You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2344 lines
68 KiB

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <malloc.h>
#include <stdio.h>
#include "uv.h"
#include "uv-common.h"
#include "tree.h"
/*
* Guids and typedefs for winsock extension functions
* Mingw32 doesn't have these :-(
*/
#ifndef WSAID_ACCEPTEX
# define WSAID_ACCEPTEX \
{0xb5367df1, 0xcbac, 0x11cf, \
{0x95, 0xca, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92}}
# define WSAID_CONNECTEX \
{0x25a207b9, 0xddf3, 0x4660, \
{0x8e, 0xe9, 0x76, 0xe5, 0x8c, 0x74, 0x06, 0x3e}}
# define WSAID_GETACCEPTEXSOCKADDRS \
{0xb5367df2, 0xcbac, 0x11cf, \
{0x95, 0xca, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92}}
# define WSAID_DISCONNECTEX \
{0x7fda2e11, 0x8630, 0x436f, \
{0xa0, 0x31, 0xf5, 0x36, 0xa6, 0xee, 0xc1, 0x57}}
# define WSAID_TRANSMITFILE \
{0xb5367df0, 0xcbac, 0x11cf, \
{0x95, 0xca, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92}}
typedef BOOL PASCAL (*LPFN_ACCEPTEX)
(SOCKET sListenSocket,
SOCKET sAcceptSocket,
PVOID lpOutputBuffer,
DWORD dwReceiveDataLength,
DWORD dwLocalAddressLength,
DWORD dwRemoteAddressLength,
LPDWORD lpdwBytesReceived,
LPOVERLAPPED lpOverlapped);
typedef BOOL PASCAL (*LPFN_CONNECTEX)
(SOCKET s,
const struct sockaddr* name,
int namelen,
PVOID lpSendBuffer,
DWORD dwSendDataLength,
LPDWORD lpdwBytesSent,
LPOVERLAPPED lpOverlapped);
typedef void PASCAL (*LPFN_GETACCEPTEXSOCKADDRS)
(PVOID lpOutputBuffer,
DWORD dwReceiveDataLength,
DWORD dwLocalAddressLength,
DWORD dwRemoteAddressLength,
LPSOCKADDR* LocalSockaddr,
LPINT LocalSockaddrLength,
LPSOCKADDR* RemoteSockaddr,
LPINT RemoteSockaddrLength);
typedef BOOL PASCAL (*LPFN_DISCONNECTEX)
(SOCKET hSocket,
LPOVERLAPPED lpOverlapped,
DWORD dwFlags,
DWORD reserved);
typedef BOOL PASCAL (*LPFN_TRANSMITFILE)
(SOCKET hSocket,
HANDLE hFile,
DWORD nNumberOfBytesToWrite,
DWORD nNumberOfBytesPerSend,
LPOVERLAPPED lpOverlapped,
LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,
DWORD dwFlags);
#endif
/*
* MinGW is missing this too
*/
#ifndef SO_UPDATE_CONNECT_CONTEXT
# define SO_UPDATE_CONNECT_CONTEXT 0x7010
#endif
/*
* MinGW is missing this too
*/
#ifndef _MSC_VER
typedef struct addrinfoW {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t ai_addrlen;
wchar_t* ai_canonname;
struct sockaddr* ai_addr;
struct addrinfoW* ai_next;
} ADDRINFOW, *PADDRINFOW;
DECLSPEC_IMPORT int WSAAPI GetAddrInfoW(const wchar_t* node,
const wchar_t* service,
const ADDRINFOW* hints,
PADDRINFOW* result);
DECLSPEC_IMPORT void WSAAPI FreeAddrInfoW(PADDRINFOW pAddrInfo);
#endif
/*
* Pointers to winsock extension functions to be retrieved dynamically
*/
static LPFN_CONNECTEX pConnectEx;
static LPFN_ACCEPTEX pAcceptEx;
static LPFN_GETACCEPTEXSOCKADDRS pGetAcceptExSockAddrs;
static LPFN_DISCONNECTEX pDisconnectEx;
static LPFN_TRANSMITFILE pTransmitFile;
/*
* Private uv_handle flags
*/
#define UV_HANDLE_CLOSING 0x0001
#define UV_HANDLE_CLOSED 0x0002
#define UV_HANDLE_BOUND 0x0004
#define UV_HANDLE_LISTENING 0x0008
#define UV_HANDLE_CONNECTION 0x0010
#define UV_HANDLE_CONNECTED 0x0020
#define UV_HANDLE_READING 0x0040
#define UV_HANDLE_ACTIVE 0x0040
#define UV_HANDLE_EOF 0x0080
#define UV_HANDLE_SHUTTING 0x0100
#define UV_HANDLE_SHUT 0x0200
#define UV_HANDLE_ENDGAME_QUEUED 0x0400
#define UV_HANDLE_BIND_ERROR 0x1000
/*
* Private uv_req flags.
