mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1187 lines
38 KiB
1187 lines
38 KiB
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "ast.h"
|
|
#include "deoptimizer.h"
|
|
#include "frames-inl.h"
|
|
#include "full-codegen.h"
|
|
#include "mark-compact.h"
|
|
#include "safepoint-table.h"
|
|
#include "scopeinfo.h"
|
|
#include "string-stream.h"
|
|
#include "top.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
PcToCodeCache::PcToCodeCacheEntry
|
|
PcToCodeCache::cache_[PcToCodeCache::kPcToCodeCacheSize];
|
|
|
|
int SafeStackFrameIterator::active_count_ = 0;
|
|
|
|
// Iterator that supports traversing the stack handlers of a
|
|
// particular frame. Needs to know the top of the handler chain.
|
|
class StackHandlerIterator BASE_EMBEDDED {
|
|
public:
|
|
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
|
|
: limit_(frame->fp()), handler_(handler) {
|
|
// Make sure the handler has already been unwound to this frame.
|
|
ASSERT(frame->sp() <= handler->address());
|
|
}
|
|
|
|
StackHandler* handler() const { return handler_; }
|
|
|
|
bool done() {
|
|
return handler_ == NULL || handler_->address() > limit_;
|
|
}
|
|
void Advance() {
|
|
ASSERT(!done());
|
|
handler_ = handler_->next();
|
|
}
|
|
|
|
private:
|
|
const Address limit_;
|
|
StackHandler* handler_;
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
|
|
#define INITIALIZE_SINGLETON(type, field) field##_(this),
|
|
StackFrameIterator::StackFrameIterator()
|
|
: STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
|
|
frame_(NULL), handler_(NULL), thread_(Top::GetCurrentThread()),
|
|
fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
|
|
Reset();
|
|
}
|
|
StackFrameIterator::StackFrameIterator(ThreadLocalTop* t)
|
|
: STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
|
|
frame_(NULL), handler_(NULL), thread_(t),
|
|
fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
|
|
Reset();
|
|
}
|
|
StackFrameIterator::StackFrameIterator(bool use_top, Address fp, Address sp)
|
|
: STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
|
|
frame_(NULL), handler_(NULL),
|
|
thread_(use_top ? Top::GetCurrentThread() : NULL),
|
|
fp_(use_top ? NULL : fp), sp_(sp),
|
|
advance_(use_top ? &StackFrameIterator::AdvanceWithHandler :
|
|
&StackFrameIterator::AdvanceWithoutHandler) {
|
|
if (use_top || fp != NULL) {
|
|
Reset();
|
|
}
|
|
}
|
|
|
|
#undef INITIALIZE_SINGLETON
|
|
|
|
|
|
void StackFrameIterator::AdvanceWithHandler() {
|
|
ASSERT(!done());
|
|
// Compute the state of the calling frame before restoring
|
|
// callee-saved registers and unwinding handlers. This allows the
|
|
// frame code that computes the caller state to access the top
|
|
// handler and the value of any callee-saved register if needed.
|
|
StackFrame::State state;
|
|
StackFrame::Type type = frame_->GetCallerState(&state);
|
|
|
|
// Unwind handlers corresponding to the current frame.
|
|
StackHandlerIterator it(frame_, handler_);
|
|
while (!it.done()) it.Advance();
|
|
handler_ = it.handler();
|
|
|
|
// Advance to the calling frame.
|
|
frame_ = SingletonFor(type, &state);
|
|
|
|
// When we're done iterating over the stack frames, the handler
|
|
// chain must have been completely unwound.
|
|
ASSERT(!done() || handler_ == NULL);
|
|
}
|
|
|
|
|
|
void StackFrameIterator::AdvanceWithoutHandler() {
|
|
// A simpler version of Advance which doesn't care about handler.
|
|
ASSERT(!done());
|
|
StackFrame::State state;
|
|
StackFrame::Type type = frame_->GetCallerState(&state);
|
|
frame_ = SingletonFor(type, &state);
|
|
}
|
|
|
|
|
|
void StackFrameIterator::Reset() {
|
|
StackFrame::State state;
|
|
StackFrame::Type type;
|
|
if (thread_ != NULL) {
|
|
type = ExitFrame::GetStateForFramePointer(Top::c_entry_fp(thread_), &state);
|
|
handler_ = StackHandler::FromAddress(Top::handler(thread_));
|
|
} else {
|
|
ASSERT(fp_ != NULL);
|
|
state.fp = fp_;
|
|
state.sp = sp_;
|
|
state.pc_address =
|
|
reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp_));
|
|
type = StackFrame::ComputeType(&state);
|
|
}
|
|
if (SingletonFor(type) == NULL) return;
|
|
frame_ = SingletonFor(type, &state);
|
|
}
|
|
|
|
|
|
StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type,
|
|
StackFrame::State* state) {
|
|
if (type == StackFrame::NONE) return NULL;
|
|
StackFrame* result = SingletonFor(type);
|
|
ASSERT(result != NULL);
|
|
result->state_ = *state;
|
|
return result;
|
|
}
|
|
|
|
|
|
StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) {
|
|
#define FRAME_TYPE_CASE(type, field) \
|
|
case StackFrame::type: result = &field##_; break;
|
|
|
|
StackFrame* result = NULL;
|
|
switch (type) {
|
|
case StackFrame::NONE: return NULL;
|
|
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
|
|
default: break;
|
|
}
|
|
return result;
|
|
|
|
#undef FRAME_TYPE_CASE
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
|
|
StackTraceFrameIterator::StackTraceFrameIterator() {
|
|
if (!done() && !IsValidFrame()) Advance();
|
|
}
|
|
|
|
|
|
void StackTraceFrameIterator::Advance() {
|
|
while (true) {
|
|
JavaScriptFrameIterator::Advance();
|
|
if (done()) return;
|
|
if (IsValidFrame()) return;
|
|
}
|
|
}
|
|
|
|
bool StackTraceFrameIterator::IsValidFrame() {
|
|
if (!frame()->function()->IsJSFunction()) return false;
|
|
Object* script = JSFunction::cast(frame()->function())->shared()->script();
|
|
// Don't show functions from native scripts to user.
