You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

806 lines
20 KiB

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <functional>
#include "src/compiler/graph.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
#define NONE reinterpret_cast<Node*>(1)
static Operator dummy_operator0(IrOpcode::kParameter, Operator::kNoWrite,
"dummy", 0, 0, 0, 1, 0, 0);
static Operator dummy_operator1(IrOpcode::kParameter, Operator::kNoWrite,
"dummy", 1, 0, 0, 1, 0, 0);
static Operator dummy_operator2(IrOpcode::kParameter, Operator::kNoWrite,
"dummy", 2, 0, 0, 1, 0, 0);
static Operator dummy_operator3(IrOpcode::kParameter, Operator::kNoWrite,
"dummy", 3, 0, 0, 1, 0, 0);
#define CHECK_USES(node, ...) \
do { \
Node* __array[] = {__VA_ARGS__}; \
int __size = \
__array[0] != NONE ? static_cast<int>(arraysize(__array)) : 0; \
CheckUseChain(node, __array, __size); \
} while (false)
namespace {
typedef std::multiset<Node*, std::less<Node*>> NodeMSet;
void CheckUseChain(Node* node, Node** uses, int use_count) {
// Check ownership.
if (use_count == 1) CHECK(node->OwnedBy(uses[0]));
if (use_count > 1) {
for (int i = 0; i < use_count; i++) {
CHECK(!node->OwnedBy(uses[i]));
}
}
// Check the self-reported use count.
CHECK_EQ(use_count, node->UseCount());
// Build the expectation set.
NodeMSet expect_set;
for (int i = 0; i < use_count; i++) {
expect_set.insert(uses[i]);
}
{
// Check that iterating over the uses gives the right counts.
NodeMSet use_set;
for (auto use : node->uses()) {
use_set.insert(use);
}
CHECK(expect_set == use_set);
}
{
// Check that iterating over the use edges gives the right counts,
// input indices, from(), and to() pointers.
NodeMSet use_set;
for (auto edge : node->use_edges()) {
CHECK_EQ(node, edge.to());
CHECK_EQ(node, edge.from()->InputAt(edge.index()));
use_set.insert(edge.from());
}
CHECK(expect_set == use_set);
}
{
// Check the use nodes actually have the node as inputs.
for (Node* use : node->uses()) {
size_t count = 0;
for (Node* input : use->inputs()) {
if (input == node) count++;
}
CHECK_EQ(count, expect_set.count(use));
}
}
}
void CheckInputs(Node* node, Node** inputs, int input_count) {
CHECK_EQ(input_count, node->InputCount());
// Check InputAt().
for (int i = 0; i < static_cast<int>(input_count); i++) {
CHECK_EQ(inputs[i], node->InputAt(i));
}
// Check input iterator.
int index = 0;
for (Node* input : node->inputs()) {
CHECK_EQ(inputs[index], input);
index++;
}
// Check use lists of inputs.
for (int i = 0; i < static_cast<int>(input_count); i++) {
Node* input = inputs[i];
if (!input) continue; // skip null inputs
bool found = false;
// Check regular use list.
for (Node* use : input->uses()) {
if (use == node) {
found = true;
break;
}
}
CHECK(found);
int count = 0;
// Check use edge list.
for (auto edge : input->use_edges()) {
if (edge.from() == node && edge.to() == input && edge.index() == i) {
count++;
}
}
CHECK_EQ(1, count);
}
}
} // namespace
#define CHECK_INPUTS(node, ...) \
do { \
Node* __array[] = {__VA_ARGS__}; \
int __size = \
__array[0] != NONE ? static_cast<int>(arraysize(__array)) : 0; \
CheckInputs(node, __array, __size); \
} while (false)
TEST(NodeUseIteratorReplaceUses) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
Node* n3 = graph.NewNode(&dummy_operator0);
CHECK_USES(n0, n1, n2);
CHECK_INPUTS(n1, n0);
CHECK_INPUTS(n2, n0);
n0->ReplaceUses(n3);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
CHECK_USES(n2, NONE);
CHECK_USES(n3, n1, n2);
CHECK_INPUTS(n1, n3);
CHECK_INPUTS(n2, n3);
}
TEST(NodeUseIteratorReplaceUsesSelf) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
CHECK_USES(n0, n1);
CHECK_USES(n1, NONE);
n1->ReplaceInput(0, n1); // Create self-reference.