*/
/* The request is currently queued. */
#define UV_REQ_PENDING 0x01
/* Binary tree used to keep the list of timers sorted. */
static int uv_timer_compare(uv_timer_t* handle1, uv_timer_t* handle2);
RB_HEAD(uv_timer_tree_s, uv_timer_s);
RB_PROTOTYPE_STATIC(uv_timer_tree_s, uv_timer_s, tree_entry, uv_timer_compare)
/* The head of the timers tree */
static struct uv_timer_tree_s uv_timers_ = RB_INITIALIZER(uv_timers_);
/* Head of a single-linked list of closed handles */
static uv_handle_t* uv_endgame_handles_ = NULL;
/* Tail of a single-linked circular queue of pending reqs. If the queue is */
/* empty, tail_ is NULL. If there is only one item, tail_->next_req == tail_ */
static uv_req_t* uv_pending_reqs_tail_ = NULL;
/* The current time according to the event loop. in msecs. */
static int64_t uv_now_ = 0;
static int64_t uv_ticks_per_msec_ = 0;
/*
* Global I/O completion port
*/
static HANDLE uv_iocp_;
/* Global error code */
static const uv_err_t uv_ok_ = { UV_OK, ERROR_SUCCESS };
static uv_err_t uv_last_error_ = { UV_OK, ERROR_SUCCESS };
/* Error message string */
static char* uv_err_str_ = NULL;
/* Reference count that keeps the event loop alive */
static int uv_refs_ = 0;
/* Ip address used to bind to any port at any interface */
static struct sockaddr_in uv_addr_ip4_any_;
/* A zero-size buffer for use by uv_read */
static char uv_zero_[] = "";
/*
* Subclass of uv_handle_t. Used for integration of c-ares.
*/
typedef struct uv_ares_action_s uv_ares_action_t;
struct uv_ares_action_s {
UV_HANDLE_FIELDS
struct uv_req_s ares_req;
SOCKET sock;
int read;
int write;
};
void uv_ares_process(uv_ares_action_t* handle, uv_req_t* req);
void uv_ares_task_cleanup(uv_ares_task_t* handle, uv_req_t* req);
void uv_ares_poll(uv_timer_t* handle, int status);
/* memory used per ares_channel */
struct uv_ares_channel_s {
ares_channel channel;
int activesockets;
uv_timer_t pollingtimer;
};
typedef struct uv_ares_channel_s uv_ares_channel_t;
/* static data to hold single ares_channel */
static uv_ares_channel_t uv_ares_data = { NULL, 0 };
/* default timeout per socket request if ares does not specify value */
/* use 20 sec */
#define ARES_TIMEOUT_MS 20000
/* getaddrinfo integration */
static void uv_getaddrinfo_done(uv_getaddrinfo_t* handle, uv_req_t* req);
/* adjust size value to be multiple of 4. Use to keep pointer aligned */
/* Do we need different versions of this for different architectures? */
#define ALIGNED_SIZE(X) ((((X) + 3) >> 2) << 2)
/* Atomic set operation on char */
#ifdef _MSC_VER /* MSVC */
/* _InterlockedOr8 is supported by MSVC on x32 and x64. It is slightly less */
/* efficient than InterlockedExchange, but InterlockedExchange8 does not */
/* exist, and interlocked operations on larger targets might require the */
/* target to be aligned. */
#pragma intrinsic(_InterlockedOr8)
static char __declspec(inline) uv_atomic_exchange_set(char volatile* target) {
return _InterlockedOr8(target, 1);
}
#else /* GCC */
/* Mingw-32 version, hopefully this works for 64-bit gcc as well. */
static inline char uv_atomic_exchange_set(char volatile* target) {
const char one = 1;
char old_value;
__asm__ __volatile__ ("lock xchgb %0, %1\n\t"
: "=r"(old_value), "=m"(*target)
: "0"(one), "m"(*target)
: "memory");
return old_value;
}
#endif
/*
* Display an error message and abort the event loop.
*/
static void uv_fatal_error(const int errorno, const char* syscall) {
char* buf = NULL;
const char* errmsg;
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, NULL, errorno,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (buf) {
errmsg = buf;
} else {
errmsg = "Unknown error";
}
/* FormatMessage messages include a newline character already, */
/* so don't add another. */
if (syscall) {
fprintf(stderr, "%s: (%d) %s", syscall, errorno, errmsg);
} else {
fprintf(stderr, "(%d) %s", errorno, errmsg);
}
if (buf) {
LocalFree(buf);
}
*((char*)NULL) = 0xff; /* Force debug break */
abort();
}
uv_err_t uv_last_error() {
return uv_last_error_;
}
char* uv_strerror(uv_err_t err) {
if (uv_err_str_ != NULL) {
LocalFree((void*) uv_err_str_);
}
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err.sys_errno_,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&uv_err_str_, 0, NULL);
if (uv_err_str_) {
return uv_err_str_;
} else {
return "Unknown error";
}
}
static uv_err_code uv_translate_sys_error(int sys_errno) {
switch (sys_errno) {
case ERROR_SUCCESS: return UV_OK;
case ERROR_NOACCESS: return UV_EACCESS;
case WSAEACCES: return UV_EACCESS;
case ERROR_ADDRESS_ALREADY_ASSOCIATED: return UV_EADDRINUSE;
case WSAEADDRINUSE: return UV_EADDRINUSE;
case WSAEADDRNOTAVAIL: return UV_EADDRNOTAVAIL;
case WSAEWOULDBLOCK: return UV_EAGAIN;
case WSAEALREADY: return UV_EALREADY;
case ERROR_CONNECTION_REFUSED: return UV_ECONNREFUSED;
case WSAECONNREFUSED: return UV_ECONNREFUSED;
case WSAEFAULT: return UV_EFAULT;
case ERROR_INVALID_DATA: return UV_EINVAL;
case WSAEINVAL: return UV_EINVAL;
case ERROR_TOO_MANY_OPEN_FILES: return UV_EMFILE;
case WSAEMFILE: return UV_EMFILE;
case ERROR_OUTOFMEMORY: return UV_ENOMEM;
case ERROR_INSUFFICIENT_BUFFER: return UV_EINVAL;
case ERROR_INVALID_FLAGS: return UV_EBADF;
case ERROR_INVALID_PARAMETER: return UV_EINVAL;
case ERROR_NO_UNICODE_TRANSLATION: return UV_ECHARSET;
default: return UV_UNKNOWN;
}
}
static uv_err_t uv_new_sys_error(int sys_errno) {
uv_err_t e;
e.code = uv_translate_sys_error(sys_errno);
e.sys_errno_ = sys_errno;
return e;
}
static void uv_set_sys_error(int sys_errno) {
uv_last_error_.code = uv_translate_sys_error(sys_errno);
uv_last_error_.sys_errno_ = sys_errno;
}
/*
* Retrieves the pointer to a winsock extension function.