|
|
return (script->IsScript() &&
|
|
Script::TYPE_NATIVE != Script::cast(script)->type()->value());
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
|
|
bool SafeStackFrameIterator::ExitFrameValidator::IsValidFP(Address fp) {
|
|
if (!validator_.IsValid(fp)) return false;
|
|
Address sp = ExitFrame::ComputeStackPointer(fp);
|
|
if (!validator_.IsValid(sp)) return false;
|
|
StackFrame::State state;
|
|
ExitFrame::FillState(fp, sp, &state);
|
|
if (!validator_.IsValid(reinterpret_cast<Address>(state.pc_address))) {
|
|
return false;
|
|
}
|
|
return *state.pc_address != NULL;
|
|
}
|
|
|
|
|
|
SafeStackFrameIterator::SafeStackFrameIterator(
|
|
Address fp, Address sp, Address low_bound, Address high_bound) :
|
|
maintainer_(),
|
|
stack_validator_(low_bound, high_bound),
|
|
is_valid_top_(IsValidTop(low_bound, high_bound)),
|
|
is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)),
|
|
is_working_iterator_(is_valid_top_ || is_valid_fp_),
|
|
iteration_done_(!is_working_iterator_),
|
|
iterator_(is_valid_top_, is_valid_fp_ ? fp : NULL, sp) {
|
|
}
|
|
|
|
|
|
bool SafeStackFrameIterator::IsValidTop(Address low_bound, Address high_bound) {
|
|
Address fp = Top::c_entry_fp(Top::GetCurrentThread());
|
|
ExitFrameValidator validator(low_bound, high_bound);
|
|
if (!validator.IsValidFP(fp)) return false;
|
|
return Top::handler(Top::GetCurrentThread()) != NULL;
|
|
}
|
|
|
|
|
|
void SafeStackFrameIterator::Advance() {
|
|
ASSERT(is_working_iterator_);
|
|
ASSERT(!done());
|
|
StackFrame* last_frame = iterator_.frame();
|
|
Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
|
|
// Before advancing to the next stack frame, perform pointer validity tests
|
|
iteration_done_ = !IsValidFrame(last_frame) ||
|
|
!CanIterateHandles(last_frame, iterator_.handler()) ||
|
|
!IsValidCaller(last_frame);
|
|
if (iteration_done_) return;
|
|
|
|
iterator_.Advance();
|
|
if (iterator_.done()) return;
|
|
// Check that we have actually moved to the previous frame in the stack
|
|
StackFrame* prev_frame = iterator_.frame();
|
|
iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp;
|
|
}
|
|
|
|
|
|
bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame,
|
|
StackHandler* handler) {
|
|
// If StackIterator iterates over StackHandles, verify that
|
|
// StackHandlerIterator can be instantiated (see StackHandlerIterator
|
|
// constructor.)
|
|
return !is_valid_top_ || (frame->sp() <= handler->address());
|
|
}
|
|
|
|
|
|
bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
|
|
return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
|
|
}
|
|
|
|
|
|
bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
|
|
StackFrame::State state;
|
|
if (frame->is_entry() || frame->is_entry_construct()) {
|
|
// See EntryFrame::GetCallerState. It computes the caller FP address
|
|
// and calls ExitFrame::GetStateForFramePointer on it. We need to be
|
|
// sure that caller FP address is valid.
|
|
Address caller_fp = Memory::Address_at(
|
|
frame->fp() + EntryFrameConstants::kCallerFPOffset);
|
|
ExitFrameValidator validator(stack_validator_);
|
|
if (!validator.IsValidFP(caller_fp)) return false;
|
|
} else if (frame->is_arguments_adaptor()) {
|
|
// See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
|
|
// the number of arguments is stored on stack as Smi. We need to check
|
|
// that it really an Smi.
|
|
Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
|
|
GetExpression(0);
|
|
if (!number_of_args->IsSmi()) {
|
|
return false;
|
|
}
|
|
}
|
|
frame->ComputeCallerState(&state);
|
|
return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
|
|
iterator_.SingletonFor(frame->GetCallerState(&state)) != NULL;
|
|
}
|
|
|
|
|
|
void SafeStackFrameIterator::Reset() {
|
|
if (is_working_iterator_) {
|
|
iterator_.Reset();
|
|
iteration_done_ = false;
|
|
}
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
SafeStackTraceFrameIterator::SafeStackTraceFrameIterator(
|
|
Address fp, Address sp, Address low_bound, Address high_bound) :
|
|
SafeJavaScriptFrameIterator(fp, sp, low_bound, high_bound) {
|
|
if (!done() && !frame()->is_java_script()) Advance();
|
|
}
|
|
|
|
|
|
void SafeStackTraceFrameIterator::Advance() {
|
|
while (true) {
|
|
SafeJavaScriptFrameIterator::Advance();
|
|
if (done()) return;
|
|
if (frame()->is_java_script()) return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
Code* StackFrame::GetSafepointData(Address pc,
|
|
SafepointEntry* safepoint_entry,
|
|
unsigned* stack_slots) {
|
|
PcToCodeCache::PcToCodeCacheEntry* entry = PcToCodeCache::GetCacheEntry(pc);
|
|
SafepointEntry cached_safepoint_entry = entry->safepoint_entry;
|
|
if (!entry->safepoint_entry.is_valid()) {
|
|
entry->safepoint_entry = entry->code->GetSafepointEntry(pc);
|
|
ASSERT(entry->safepoint_entry.is_valid());
|
|
} else {
|
|
ASSERT(entry->safepoint_entry.Equals(entry->code->GetSafepointEntry(pc)));
|
|
}
|
|
|
|
// Fill in the results and return the code.
