual_register) const {
return doubles_.find(virtual_register) != doubles_.end();
}
bool IsInteger(int virtual_register) const {
return !IsDouble(virtual_register) && !IsReference(virtual_register);
}
bool IsReference(int virtual_register) const {
return references_.find(virtual_register) != references_.end();
}
Constant ToConstant(const InstructionOperand* operand) const {
ConstantMap::const_iterator i;
if (operand->IsConstant()) {
i = constants_.find(ConstantOperand::cast(operand)->virtual_register());
EXPECT_EQ(ConstantOperand::cast(operand)->virtual_register(), i->first);
EXPECT_FALSE(constants_.end() == i);
} else {
EXPECT_EQ(InstructionOperand::IMMEDIATE, operand->kind());
auto imm = ImmediateOperand::cast(operand);
if (imm->type() == ImmediateOperand::INLINE) {
return Constant(imm->inline_value());
}
i = immediates_.find(imm->indexed_value());
EXPECT_EQ(imm->indexed_value(), i->first);
EXPECT_FALSE(immediates_.end() == i);
}
return i->second;
}
friend class StreamBuilder;
typedef std::map<int, Constant> ConstantMap;
typedef std::map<NodeId, int> VirtualRegisters;
ConstantMap constants_;
ConstantMap immediates_;
std::deque<Instruction*> instructions_;
std::set<int> doubles_;
std::set<int> references_;
VirtualRegisters virtual_registers_;
std::deque<FrameStateDescriptor*> deoptimization_entries_;
};
base::RandomNumberGenerator rng_;
};
template <typename T>
class InstructionSelectorTestWithParam
: public InstructionSelectorTest,
public ::testing::WithParamInterface<T> {};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_UNITTESTS_COMPILER_INSTRUCTION_SELECTOR_UNITTEST_H_