*/
static void uv_get_extension_function(SOCKET socket, GUID guid,
void **target) {
DWORD result, bytes;
result = WSAIoctl(socket,
SIO_GET_EXTENSION_FUNCTION_POINTER,
&guid,
sizeof(guid),
(void*)target,
sizeof(*target),
&bytes,
NULL,
NULL);
if (result == SOCKET_ERROR) {
*target = NULL;
uv_fatal_error(WSAGetLastError(),
"WSAIoctl(SIO_GET_EXTENSION_FUNCTION_POINTER)");
}
}
void uv_init() {
const GUID wsaid_connectex = WSAID_CONNECTEX;
const GUID wsaid_acceptex = WSAID_ACCEPTEX;
const GUID wsaid_getacceptexsockaddrs = WSAID_GETACCEPTEXSOCKADDRS;
const GUID wsaid_disconnectex = WSAID_DISCONNECTEX;
const GUID wsaid_transmitfile = WSAID_TRANSMITFILE;
WSADATA wsa_data;
int errorno;
LARGE_INTEGER timer_frequency;
SOCKET dummy;
/* Initialize winsock */
errorno = WSAStartup(MAKEWORD(2, 2), &wsa_data);
if (errorno != 0) {
uv_fatal_error(errorno, "WSAStartup");
}
/* Set implicit binding address used by connectEx */
uv_addr_ip4_any_ = uv_ip4_addr("0.0.0.0", 0);
/* Retrieve the needed winsock extension function pointers. */
dummy = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);
if (dummy == INVALID_SOCKET) {
uv_fatal_error(WSAGetLastError(), "socket");
}
uv_get_extension_function(dummy,
wsaid_connectex,
(void**)&pConnectEx);
uv_get_extension_function(dummy,
wsaid_acceptex,
(void**)&pAcceptEx);
uv_get_extension_function(dummy,
wsaid_getacceptexsockaddrs,
(void**)&pGetAcceptExSockAddrs);
uv_get_extension_function(dummy,
wsaid_disconnectex,
(void**)&pDisconnectEx);
uv_get_extension_function(dummy,
wsaid_transmitfile,
(void**)&pTransmitFile);
if (closesocket(dummy) == SOCKET_ERROR) {
uv_fatal_error(WSAGetLastError(), "closesocket");
}
/* Create an I/O completion port */
uv_iocp_ = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 1);
if (uv_iocp_ == NULL) {
uv_fatal_error(GetLastError(), "CreateIoCompletionPort");
}
/* Initialize the event loop time */
if (!QueryPerformanceFrequency(&timer_frequency))
uv_fatal_error(GetLastError(), "QueryPerformanceFrequency");
uv_ticks_per_msec_ = timer_frequency.QuadPart / 1000;
uv_update_time();
}
void uv_req_init(uv_req_t* req, uv_handle_t* handle, void* cb) {
uv_counters()->req_init++;
req->type = UV_UNKNOWN_REQ;
req->flags = 0;
req->handle = handle;
req->cb = cb;
}
static uv_req_t* uv_overlapped_to_req(OVERLAPPED* overlapped) {
return CONTAINING_RECORD(overlapped, uv_req_t, overlapped);
}
static void uv_insert_pending_req(uv_req_t* req) {
req->next_req = NULL;
if (uv_pending_reqs_tail_) {
req->next_req = uv_pending_reqs_tail_->next_req;
uv_pending_reqs_tail_ = req;
} else {
req->next_req = req;
uv_pending_reqs_tail_ = req;
}
}
static uv_req_t* uv_remove_pending_req() {
uv_req_t* req;
if (uv_pending_reqs_tail_) {
req = uv_pending_reqs_tail_->next_req;
if (req == uv_pending_reqs_tail_) {
uv_pending_reqs_tail_ = NULL;
} else {
uv_pending_reqs_tail_->next_req = req->next_req;
}
return req;
} else {
/* queue empty */
return NULL;
}
}
static int uv_tcp_set_socket(uv_tcp_t* handle, SOCKET socket) {
DWORD yes = 1;
assert(handle->socket == INVALID_SOCKET);
/* Set the socket to nonblocking mode */
if (ioctlsocket(socket, FIONBIO, &yes) == SOCKET_ERROR) {
uv_set_sys_error(WSAGetLastError());
return -1;
}
/* Make the socket non-inheritable */
if (!SetHandleInformation((HANDLE)socket, HANDLE_FLAG_INHERIT, 0)) {
uv_set_sys_error(GetLastError());
return -1;
}
/* Associate it with the I/O completion port. */
/* Use uv_handle_t pointer as completion key. */
if (CreateIoCompletionPort((HANDLE)socket,
uv_iocp_,
(ULONG_PTR)socket,
0) == NULL) {
uv_set_sys_error(GetLastError());
return -1;
}
handle->socket = socket;
return 0;
}
static void uv_tcp_init_connection(uv_tcp_t* handle) {
handle->flags |= UV_HANDLE_CONNECTION;
handle->write_reqs_pending = 0;
uv_req_init(&(handle->read_req), (uv_handle_t*)handle, NULL);
}
int uv_tcp_init(uv_tcp_t* handle) {
handle->socket = INVALID_SOCKET;