|
|
Code* code = entry->code;
|
|
*safepoint_entry = entry->safepoint_entry;
|
|
*stack_slots = code->stack_slots();
|
|
return code;
|
|
}
|
|
|
|
|
|
bool StackFrame::HasHandler() const {
|
|
StackHandlerIterator it(this, top_handler());
|
|
return !it.done();
|
|
}
|
|
|
|
|
|
void StackFrame::IteratePc(ObjectVisitor* v,
|
|
Address* pc_address,
|
|
Code* holder) {
|
|
Address pc = *pc_address;
|
|
ASSERT(holder->contains(pc));
|
|
unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
|
|
Object* code = holder;
|
|
v->VisitPointer(&code);
|
|
if (code != holder) {
|
|
holder = reinterpret_cast<Code*>(code);
|
|
pc = holder->instruction_start() + pc_offset;
|
|
*pc_address = pc;
|
|
}
|
|
}
|
|
|
|
|
|
StackFrame::Type StackFrame::ComputeType(State* state) {
|
|
ASSERT(state->fp != NULL);
|
|
if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) {
|
|
return ARGUMENTS_ADAPTOR;
|
|
}
|
|
// The marker and function offsets overlap. If the marker isn't a
|
|
// smi then the frame is a JavaScript frame -- and the marker is
|
|
// really the function.
|
|
const int offset = StandardFrameConstants::kMarkerOffset;
|
|
Object* marker = Memory::Object_at(state->fp + offset);
|
|
if (!marker->IsSmi()) {
|
|
// If we're using a "safe" stack iterator, we treat optimized
|
|
// frames as normal JavaScript frames to avoid having to look
|
|
// into the heap to determine the state. This is safe as long
|
|
// as nobody tries to GC...
|
|
if (SafeStackFrameIterator::is_active()) return JAVA_SCRIPT;
|
|
Code::Kind kind = GetContainingCode(*(state->pc_address))->kind();
|
|
ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION);
|
|
return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT;
|
|
}
|
|
return static_cast<StackFrame::Type>(Smi::cast(marker)->value());
|
|
}
|
|
|
|
|
|
|
|
StackFrame::Type StackFrame::GetCallerState(State* state) const {
|
|
ComputeCallerState(state);
|
|
return ComputeType(state);
|
|
}
|
|
|
|
|
|
Code* EntryFrame::unchecked_code() const {
|
|
return Heap::raw_unchecked_js_entry_code();
|
|
}
|
|
|
|
|
|
void EntryFrame::ComputeCallerState(State* state) const {
|
|
GetCallerState(state);
|
|
}
|
|
|
|
|
|
void EntryFrame::SetCallerFp(Address caller_fp) {
|
|
const int offset = EntryFrameConstants::kCallerFPOffset;
|
|
Memory::Address_at(this->fp() + offset) = caller_fp;
|
|
}
|
|
|
|
|
|
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
|
|
const int offset = EntryFrameConstants::kCallerFPOffset;
|
|
Address fp = Memory::Address_at(this->fp() + offset);
|
|
return ExitFrame::GetStateForFramePointer(fp, state);
|
|
}
|
|
|
|
|
|
Code* EntryConstructFrame::unchecked_code() const {
|
|
return Heap::raw_unchecked_js_construct_entry_code();
|
|
}
|
|
|
|
|
|
Object*& ExitFrame::code_slot() const {
|
|
const int offset = ExitFrameConstants::kCodeOffset;
|
|
return Memory::Object_at(fp() + offset);
|
|
}
|
|
|
|
|
|
Code* ExitFrame::unchecked_code() const {
|
|
return reinterpret_cast<Code*>(code_slot());
|
|
}
|
|
|
|
|
|
void ExitFrame::ComputeCallerState(State* state) const {
|
|
// Setup the caller state.
|
|
state->sp = caller_sp();
|
|
state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
|
|
state->pc_address
|
|
= reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset);
|
|
}
|
|
|
|
|
|
void ExitFrame::SetCallerFp(Address caller_fp) {
|
|
Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
|
|
}
|
|
|
|
|
|
void ExitFrame::Iterate(ObjectVisitor* v) const {
|
|
// The arguments are traversed as part of the expression stack of
|
|
// the calling frame.