CHECK_USES(n0, NONE);
CHECK_USES(n1, n1);
Node* n2 = graph.NewNode(&dummy_operator0);
n1->ReplaceUses(n2);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
CHECK_USES(n2, n1);
}
TEST(ReplaceInput) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator0);
Node* n3 = graph.NewNode(&dummy_operator3, n0, n1, n2);
Node* n4 = graph.NewNode(&dummy_operator0);
CHECK_USES(n0, n3);
CHECK_USES(n1, n3);
CHECK_USES(n2, n3);
CHECK_USES(n3, NONE);
CHECK_USES(n4, NONE);
CHECK_INPUTS(n3, n0, n1, n2);
n3->ReplaceInput(1, n4);
CHECK_USES(n1, NONE);
CHECK_USES(n4, n3);
CHECK_INPUTS(n3, n0, n4, n2);
}
TEST(OwnedBy) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
CHECK(!n0->OwnedBy(n1));
CHECK(!n1->OwnedBy(n0));
Node* n2 = graph.NewNode(&dummy_operator1, n0);
CHECK(n0->OwnedBy(n2));
CHECK(!n2->OwnedBy(n0));
Node* n3 = graph.NewNode(&dummy_operator1, n0);
CHECK(!n0->OwnedBy(n2));
CHECK(!n0->OwnedBy(n3));
CHECK(!n2->OwnedBy(n0));
CHECK(!n3->OwnedBy(n0));
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
CHECK(n0->OwnedBy(n1));
CHECK(!n1->OwnedBy(n0));
Node* n2 = graph.NewNode(&dummy_operator1, n0);
CHECK(!n0->OwnedBy(n1));
CHECK(!n0->OwnedBy(n2));
CHECK(!n1->OwnedBy(n0));
CHECK(!n1->OwnedBy(n2));
CHECK(!n2->OwnedBy(n0));
CHECK(!n2->OwnedBy(n1));
Node* n3 = graph.NewNode(&dummy_operator0);
n2->ReplaceInput(0, n3);
CHECK(n0->OwnedBy(n1));
CHECK(!n1->OwnedBy(n0));
CHECK(!n1->OwnedBy(n0));
CHECK(!n1->OwnedBy(n2));
CHECK(!n2->OwnedBy(n0));
CHECK(!n2->OwnedBy(n1));
CHECK(n3->OwnedBy(n2));
CHECK(!n2->OwnedBy(n3));
}
}
TEST(Uses) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
CHECK_USES(n0, n1);
CHECK_USES(n1, NONE);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
CHECK_USES(n0, n1, n2);
CHECK_USES(n2, NONE);
Node* n3 = graph.NewNode(&dummy_operator1, n0);
CHECK_USES(n0, n1, n2, n3);
CHECK_USES(n3, NONE);
}
TEST(Inputs) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
Node* n3 = graph.NewNode(&dummy_operator3, n0, n1, n2);
CHECK_INPUTS(n3, n0, n1, n2);
Node* n4 = graph.NewNode(&dummy_operator3, n0, n1, n2);
n3->AppendInput(graph.zone(), n4);
CHECK_INPUTS(n3, n0, n1, n2, n4);
CHECK_USES(n4, n3);
n3->AppendInput(graph.zone(), n4);
CHECK_INPUTS(n3, n0, n1, n2, n4, n4);
CHECK_USES(n4, n3, n3);
Node* n5 = graph.NewNode(&dummy_operator1, n4);
CHECK_USES(n4, n3, n3, n5);
}
TEST(RemoveInput) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n1);
CHECK_INPUTS(n0, NONE);
CHECK_INPUTS(n1, n0);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n1, n2);
n1->RemoveInput(0);
CHECK_INPUTS(n1, NONE);
CHECK_USES(n0, n2);
n2->RemoveInput(0);
CHECK_INPUTS(n2, n1);
CHECK_USES(n0, NONE);
CHECK_USES(n1, n2);
n2->RemoveInput(0);
CHECK_INPUTS(n2, NONE);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
CHECK_USES(n2, NONE);
}
TEST(AppendInputsAndIterator) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n1);
CHECK_INPUTS(n0, NONE);
CHECK_INPUTS(n1, n0);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n1, n2);
Node* n3 = graph.NewNode(&dummy_operator0);
n2->AppendInput(graph.zone(), n3);
CHECK_INPUTS(n2, n0, n1, n3);
CHECK_USES(n3, n2);
}
TEST(NullInputsSimple) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n1);
CHECK_INPUTS(n0, NONE);
CHECK_INPUTS(n1, n0);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n1, n2);
n2->ReplaceInput(0, nullptr);
CHECK_INPUTS(n2, NULL, n1);