handle->write_queue_size = 0;
handle->type = UV_TCP;
handle->flags = 0;
handle->reqs_pending = 0;
handle->error = uv_ok_;
handle->accept_socket = INVALID_SOCKET;
uv_counters()->handle_init++;
uv_counters()->tcp_init++;
uv_refs_++;
return 0;
}
static void uv_tcp_endgame(uv_tcp_t* handle) {
uv_err_t err;
int status;
if (handle->flags & UV_HANDLE_SHUTTING &&
!(handle->flags & UV_HANDLE_SHUT) &&
handle->write_reqs_pending == 0) {
if (shutdown(handle->socket, SD_SEND) != SOCKET_ERROR) {
status = 0;
handle->flags |= UV_HANDLE_SHUT;
} else {
status = -1;
err = uv_new_sys_error(WSAGetLastError());
}
if (handle->shutdown_req->cb) {
handle->shutdown_req->flags &= ~UV_REQ_PENDING;
if (status == -1) {
uv_last_error_ = err;
}
((uv_shutdown_cb)handle->shutdown_req->cb)(handle->shutdown_req, status);
}
handle->reqs_pending--;
}
if (handle->flags & UV_HANDLE_CLOSING &&
handle->reqs_pending == 0) {
assert(!(handle->flags & UV_HANDLE_CLOSED));
handle->flags |= UV_HANDLE_CLOSED;
if (handle->close_cb) {
handle->close_cb((uv_handle_t*)handle);
}
uv_refs_--;
}
}
static void uv_timer_endgame(uv_timer_t* handle) {
if (handle->flags & UV_HANDLE_CLOSING) {
assert(!(handle->flags & UV_HANDLE_CLOSED));
handle->flags |= UV_HANDLE_CLOSED;
if (handle->close_cb) {
handle->close_cb((uv_handle_t*)handle);
}
uv_refs_--;
}
}
static void uv_loop_watcher_endgame(uv_handle_t* handle) {
if (handle->flags & UV_HANDLE_CLOSING) {
assert(!(handle->flags & UV_HANDLE_CLOSED));
handle->flags |= UV_HANDLE_CLOSED;
if (handle->close_cb) {
handle->close_cb(handle);
}
uv_refs_--;
}
}
static void uv_async_endgame(uv_async_t* handle) {
if (handle->flags & UV_HANDLE_CLOSING &&
!handle->async_sent) {
assert(!(handle->flags & UV_HANDLE_CLOSED));
handle->flags |= UV_HANDLE_CLOSED;
if (handle->close_cb) {
handle->close_cb((uv_handle_t*)handle);
}
uv_refs_--;
}
}
static void uv_process_endgames() {
uv_handle_t* handle;
while (uv_endgame_handles_) {
handle = uv_endgame_handles_;
uv_endgame_handles_ = handle->endgame_next;
handle->flags &= ~UV_HANDLE_ENDGAME_QUEUED;
switch (handle->type) {
case UV_TCP:
uv_tcp_endgame((uv_tcp_t*)handle);
break;
case UV_TIMER:
uv_timer_endgame((uv_timer_t*)handle);
break;
case UV_PREPARE:
case UV_CHECK:
case UV_IDLE:
uv_loop_watcher_endgame(handle);
break;
case UV_ASYNC:
uv_async_endgame((uv_async_t*)handle);
break;
default:
assert(0);
break;
}
}
}
static void uv_want_endgame(uv_handle_t* handle) {
if (!(handle->flags & UV_HANDLE_ENDGAME_QUEUED)) {
handle->flags |= UV_HANDLE_ENDGAME_QUEUED;
handle->endgame_next = uv_endgame_handles_;
uv_endgame_handles_ = handle;
}
}
static int uv_close_error(uv_handle_t* handle, uv_err_t e) {
uv_tcp_t* tcp;
if (handle->flags & UV_HANDLE_CLOSING) {
return 0;
}
handle->error = e;
handle->flags |= UV_HANDLE_CLOSING;
/* Handle-specific close actions */
switch (handle->type) {
case UV_TCP:
tcp = (uv_tcp_t*)handle;
tcp->flags &= ~(UV_HANDLE_READING | UV_HANDLE_LISTENING);
closesocket(tcp->socket);
if (tcp->reqs_pending == 0) {
uv_want_endgame(handle);
}
return 0;
case UV_TIMER:
uv_timer_stop((uv_timer_t*)handle);
uv_want_endgame(handle);
return 0;
case UV_PREPARE:
uv_prepare_stop((uv_prepare_t*)handle);
uv_want_endgame(handle);
return 0;
case UV_CHECK:
uv_check_stop((uv_check_t*)handle);
uv_want_endgame(handle);
return 0;
case UV_IDLE:
uv_idle_stop((uv_idle_t*)handle);
uv_want_endgame(handle);
return 0;
case UV_ASYNC:
if (!((uv_async_t*)handle)->async_sent) {
uv_want_endgame(handle);
}
return 0;
default:
/* Not supported */
assert(0);
return -1;
}
}
int uv_close(uv_handle_t* handle, uv_close_cb close_cb) {
handle->close_cb = close_cb;
return uv_close_error(handle, uv_ok_);
}
int uv__bind(uv_tcp_t* handle, int domain, struct sockaddr* addr, int addrsize) {
DWORD err;
int r;
SOCKET sock;
if (handle->socket == INVALID_SOCKET) {
sock = socket(domain, SOCK_STREAM, 0);
if (sock == INVALID_SOCKET) {
uv_set_sys_error(WSAGetLastError());