|
|
IteratePc(v, pc_address(), code());
|
|
v->VisitPointer(&code_slot());
|
|
}
|
|
|
|
|
|
Address ExitFrame::GetCallerStackPointer() const {
|
|
return fp() + ExitFrameConstants::kCallerSPDisplacement;
|
|
}
|
|
|
|
|
|
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
|
|
if (fp == 0) return NONE;
|
|
Address sp = ComputeStackPointer(fp);
|
|
FillState(fp, sp, state);
|
|
ASSERT(*state->pc_address != NULL);
|
|
return EXIT;
|
|
}
|
|
|
|
|
|
void ExitFrame::FillState(Address fp, Address sp, State* state) {
|
|
state->sp = sp;
|
|
state->fp = fp;
|
|
state->pc_address = reinterpret_cast<Address*>(sp - 1 * kPointerSize);
|
|
}
|
|
|
|
|
|
Address StandardFrame::GetExpressionAddress(int n) const {
|
|
const int offset = StandardFrameConstants::kExpressionsOffset;
|
|
return fp() + offset - n * kPointerSize;
|
|
}
|
|
|
|
|
|
int StandardFrame::ComputeExpressionsCount() const {
|
|
const int offset =
|
|
StandardFrameConstants::kExpressionsOffset + kPointerSize;
|
|
Address base = fp() + offset;
|
|
Address limit = sp();
|
|
ASSERT(base >= limit); // stack grows downwards
|
|
// Include register-allocated locals in number of expressions.
|
|
return static_cast<int>((base - limit) / kPointerSize);
|
|
}
|
|
|
|
|
|
void StandardFrame::ComputeCallerState(State* state) const {
|
|
state->sp = caller_sp();
|
|
state->fp = caller_fp();
|
|
state->pc_address = reinterpret_cast<Address*>(ComputePCAddress(fp()));
|
|
}
|
|
|
|
|
|
void StandardFrame::SetCallerFp(Address caller_fp) {
|
|
Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
|
|
caller_fp;
|
|
}
|
|
|
|
|
|
bool StandardFrame::IsExpressionInsideHandler(int n) const {
|
|
Address address = GetExpressionAddress(n);
|
|
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
|
|
if (it.handler()->includes(address)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void OptimizedFrame::Iterate(ObjectVisitor* v) const {
|
|
#ifdef DEBUG
|
|
// Make sure that optimized frames do not contain any stack handlers.
|
|
StackHandlerIterator it(this, top_handler());
|
|
ASSERT(it.done());
|
|
#endif
|
|
|
|
// Make sure that we're not doing "safe" stack frame iteration. We cannot
|
|
// possibly find pointers in optimized frames in that state.
|
|
ASSERT(!SafeStackFrameIterator::is_active());
|
|
|
|
// Compute the safepoint information.
|
|
unsigned stack_slots = 0;
|
|
SafepointEntry safepoint_entry;
|
|
Code* code = StackFrame::GetSafepointData(
|
|
pc(), &safepoint_entry, &stack_slots);
|
|
unsigned slot_space = stack_slots * kPointerSize;
|
|
|
|
// Visit the outgoing parameters.
|
|
Object** parameters_base = &Memory::Object_at(sp());
|
|
Object** parameters_limit = &Memory::Object_at(
|
|
fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space);
|
|
|
|
// Visit the parameters that may be on top of the saved registers.
|
|
if (safepoint_entry.argument_count() > 0) {
|
|
v->VisitPointers(parameters_base,
|
|
parameters_base + safepoint_entry.argument_count());
|
|
parameters_base += safepoint_entry.argument_count();
|
|
}
|
|
|
|
// Skip saved double registers.
|
|
if (safepoint_entry.has_doubles()) {
|
|
parameters_base += DoubleRegister::kNumAllocatableRegisters *
|
|
kDoubleSize / kPointerSize;
|
|
}
|
|
|
|
// Visit the registers that contain pointers if any.
|
|
if (safepoint_entry.HasRegisters()) {
|
|
for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
|
|
if (safepoint_entry.HasRegisterAt(i)) {
|
|
int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
|
|
v->VisitPointer(parameters_base + reg_stack_index);
|
|
}
|
|
}
|
|
// Skip the words containing the register values.
|
|
parameters_base += kNumSafepointRegisters;
|
|
}
|
|
|
|
// We're done dealing with the register bits.
|
|
uint8_t* safepoint_bits = safepoint_entry.bits();
|
|
safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
|
|
|
|
// Visit the rest of the parameters.
|
|
v->VisitPointers(parameters_base, parameters_limit);
|
|
|
|
// Visit pointer spill slots and locals.
|
|
for (unsigned index = 0; index < stack_slots; index++) {
|
|
int byte_index = index >> kBitsPerByteLog2;
|
|
int bit_index = index & (kBitsPerByte - 1);
|
|
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
|
|
v->VisitPointer(parameters_limit + index);
|
|
}
|
|
}
|
|
|
|
// Visit the context and the function.
|
|
Object** fixed_base = &Memory::Object_at(
|
|
fp() + JavaScriptFrameConstants::kFunctionOffset);
|
|
Object** fixed_limit = &Memory::Object_at(fp());
|
|
v->VisitPointers(fixed_base, fixed_limit);
|
|
|
|
// Visit the return address in the callee and incoming arguments.
|
|
IteratePc(v, pc_address(), code);
|
|
}
|
|
|
|
|
|
bool JavaScriptFrame::IsConstructor() const {
|
|
Address fp = caller_fp();
|
|
if (has_adapted_arguments()) {
|
|
// Skip the arguments adaptor frame and look at the real caller.