CHECK_USES(n0, n1);
n2->ReplaceInput(1, nullptr);
CHECK_INPUTS(n2, NULL, NULL);
CHECK_USES(n1, NONE);
}
TEST(NullInputsAppended) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
Node* n3 = graph.NewNode(&dummy_operator1, n0);
n3->AppendInput(graph.zone(), n1);
n3->AppendInput(graph.zone(), n2);
CHECK_INPUTS(n3, n0, n1, n2);
CHECK_USES(n0, n1, n2, n3);
CHECK_USES(n1, n3);
CHECK_USES(n2, n3);
n3->ReplaceInput(1, NULL);
CHECK_USES(n1, NONE);
CHECK_INPUTS(n3, n0, NULL, n2);
}
TEST(ReplaceUsesFromAppendedInputs) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
Node* n3 = graph.NewNode(&dummy_operator0);
CHECK_INPUTS(n2, n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n1, n2);
n2->AppendInput(graph.zone(), n0);
CHECK_INPUTS(n2, n0, n1, n0);
CHECK_USES(n1, n2);
CHECK_USES(n0, n2, n1, n2);
n0->ReplaceUses(n3);
CHECK_USES(n0, NONE);
CHECK_INPUTS(n2, n3, n1, n3);
CHECK_USES(n3, n2, n1, n2);
}
TEST(ReplaceInputMultipleUses) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
n2->ReplaceInput(0, n1);
CHECK_EQ(0, n0->UseCount());
CHECK_EQ(1, n1->UseCount());
Node* n3 = graph.NewNode(&dummy_operator1, n0);
n3->ReplaceInput(0, n1);
CHECK_EQ(0, n0->UseCount());
CHECK_EQ(2, n1->UseCount());
}
TEST(TrimInputCountInline) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
n1->TrimInputCount(1);
CHECK_INPUTS(n1, n0);
CHECK_USES(n0, n1);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
n1->TrimInputCount(0);
CHECK_INPUTS(n1, NONE);
CHECK_USES(n0, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n1);
n2->TrimInputCount(2);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n2);
CHECK_USES(n1, n2);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n1);
n2->TrimInputCount(1);
CHECK_INPUTS(n2, n0);
CHECK_USES(n0, n2);
CHECK_USES(n1, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n1);
n2->TrimInputCount(0);
CHECK_INPUTS(n2, NONE);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n0);
n2->TrimInputCount(1);
CHECK_INPUTS(n2, n0);
CHECK_USES(n0, n2);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator2, n0, n0);
n2->TrimInputCount(0);
CHECK_INPUTS(n2, NONE);
CHECK_USES(n0, NONE);
}
}
TEST(TrimInputCountOutOfLine1) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
n1->AppendInput(graph.zone(), n0);
CHECK_INPUTS(n1, n0);
CHECK_USES(n0, n1);
n1->TrimInputCount(1);
CHECK_INPUTS(n1, n0);
CHECK_USES(n0, n1);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
n1->AppendInput(graph.zone(), n0);
CHECK_EQ(1, n1->InputCount());
n1->TrimInputCount(0);
CHECK_EQ(0, n1->InputCount());
CHECK_EQ(0, n0->UseCount());
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator0);
n2->AppendInput(graph.zone(), n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
n2->TrimInputCount(2);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n2);
CHECK_USES(n1, n2);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator0);
n2->AppendInput(graph.zone(), n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
n2->TrimInputCount(1);
CHECK_INPUTS(n2, n0);
CHECK_USES(n0, n2);
CHECK_USES(n1, NONE);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator0);
n2->AppendInput(graph.zone(), n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
n2->TrimInputCount(0);
CHECK_INPUTS(n2, NONE);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator0);
n2->AppendInput(graph.zone(), n0);