return -1;
}
if (uv_tcp_set_socket(handle, sock) == -1) {
closesocket(sock);
return -1;
}
}
r = bind(handle->socket, addr, addrsize);
if (r == SOCKET_ERROR) {
err = WSAGetLastError();
if (err == WSAEADDRINUSE) {
/* Some errors are not to be reported until connect() or listen() */
handle->error = uv_new_sys_error(err);
handle->flags |= UV_HANDLE_BIND_ERROR;
} else {
uv_set_sys_error(err);
return -1;
}
}
handle->flags |= UV_HANDLE_BOUND;
return 0;
}
int uv_tcp_bind(uv_tcp_t* handle, struct sockaddr_in addr) {
if (addr.sin_family != AF_INET) {
uv_set_sys_error(WSAEFAULT);
return -1;
}
return uv__bind(handle, AF_INET, (struct sockaddr*)&addr, sizeof(struct sockaddr_in));
}
int uv_tcp_bind6(uv_tcp_t* handle, struct sockaddr_in6 addr) {
if (addr.sin6_family != AF_INET6) {
uv_set_sys_error(WSAEFAULT);
return -1;
}
return uv__bind(handle, AF_INET6, (struct sockaddr*)&addr, sizeof(struct sockaddr_in6));
}
static void uv_queue_accept(uv_tcp_t* handle) {
uv_req_t* req;
BOOL success;
DWORD bytes;
SOCKET accept_socket;
assert(handle->flags & UV_HANDLE_LISTENING);
assert(handle->accept_socket == INVALID_SOCKET);
/* Prepare the uv_req structure. */
req = &handle->accept_req;
assert(!(req->flags & UV_REQ_PENDING));
req->type = UV_ACCEPT;
req->flags |= UV_REQ_PENDING;
/* Open a socket for the accepted connection. */
accept_socket = socket(AF_INET, SOCK_STREAM, 0);
if (accept_socket == INVALID_SOCKET) {
req->error = uv_new_sys_error(WSAGetLastError());
uv_insert_pending_req(req);
return;
}
/* Prepare the overlapped structure. */
memset(&(req->overlapped), 0, sizeof(req->overlapped));
success = pAcceptEx(handle->socket,
accept_socket,
(void*)&handle->accept_buffer,
0,
sizeof(struct sockaddr_storage),
sizeof(struct sockaddr_storage),
&bytes,
&req->overlapped);
if (!success && WSAGetLastError() != ERROR_IO_PENDING) {
/* Make this req pending reporting an error. */
req->error = uv_new_sys_error(WSAGetLastError());
uv_insert_pending_req(req);
/* Destroy the preallocated client socket. */
closesocket(accept_socket);
return;
}
handle->accept_socket = accept_socket;
handle->reqs_pending++;
req->flags |= UV_REQ_PENDING;
}
static void uv_queue_read(uv_tcp_t* handle) {
uv_req_t* req;
uv_buf_t buf;
int result;
DWORD bytes, flags;
assert(handle->flags & UV_HANDLE_READING);
req = &handle->read_req;
assert(!(req->flags & UV_REQ_PENDING));
memset(&req->overlapped, 0, sizeof(req->overlapped));
req->type = UV_READ;
buf.base = (char*) &uv_zero_;
buf.len = 0;
flags = 0;
result = WSARecv(handle->socket,
(WSABUF*)&buf,
1,
&bytes,
&flags,
&req->overlapped,
NULL);
if (result != 0 && WSAGetLastError() != ERROR_IO_PENDING) {
/* Make this req pending reporting an error. */
req->error = uv_new_sys_error(WSAGetLastError());
uv_insert_pending_req(req);
return;
}
req->flags |= UV_REQ_PENDING;
handle->reqs_pending++;
}
int uv_tcp_listen(uv_tcp_t* handle, int backlog, uv_connection_cb cb) {
assert(backlog > 0);
if (handle->flags & UV_HANDLE_BIND_ERROR) {
uv_last_error_ = handle->error;
return -1;
}
if (handle->flags & UV_HANDLE_LISTENING ||
handle->flags & UV_HANDLE_READING) {
/* Already listening. */
uv_set_sys_error(WSAEALREADY);
return -1;
}
if (listen(handle->socket, backlog) == SOCKET_ERROR) {
uv_set_sys_error(WSAGetLastError());
return -1;
}
handle->flags |= UV_HANDLE_LISTENING;
handle->connection_cb = cb;
uv_req_init(&(handle->accept_req), (uv_handle_t*)handle, NULL);
uv_queue_accept(handle);
return 0;
}
int uv_accept(uv_handle_t* server, uv_stream_t* client) {
int rv = 0;
uv_tcp_t* tcpServer = (uv_tcp_t*)server;
uv_tcp_t* tcpClient = (uv_tcp_t*)client;
if (tcpServer->accept_socket == INVALID_SOCKET) {
uv_set_sys_error(WSAENOTCONN);
return -1;
}
if (uv_tcp_set_socket(tcpClient, tcpServer->accept_socket) == -1) {
closesocket(tcpServer->accept_socket);
rv = -1;
} else {
uv_tcp_init_connection(tcpClient);
}
tcpServer->accept_socket = INVALID_SOCKET;