|
|
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
|
|
}
|
|
return IsConstructFrame(fp);
|
|
}
|
|
|
|
|
|
Code* JavaScriptFrame::unchecked_code() const {
|
|
JSFunction* function = JSFunction::cast(this->function());
|
|
return function->unchecked_code();
|
|
}
|
|
|
|
|
|
int JavaScriptFrame::GetNumberOfIncomingArguments() const {
|
|
ASSERT(!SafeStackFrameIterator::is_active() &&
|
|
Heap::gc_state() == Heap::NOT_IN_GC);
|
|
|
|
JSFunction* function = JSFunction::cast(this->function());
|
|
return function->shared()->formal_parameter_count();
|
|
}
|
|
|
|
|
|
Address JavaScriptFrame::GetCallerStackPointer() const {
|
|
return fp() + StandardFrameConstants::kCallerSPOffset;
|
|
}
|
|
|
|
|
|
void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) {
|
|
ASSERT(functions->length() == 0);
|
|
functions->Add(JSFunction::cast(function()));
|
|
}
|
|
|
|
|
|
void JavaScriptFrame::Summarize(List<FrameSummary>* functions) {
|
|
ASSERT(functions->length() == 0);
|
|
Code* code_pointer = code();
|
|
int offset = static_cast<int>(pc() - code_pointer->address());
|
|
FrameSummary summary(receiver(),
|
|
JSFunction::cast(function()),
|
|
code_pointer,
|
|
offset,
|
|
IsConstructor());
|
|
functions->Add(summary);
|
|
}
|
|
|
|
|
|
void FrameSummary::Print() {
|
|
PrintF("receiver: ");
|
|
receiver_->ShortPrint();
|
|
PrintF("\nfunction: ");
|
|
function_->shared()->DebugName()->ShortPrint();
|
|
PrintF("\ncode: ");
|
|
code_->ShortPrint();
|
|
if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT");
|
|
if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT");
|
|
PrintF("\npc: %d\n", offset_);
|
|
}
|
|
|
|
|
|
void OptimizedFrame::Summarize(List<FrameSummary>* frames) {
|
|
ASSERT(frames->length() == 0);
|
|
ASSERT(is_optimized());
|
|
|
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
|
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
|
|
|
|
// BUG(3243555): Since we don't have a lazy-deopt registered at
|
|
// throw-statements, we can't use the translation at the call-site of
|
|
// throw. An entry with no deoptimization index indicates a call-site
|
|
// without a lazy-deopt. As a consequence we are not allowed to inline
|
|
// functions containing throw.
|
|
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
|
|
JavaScriptFrame::Summarize(frames);
|
|
return;
|
|
}
|
|
|
|
TranslationIterator it(data->TranslationByteArray(),
|
|
data->TranslationIndex(deopt_index)->value());
|
|
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
|
|
ASSERT(opcode == Translation::BEGIN);
|
|
int frame_count = it.Next();
|
|
|
|
// We create the summary in reverse order because the frames
|
|
// in the deoptimization translation are ordered bottom-to-top.
|
|
int i = frame_count;
|
|
while (i > 0) {
|
|
opcode = static_cast<Translation::Opcode>(it.Next());
|
|
if (opcode == Translation::FRAME) {
|
|
// We don't inline constructor calls, so only the first, outermost
|
|
// frame can be a constructor frame in case of inlining.
|
|
bool is_constructor = (i == frame_count) && IsConstructor();
|
|
|
|
i--;
|
|
int ast_id = it.Next();
|
|
int function_id = it.Next();
|
|
it.Next(); // Skip height.
|
|
JSFunction* function =
|
|
JSFunction::cast(data->LiteralArray()->get(function_id));
|
|
|
|
// The translation commands are ordered and the receiver is always
|
|
// at the first position. Since we are always at a call when we need
|
|
// to construct a stack trace, the receiver is always in a stack slot.
|
|
opcode = static_cast<Translation::Opcode>(it.Next());
|
|
ASSERT(opcode == Translation::STACK_SLOT);
|
|
int input_slot_index = it.Next();
|
|
|
|
// Get the correct receiver in the optimized frame.
|
|
Object* receiver = NULL;
|
|
// Positive index means the value is spilled to the locals area. Negative
|
|
// means it is stored in the incoming parameter area.
|
|
if (input_slot_index >= 0) {
|
|
receiver = GetExpression(input_slot_index);
|
|
} else {
|
|
// Index -1 overlaps with last parameter, -n with the first parameter,
|
|
// (-n - 1) with the receiver with n being the number of parameters
|
|
// of the outermost, optimized frame.
|
|
int parameter_count = ComputeParametersCount();
|
|
int parameter_index = input_slot_index + parameter_count;
|
|
receiver = (parameter_index == -1)
|
|
? this->receiver()
|
|
: this->GetParameter(parameter_index);
|
|
}
|
|
|
|
Code* code = function->shared()->code();
|
|
DeoptimizationOutputData* output_data =
|
|
DeoptimizationOutputData::cast(code->deoptimization_data());
|
|
unsigned entry = Deoptimizer::GetOutputInfo(output_data,
|
|
ast_id,
|
|
function->shared());
|
|
unsigned pc_offset =
|
|
FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize;
|
|
ASSERT(pc_offset > 0);
|
|
|
|
FrameSummary summary(receiver, function, code, pc_offset, is_constructor);
|
|
frames->Add(summary);
|
|
} else {
|
|
// Skip over operands to advance to the next opcode.