n2->AppendInput(graph.zone(), n0);
CHECK_INPUTS(n2, n0, n0);
CHECK_USES(n0, n2, n2);
n2->TrimInputCount(1);
CHECK_INPUTS(n2, n0);
CHECK_USES(n0, n2);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator0);
n2->AppendInput(graph.zone(), n0);
n2->AppendInput(graph.zone(), n0);
CHECK_INPUTS(n2, n0, n0);
CHECK_USES(n0, n2, n2);
n2->TrimInputCount(0);
CHECK_INPUTS(n2, NONE);
CHECK_USES(n0, NONE);
}
}
TEST(TrimInputCountOutOfLine2) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
n2->TrimInputCount(2);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n2);
CHECK_USES(n1, n2);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
n2->TrimInputCount(1);
CHECK_INPUTS(n2, n0);
CHECK_USES(n0, n2);
CHECK_USES(n1, NONE);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
n2->AppendInput(graph.zone(), n1);
CHECK_INPUTS(n2, n0, n1);
n2->TrimInputCount(0);
CHECK_INPUTS(n2, NONE);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
n2->AppendInput(graph.zone(), n0);
CHECK_INPUTS(n2, n0, n0);
CHECK_USES(n0, n2, n2);
n2->TrimInputCount(1);
CHECK_INPUTS(n2, n0);
CHECK_USES(n0, n2);
CHECK_USES(n2, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n2 = graph.NewNode(&dummy_operator1, n0);
n2->AppendInput(graph.zone(), n0);
CHECK_EQ(2, n2->InputCount());
CHECK_EQ(2, n0->UseCount());
n2->TrimInputCount(0);
CHECK_EQ(0, n2->InputCount());
CHECK_EQ(0, n0->UseCount());
CHECK_EQ(0, n2->UseCount());
}
}
TEST(NullAllInputs) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
for (int i = 0; i < 2; i++) {
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
Node* n2;
if (i == 0) {
n2 = graph.NewNode(&dummy_operator2, n0, n1);
CHECK_INPUTS(n2, n0, n1);
} else {
n2 = graph.NewNode(&dummy_operator1, n0);
CHECK_INPUTS(n2, n0);
n2->AppendInput(graph.zone(), n1); // with out-of-line input.
CHECK_INPUTS(n2, n0, n1);
}
n0->NullAllInputs();
CHECK_INPUTS(n0, NONE);
CHECK_USES(n0, n1, n2);
n1->NullAllInputs();
CHECK_INPUTS(n1, NULL);
CHECK_INPUTS(n2, n0, n1);
CHECK_USES(n0, n2);
n2->NullAllInputs();
CHECK_INPUTS(n1, NULL);
CHECK_INPUTS(n2, NULL, NULL);
CHECK_USES(n0, NONE);
}
{
Node* n0 = graph.NewNode(&dummy_operator0);
Node* n1 = graph.NewNode(&dummy_operator1, n0);
n1->ReplaceInput(0, n1); // self-reference.
CHECK_INPUTS(n0, NONE);
CHECK_INPUTS(n1, n1);
CHECK_USES(n0, NONE);
CHECK_USES(n1, n1);
n1->NullAllInputs();
CHECK_INPUTS(n0, NONE);
CHECK_INPUTS(n1, NULL);
CHECK_USES(n0, NONE);
CHECK_USES(n1, NONE);
}
}
TEST(AppendAndTrim) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
Graph graph(&zone);
Node* nodes[] = {
graph.NewNode(&dummy_operator0), graph.NewNode(&dummy_operator0),
graph.NewNode(&dummy_operator0), graph.NewNode(&dummy_operator0),
graph.NewNode(&dummy_operator0)};
int max = static_cast<int>(arraysize(nodes));
Node* last = graph.NewNode(&dummy_operator0);
for (int i = 0; i < max; i++) {
last->AppendInput(graph.zone(), nodes[i]);
CheckInputs(last, nodes, i + 1);
for (int j = 0; j < max; j++) {
if (j <= i) CHECK_USES(nodes[j], last);
if (j > i) CHECK_USES(nodes[j], NONE);
}
CHECK_USES(last, NONE);
}
for (int i = max; i >= 0; i--) {
last->TrimInputCount(i);
CheckInputs(last, nodes, i);
for (int j = 0; j < i; j++) {
if (j < i) CHECK_USES(nodes[j], last);
if (j >= i) CHECK_USES(nodes[j], NONE);
}
CHECK_USES(last, NONE);
}
}
} // namespace compiler
} // namespace internal
} // namespace v8