if (!(tcpServer->flags & UV_HANDLE_CLOSING)) {
uv_queue_accept(tcpServer);
}
return rv;
}
int uv_read_start(uv_stream_t* handle, uv_alloc_cb alloc_cb, uv_read_cb read_cb) {
if (!(handle->flags & UV_HANDLE_CONNECTION)) {
uv_set_sys_error(WSAEINVAL);
return -1;
}
if (handle->flags & UV_HANDLE_READING) {
uv_set_sys_error(WSAEALREADY);
return -1;
}
if (handle->flags & UV_HANDLE_EOF) {
uv_set_sys_error(WSAESHUTDOWN);
return -1;
}
handle->flags |= UV_HANDLE_READING;
handle->read_cb = read_cb;
handle->alloc_cb = alloc_cb;
/* If reading was stopped and then started again, there could stell be a */
/* read request pending. */
if (!(handle->read_req.flags & UV_REQ_PENDING))
uv_queue_read((uv_tcp_t*)handle);
return 0;
}
int uv_read_stop(uv_stream_t* handle) {
handle->flags &= ~UV_HANDLE_READING;
return 0;
}
int uv_tcp_connect(uv_req_t* req, struct sockaddr_in addr) {
int addrsize = sizeof(struct sockaddr_in);
BOOL success;
DWORD bytes;
uv_tcp_t* handle = (uv_tcp_t*)req->handle;
assert(!(req->flags & UV_REQ_PENDING));
if (handle->flags & UV_HANDLE_BIND_ERROR) {
uv_last_error_ = handle->error;
return -1;
}
if (addr.sin_family != AF_INET) {
uv_set_sys_error(WSAEFAULT);
return -1;
}
if (!(handle->flags & UV_HANDLE_BOUND) &&
uv_tcp_bind(handle, uv_addr_ip4_any_) < 0)
return -1;
memset(&req->overlapped, 0, sizeof(req->overlapped));
req->type = UV_CONNECT;
success = pConnectEx(handle->socket,
(struct sockaddr*)&addr,
addrsize,
NULL,
0,
&bytes,
&req->overlapped);
if (!success && WSAGetLastError() != ERROR_IO_PENDING) {
uv_set_sys_error(WSAGetLastError());
return -1;
}
req->flags |= UV_REQ_PENDING;
handle->reqs_pending++;
return 0;
}
static size_t uv_count_bufs(uv_buf_t bufs[], int count) {
size_t bytes = 0;
int i;
for (i = 0; i < count; i++) {
bytes += (size_t)bufs[i].len;
}
return bytes;
}
int uv_write(uv_req_t* req, uv_buf_t bufs[], int bufcnt) {
int result;
DWORD bytes, err;
uv_tcp_t* handle = (uv_tcp_t*) req->handle;
assert(!(req->flags & UV_REQ_PENDING));
if (!(req->handle->flags & UV_HANDLE_CONNECTION)) {
uv_set_sys_error(WSAEINVAL);
return -1;
}
if (req->handle->flags & UV_HANDLE_SHUTTING) {
uv_set_sys_error(WSAESHUTDOWN);
return -1;
}
memset(&req->overlapped, 0, sizeof(req->overlapped));
req->type = UV_WRITE;
result = WSASend(handle->socket,
(WSABUF*)bufs,
bufcnt,
&bytes,
0,
&req->overlapped,
NULL);
if (result != 0) {
err = WSAGetLastError();
if (err != WSA_IO_PENDING) {
/* Send failed due to an error. */
uv_set_sys_error(WSAGetLastError());
return -1;
}
}
if (result == 0) {
/* Request completed immediately. */
req->queued_bytes = 0;
} else {
/* Request queued by the kernel. */
req->queued_bytes = uv_count_bufs(bufs, bufcnt);
handle->write_queue_size += req->queued_bytes;
}
req->flags |= UV_REQ_PENDING;
handle->reqs_pending++;
handle->write_reqs_pending++;
return 0;
}
int uv_shutdown(uv_req_t* req) {
uv_tcp_t* handle = (uv_tcp_t*) req->handle;
int status = 0;
if (!(req->handle->flags & UV_HANDLE_CONNECTION)) {
uv_set_sys_error(WSAEINVAL);
return -1;
}
if (handle->flags & UV_HANDLE_SHUTTING) {
uv_set_sys_error(WSAESHUTDOWN);
return -1;
}
req->type = UV_SHUTDOWN;
req->flags |= UV_REQ_PENDING;
handle->flags |= UV_HANDLE_SHUTTING;
handle->shutdown_req = req;
handle->reqs_pending++;
uv_want_endgame((uv_handle_t*)handle);
return 0;
}
static void uv_tcp_return_req(uv_tcp_t* handle, uv_req_t* req) {
DWORD bytes, flags, err;
uv_buf_t buf;
assert(handle->type == UV_TCP);
/* Mark the request non-pending */
req->flags &= ~UV_REQ_PENDING;
switch (req->type) {
case UV_WRITE:
handle->write_queue_size -= req->queued_bytes;
if (req->cb) {
uv_last_error_ = req->error;
((uv_write_cb)req->cb)(req, uv_last_error_.code == UV_OK ? 0 : -1);
}
handle->write_reqs_pending--;
if (handle->write_reqs_pending == 0 &&
handle->flags & UV_HANDLE_SHUTTING) {
uv_want_endgame((uv_handle_t*)handle);
}
break;
case UV_READ:
if (req->error.code != UV_OK) {