|
|
it.Skip(Translation::NumberOfOperandsFor(opcode));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
|
|
int* deopt_index) {
|
|
ASSERT(is_optimized());
|
|
|
|
JSFunction* opt_function = JSFunction::cast(function());
|
|
Code* code = opt_function->code();
|
|
|
|
// The code object may have been replaced by lazy deoptimization. Fall
|
|
// back to a slow search in this case to find the original optimized
|
|
// code object.
|
|
if (!code->contains(pc())) {
|
|
code = PcToCodeCache::GcSafeFindCodeForPc(pc());
|
|
}
|
|
ASSERT(code != NULL);
|
|
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
|
|
SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
|
|
*deopt_index = safepoint_entry.deoptimization_index();
|
|
ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex);
|
|
|
|
return DeoptimizationInputData::cast(code->deoptimization_data());
|
|
}
|
|
|
|
|
|
void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) {
|
|
ASSERT(functions->length() == 0);
|
|
ASSERT(is_optimized());
|
|
|
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
|
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
|
|
|
|
TranslationIterator it(data->TranslationByteArray(),
|
|
data->TranslationIndex(deopt_index)->value());
|
|
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
|
|
ASSERT(opcode == Translation::BEGIN);
|
|
int frame_count = it.Next();
|
|
|
|
// We insert the frames in reverse order because the frames
|
|
// in the deoptimization translation are ordered bottom-to-top.
|
|
while (frame_count > 0) {
|
|
opcode = static_cast<Translation::Opcode>(it.Next());
|
|
if (opcode == Translation::FRAME) {
|
|
frame_count--;
|
|
it.Next(); // Skip ast id.
|
|
int function_id = it.Next();
|
|
it.Next(); // Skip height.
|
|
JSFunction* function =
|
|
JSFunction::cast(data->LiteralArray()->get(function_id));
|
|
functions->Add(function);
|
|
} else {
|
|
// Skip over operands to advance to the next opcode.
|
|
it.Skip(Translation::NumberOfOperandsFor(opcode));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Address ArgumentsAdaptorFrame::GetCallerStackPointer() const {
|
|
return fp() + StandardFrameConstants::kCallerSPOffset;
|
|
}
|
|
|
|
|
|
Address InternalFrame::GetCallerStackPointer() const {
|
|
// Internal frames have no arguments. The stack pointer of the
|
|
// caller is at a fixed offset from the frame pointer.
|
|
return fp() + StandardFrameConstants::kCallerSPOffset;
|
|
}
|
|
|
|
|
|
Code* ArgumentsAdaptorFrame::unchecked_code() const {
|
|
return Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline);
|
|
}
|
|
|
|
|
|
Code* InternalFrame::unchecked_code() const {
|
|
const int offset = InternalFrameConstants::kCodeOffset;
|
|
Object* code = Memory::Object_at(fp() + offset);
|
|
ASSERT(code != NULL);
|
|
return reinterpret_cast<Code*>(code);
|
|
}
|
|
|
|
|
|
void StackFrame::PrintIndex(StringStream* accumulator,
|
|
PrintMode mode,
|
|
int index) {
|
|
accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
|
|
}
|
|
|
|
|
|
void JavaScriptFrame::Print(StringStream* accumulator,
|
|
PrintMode mode,
|
|
int index) const {
|
|
HandleScope scope;
|
|
Object* receiver = this->receiver();
|
|
Object* function = this->function();
|
|
|
|
accumulator->PrintSecurityTokenIfChanged(function);
|
|
PrintIndex(accumulator, mode, index);
|
|
Code* code = NULL;
|
|
if (IsConstructor()) accumulator->Add("new ");
|
|
accumulator->PrintFunction(function, receiver, &code);
|
|
|
|
Handle<SerializedScopeInfo> scope_info(SerializedScopeInfo::Empty());
|
|
|
|
if (function->IsJSFunction()) {
|
|
Handle<SharedFunctionInfo> shared(JSFunction::cast(function)->shared());
|
|
scope_info = Handle<SerializedScopeInfo>(shared->scope_info());
|
|
Object* script_obj = shared->script();
|
|
if (script_obj->IsScript()) {
|
|
Handle<Script> script(Script::cast(script_obj));
|
|
accumulator->Add(" [");
|
|
accumulator->PrintName(script->name());
|
|
|
|
Address pc = this->pc();
|
|
if (code != NULL && code->kind() == Code::FUNCTION &&
|
|
pc >= code->instruction_start() && pc < code->instruction_end()) {
|
|
int source_pos = code->SourcePosition(pc);
|
|
int line = GetScriptLineNumberSafe(script, source_pos) + 1;
|
|
accumulator->Add(":%d", line);
|
|
} else {
|
|
int function_start_pos = shared->start_position();
|
|
int line = GetScriptLineNumberSafe(script, function_start_pos) + 1;
|
|
accumulator->Add(":~%d", line);
|
|
}
|
|
|
|
accumulator->Add("] ");
|
|
}
|
|
}
|
|
|
|
accumulator->Add("(this=%o", receiver);
|
|
|
|
// Get scope information for nicer output, if possible. If code is
|
|
// NULL, or doesn't contain scope info, info will return 0 for the
|
|
// number of parameters, stack slots, or context slots.
|
|
ScopeInfo<PreallocatedStorage> info(*scope_info);
|
|
|
|
// Print the parameters.
|
|
int parameters_count = ComputeParametersCount();
|
|
for (int i = 0; i < parameters_count; i++) {
|
|
accumulator->Add(",");
|
|
// If we have a name for the parameter we print it. Nameless
|
|
// parameters are either because we have more actual parameters
|
|
// than formal parameters or because we have no scope information.
|
|
if (i < info.number_of_parameters()) {
|
|
accumulator->PrintName(*info.parameter_name(i));
|
|
accumulator->Add("=");
|
|
}
|
|
accumulator->Add("%o", GetParameter(i));
|
|
}
|
|
|
|
accumulator->Add(")");
|
|
if (mode == OVERVIEW) {
|
|
accumulator->Add("\n");
|
|
return;
|
|
}
|
|
accumulator->Add(" {\n");
|
|
|
|
// Compute the number of locals and expression stack elements.
|
|
int stack_locals_count = info.number_of_stack_slots();
|
|
int heap_locals_count = info.number_of_context_slots();
|
|
int expressions_count = ComputeExpressionsCount();
|
|
|
|
// Print stack-allocated local variables.
|
|
if (stack_locals_count > 0) {
|
|
accumulator->Add(" // stack-allocated locals\n");
|
|
}
|
|
for (int i = 0; i < stack_locals_count; i++) {
|
|
accumulator->Add(" var ");
|
|
accumulator->PrintName(*info.stack_slot_name(i));
|
|
accumulator->Add(" = ");
|
|
if (i < expressions_count) {
|
|
accumulator->Add("%o", GetExpression(i));
|
|
} else {
|
|
accumulator->Add("// no expression found - inconsistent frame?");
|
|
}
|
|
accumulator->Add("\n");
|
|
}
|
|
|
|
// Try to get hold of the context of this frame.
|
|
Context* context = NULL;
|
|
if (this->context() != NULL && this->context()->IsContext()) {
|
|
context = Context::cast(this->context());
|
|
}
|
|
|
|
// Print heap-allocated local variables.
|
|
if (heap_locals_count > Context::MIN_CONTEXT_SLOTS) {
|
|
accumulator->Add(" // heap-allocated locals\n");
|
|
}
|
|
for (int i = Context::MIN_CONTEXT_SLOTS; i < heap_locals_count; i++) {
|
|
accumulator->Add(" var ");
|
|
accumulator->PrintName(*info.context_slot_name(i));
|
|
accumulator->Add(" = ");
|
|
if (context != NULL) {
|
|
if (i < context->length()) {
|
|
accumulator->Add("%o", context->get(i));
|
|
} else {
|
|
accumulator->Add(
|
|
"// warning: missing context slot - inconsistent frame?");
|
|
}
|
|
} else {
|
|
accumulator->Add("// warning: no context found - inconsistent frame?");
|
|
}
|
|
accumulator->Add("\n");
|
|
}
|
|
|
|
// Print the expression stack.
|
|
int expressions_start = stack_locals_count;
|
|
if (expressions_start < expressions_count) {
|
|
accumulator->Add(" // expression stack (top to bottom)\n");
|
|
}
|
|
for (int i = expressions_count - 1; i >= expressions_start; i--) {
|
|
if (IsExpressionInsideHandler(i)) continue;
|
|
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
|
|
}
|
|
|
|
// Print details about the function.
|
|
if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
|
|
SharedFunctionInfo* shared = JSFunction::cast(function)->shared();
|
|
accumulator->Add("--------- s o u r c e c o d e ---------\n");
|
|
shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length);
|
|
accumulator->Add("\n-----------------------------------------\n");
|
|
}
|
|
|
|
accumulator->Add("}\n\n");
|
|
}
|
|
|
|
|
|
void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
|
|
PrintMode mode,
|
|
int index) const {
|
|
int actual = ComputeParametersCount();
|
|
int expected = -1;
|
|
Object* function = this->function();
|
|
if (function->IsJSFunction()) {
|
|
expected = JSFunction::cast(function)->shared()->formal_parameter_count();
|
|
}
|
|
|
|
PrintIndex(accumulator, mode, index);
|
|
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
|
|
if (mode == OVERVIEW) {
|
|
accumulator->Add("\n");
|
|
return;
|
|
}
|
|
accumulator->Add(" {\n");
|
|
|
|
// Print actual arguments.
|
|
if (actual > 0) accumulator->Add(" // actual arguments\n");
|
|
for (int i = 0; i < actual; i++) {
|
|
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
|
|
if (expected != -1 && i >= expected) {
|
|
accumulator->Add(" // not passed to callee");
|
|
}
|
|
accumulator->Add("\n");
|
|
}
|
|
|
|
accumulator->Add("}\n\n");
|
|
}
|
|
|
|
|
|
void EntryFrame::Iterate(ObjectVisitor* v) const {
|
|
StackHandlerIterator it(this, top_handler());
|
|
ASSERT(!it.done());
|
|
StackHandler* handler = it.handler();
|
|
ASSERT(handler->is_entry());
|
|
handler->Iterate(v, code());
|
|
#ifdef DEBUG
|
|
// Make sure that the entry frame does not contain more than one
|
|
// stack handler.
|
|
it.Advance();
|
|
ASSERT(it.done());
|
|
#endif
|
|
IteratePc(v, pc_address(), code());
|
|
}
|
|
|
|
|
|
void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
|
|
const int offset = StandardFrameConstants::kContextOffset;
|
|
Object** base = &Memory::Object_at(sp());
|
|
Object** limit = &Memory::Object_at(fp() + offset) + 1;
|
|
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
|
|
StackHandler* handler = it.handler();
|
|
// Traverse pointers down to - but not including - the next
|
|
// handler in the handler chain. Update the base to skip the
|
|
// handler and allow the handler to traverse its own pointers.