/* An error occurred doing the 0-read. */
if (!(handle->flags & UV_HANDLE_READING)) {
break;
}
/* Stop reading and report error. */
handle->flags &= ~UV_HANDLE_READING;
uv_last_error_ = req->error;
buf.base = 0;
buf.len = 0;
handle->read_cb((uv_stream_t*)handle, -1, buf);
break;
}
/* Do nonblocking reads until the buffer is empty */
while (handle->flags & UV_HANDLE_READING) {
buf = handle->alloc_cb((uv_stream_t*)handle, 65536);
assert(buf.len > 0);
flags = 0;
if (WSARecv(handle->socket,
(WSABUF*)&buf,
1,
&bytes,
&flags,
NULL,
NULL) != SOCKET_ERROR) {
if (bytes > 0) {
/* Successful read */
handle->read_cb((uv_stream_t*)handle, bytes, buf);
/* Read again only if bytes == buf.len */
if (bytes < buf.len) {
break;
}
} else {
/* Connection closed */
handle->flags &= ~UV_HANDLE_READING;
handle->flags |= UV_HANDLE_EOF;
uv_last_error_.code = UV_EOF;
uv_last_error_.sys_errno_ = ERROR_SUCCESS;
handle->read_cb((uv_stream_t*)handle, -1, buf);
break;
}
} else {
err = WSAGetLastError();
if (err == WSAEWOULDBLOCK) {
/* Read buffer was completely empty, report a 0-byte read. */
uv_set_sys_error(WSAEWOULDBLOCK);
handle->read_cb((uv_stream_t*)handle, 0, buf);
} else {
/* Ouch! serious error. */
uv_set_sys_error(err);
handle->read_cb((uv_stream_t*)handle, -1, buf);
}
break;
}
}
/* Post another 0-read if still reading and not closing. */
if (handle->flags & UV_HANDLE_READING) {
uv_queue_read(handle);
}
break;
case UV_ACCEPT:
/* If handle->accepted_socket is not a valid socket, then */
/* uv_queue_accept must have failed. This is a serious error. We stop */
/* accepting connections and report this error to the connection */
/* callback. */
if (handle->accept_socket == INVALID_SOCKET) {
if (!(handle->flags & UV_HANDLE_LISTENING)) {
break;
}
handle->flags &= ~UV_HANDLE_LISTENING;
if (handle->connection_cb) {
uv_last_error_ = req->error;
handle->connection_cb((uv_handle_t*)handle, -1);
}
break;
}
if (req->error.code == UV_OK &&
setsockopt(handle->accept_socket,
SOL_SOCKET,
SO_UPDATE_ACCEPT_CONTEXT,
(char*)&handle->socket,
sizeof(handle->socket)) == 0) {
/* Accept and SO_UPDATE_ACCEPT_CONTEXT were successful. */
if (handle->connection_cb) {
handle->connection_cb((uv_handle_t*)handle, 0);
}
} else {
/* Error related to accepted socket is ignored because the server */
/* socket may still be healthy. If the server socket is broken
/* uv_queue_accept will detect it. */
closesocket(handle->accept_socket);
if (handle->flags & UV_HANDLE_LISTENING) {
uv_queue_accept(handle);
}
}
break;
case UV_CONNECT:
if (req->cb) {
if (req->error.code == UV_OK) {
if (setsockopt(handle->socket,
SOL_SOCKET,
SO_UPDATE_CONNECT_CONTEXT,
NULL,
0) == 0) {
uv_tcp_init_connection(handle);
((uv_connect_cb)req->cb)(req, 0);
} else {
uv_set_sys_error(WSAGetLastError());
((uv_connect_cb)req->cb)(req, -1);
}
} else {
uv_last_error_ = req->error;
((uv_connect_cb)req->cb)(req, -1);
}
}
break;
default:
assert(0);
}
/* The number of pending requests is now down by one */
handle->reqs_pending--;
/* Queue the handle's close callback if it is closing and there are no */
/* more pending requests. */
if (handle->flags & UV_HANDLE_CLOSING &&
handle->reqs_pending == 0) {
uv_want_endgame((uv_handle_t*)handle);
}
}
static int uv_timer_compare(uv_timer_t* a, uv_timer_t* b) {
if (a->due < b->due)
return -1;
if (a->due > b->due)
return 1;
if ((intptr_t)a < (intptr_t)b)
return -1;
if ((intptr_t)a > (intptr_t)b)
return 1;
return 0;
}
RB_GENERATE_STATIC(uv_timer_tree_s, uv_timer_s, tree_entry, uv_timer_compare);
int uv_timer_init(uv_timer_t* handle) {
uv_counters()->handle_init++;
uv_counters()->timer_init++;
handle->type = UV_TIMER;
handle->flags = 0;
handle->error = uv_ok_;
handle->timer_cb = NULL;
handle->repeat = 0;
uv_refs_++;
return 0;
}
int uv_timer_start(uv_timer_t* handle, uv_timer_cb timer_cb, int64_t timeout, int64_t repeat) {
if (handle->flags & UV_HANDLE_ACTIVE) {