|
|
const Address address = handler->address();
|
|
v->VisitPointers(base, reinterpret_cast<Object**>(address));
|
|
base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
|
|
// Traverse the pointers in the handler itself.
|
|
handler->Iterate(v, code());
|
|
}
|
|
v->VisitPointers(base, limit);
|
|
}
|
|
|
|
|
|
void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
|
|
IterateExpressions(v);
|
|
IteratePc(v, pc_address(), code());
|
|
}
|
|
|
|
|
|
void InternalFrame::Iterate(ObjectVisitor* v) const {
|
|
// Internal frames only have object pointers on the expression stack
|
|
// as they never have any arguments.
|
|
IterateExpressions(v);
|
|
IteratePc(v, pc_address(), code());
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
|
|
JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
|
|
ASSERT(n >= 0);
|
|
for (int i = 0; i <= n; i++) {
|
|
while (!iterator_.frame()->is_java_script()) iterator_.Advance();
|
|
if (i == n) return JavaScriptFrame::cast(iterator_.frame());
|
|
iterator_.Advance();
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
|
|
Code* PcToCodeCache::GcSafeCastToCode(HeapObject* object, Address pc) {
|
|
Code* code = reinterpret_cast<Code*>(object);
|
|
ASSERT(code != NULL && code->contains(pc));
|
|
return code;
|
|
}
|
|
|
|
|
|
Code* PcToCodeCache::GcSafeFindCodeForPc(Address pc) {
|
|
// Check if the pc points into a large object chunk.
|
|
LargeObjectChunk* chunk = Heap::lo_space()->FindChunkContainingPc(pc);
|
|
if (chunk != NULL) return GcSafeCastToCode(chunk->GetObject(), pc);
|
|
|
|
// Iterate through the 8K page until we reach the end or find an
|
|
// object starting after the pc.
|
|
Page* page = Page::FromAddress(pc);
|
|
HeapObjectIterator iterator(page, Heap::GcSafeSizeOfOldObjectFunction());
|
|
HeapObject* previous = NULL;
|
|
while (true) {
|
|
HeapObject* next = iterator.next();
|
|
if (next == NULL || next->address() >= pc) {
|
|
return GcSafeCastToCode(previous, pc);
|
|
}
|
|
previous = next;
|
|
}
|
|
}
|
|
|
|
|
|
PcToCodeCache::PcToCodeCacheEntry* PcToCodeCache::GetCacheEntry(Address pc) {
|
|
Counters::pc_to_code.Increment();
|
|
ASSERT(IsPowerOf2(kPcToCodeCacheSize));
|
|
uint32_t hash = ComputeIntegerHash(
|
|
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(pc)));
|
|
uint32_t index = hash & (kPcToCodeCacheSize - 1);
|
|
PcToCodeCacheEntry* entry = cache(index);
|
|
if (entry->pc == pc) {
|
|
Counters::pc_to_code_cached.Increment();
|
|
ASSERT(entry->code == GcSafeFindCodeForPc(pc));
|
|
} else {
|
|
// Because this code may be interrupted by a profiling signal that
|
|
// also queries the cache, we cannot update pc before the code has
|
|
// been set. Otherwise, we risk trying to use a cache entry before
|
|
// the code has been computed.
|
|
entry->code = GcSafeFindCodeForPc(pc);
|
|
entry->safepoint_entry.Reset();
|
|
entry->pc = pc;
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
int NumRegs(RegList reglist) {
|
|
int n = 0;
|
|
while (reglist != 0) {
|
|
n++;
|
|
reglist &= reglist - 1; // clear one bit
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
int JSCallerSavedCode(int n) {
|
|
static int reg_code[kNumJSCallerSaved];
|
|
static bool initialized = false;
|
|
if (!initialized) {
|
|
initialized = true;
|
|
int i = 0;
|
|
for (int r = 0; r < kNumRegs; r++)
|
|
if ((kJSCallerSaved & (1 << r)) != 0)
|
|
reg_code[i++] = r;
|
|
|
|
ASSERT(i == kNumJSCallerSaved);
|
|
}
|
|
ASSERT(0 <= n && n < kNumJSCallerSaved);
|
|
return reg_code[n];
|
|
}
|
|
|
|
|
|
#define DEFINE_WRAPPER(type, field) \
|
|
class field##_Wrapper : public ZoneObject { \
|
|
public: /* NOLINT */ \
|
|
field##_Wrapper(const field& original) : frame_(original) { \
|
|
} \
|
|
field frame_; \
|
|
};
|
|
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
|
|
#undef DEFINE_WRAPPER
|
|
|
|
static StackFrame* AllocateFrameCopy(StackFrame* frame) {
|
|
#define FRAME_TYPE_CASE(type, field) \
|
|
case StackFrame::type: { \
|
|
field##_Wrapper* wrapper = \
|
|
new field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
|
|
return &wrapper->frame_; \
|
|
}
|
|
|
|
switch (frame->type()) {
|
|
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
|
|
default: UNREACHABLE();
|
|
}
|
|
#undef FRAME_TYPE_CASE
|
|
return NULL;
|
|
}
|
|
|
|
Vector<StackFrame*> CreateStackMap() {
|
|
ZoneList<StackFrame*> list(10);
|
|
for (StackFrameIterator it; !it.done(); it.Advance()) {
|
|
StackFrame* frame = AllocateFrameCopy(it.frame());
|
|
list.Add(frame);
|
|
}
|
|
return list.ToVector();
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|