RB_REMOVE(uv_timer_tree_s, &uv_timers_, handle);
}
handle->timer_cb = (void*) timer_cb;
handle->due = uv_now_ + timeout;
handle->repeat = repeat;
handle->flags |= UV_HANDLE_ACTIVE;
if (RB_INSERT(uv_timer_tree_s, &uv_timers_, handle) != NULL) {
uv_fatal_error(ERROR_INVALID_DATA, "RB_INSERT");
}
return 0;
}
int uv_timer_stop(uv_timer_t* handle) {
if (!(handle->flags & UV_HANDLE_ACTIVE))
return 0;
RB_REMOVE(uv_timer_tree_s, &uv_timers_, handle);
handle->flags &= ~UV_HANDLE_ACTIVE;
return 0;
}
int uv_timer_again(uv_timer_t* handle) {
/* If timer_cb is NULL that means that the timer was never started. */
if (!handle->timer_cb) {
uv_set_sys_error(ERROR_INVALID_DATA);
return -1;
}
if (handle->flags & UV_HANDLE_ACTIVE) {
RB_REMOVE(uv_timer_tree_s, &uv_timers_, handle);
handle->flags &= ~UV_HANDLE_ACTIVE;
}
if (handle->repeat) {
handle->due = uv_now_ + handle->repeat;
if (RB_INSERT(uv_timer_tree_s, &uv_timers_, handle) != NULL) {
uv_fatal_error(ERROR_INVALID_DATA, "RB_INSERT");
}
handle->flags |= UV_HANDLE_ACTIVE;
}
return 0;
}
void uv_timer_set_repeat(uv_timer_t* handle, int64_t repeat) {
assert(handle->type == UV_TIMER);
handle->repeat = repeat;
}
int64_t uv_timer_get_repeat(uv_timer_t* handle) {
assert(handle->type == UV_TIMER);
return handle->repeat;
}
void uv_update_time() {
LARGE_INTEGER counter;
if (!QueryPerformanceCounter(&counter))
uv_fatal_error(GetLastError(), "QueryPerformanceCounter");
uv_now_ = counter.QuadPart / uv_ticks_per_msec_;
}
int64_t uv_now() {
return uv_now_;
}
#define UV_LOOP_WATCHER_DEFINE(name, NAME) \
/* Lists of active loop (prepare / check / idle) watchers */ \
static uv_##name##_t* uv_##name##_handles_ = NULL; \
\
/* This pointer will refer to the prepare/check/idle handle whose */ \
/* callback is scheduled to be called next. This is needed to allow */ \
/* safe removal from one of the lists above while that list being */ \
/* iterated over. */ \
static uv_##name##_t* uv_next_##name##_handle_ = NULL; \
\
\
int uv_##name##_init(uv_##name##_t* handle) { \
handle->type = UV_##NAME; \
handle->flags = 0; \
handle->error = uv_ok_; \
\
uv_refs_++; \
\
uv_counters()->handle_init++; \
uv_counters()->prepare_init++; \
\
return 0; \
} \
\
\
int uv_##name##_start(uv_##name##_t* handle, uv_##name##_cb cb) { \
uv_##name##_t* old_head; \
\
assert(handle->type == UV_##NAME); \
\
if (handle->flags & UV_HANDLE_ACTIVE) \
return 0; \
\
old_head = uv_##name##_handles_; \
\
handle->name##_next = old_head; \
handle->name##_prev = NULL; \
\
if (old_head) { \
old_head->name##_prev = handle; \
} \
\
uv_##name##_handles_ = handle; \
\
handle->name##_cb = cb; \
handle->flags |= UV_HANDLE_ACTIVE; \
\
return 0; \
} \
\
\
int uv_##name##_stop(uv_##name##_t* handle) { \
assert(handle->type == UV_##NAME); \
\
if (!(handle->flags & UV_HANDLE_ACTIVE)) \
return 0; \
\
/* Update loop head if needed */ \
if (uv_##name##_handles_ == handle) { \
uv_##name##_handles_ = handle->name##_next; \
} \
\
/* Update the iterator-next pointer of needed */ \
if (uv_next_##name##_handle_ == handle) { \
uv_next_##name##_handle_ = handle->name##_next; \
} \
\
if (handle->name##_prev) { \
handle->name##_prev->name##_next = handle->name##_next; \
} \
if (handle->name##_next) { \
handle->name##_next->name##_prev = handle->name##_prev; \
} \
\
handle->flags &= ~UV_HANDLE_ACTIVE; \
\
return 0; \
} \
\
\
static void uv_##name##_invoke() { \
uv_##name##_t* handle; \
\
uv_next_##name##_handle_ = uv_##name##_handles_; \
\
while (uv_next_##name##_handle_ != NULL) { \
handle = uv_next_##name##_handle_; \
uv_next_##name##_handle_ = handle->name##_next; \
\
handle->name##_cb(handle, 0); \
} \
}
UV_LOOP_WATCHER_DEFINE(prepare, PREPARE)
UV_LOOP_WATCHER_DEFINE(check, CHECK)
UV_LOOP_WATCHER_DEFINE(idle, IDLE)
int uv_is_active(uv_handle_t* handle) {
switch (handle->type) {
case UV_TIMER:
case UV_IDLE:
case UV_PREPARE:
case UV_CHECK:
return (handle->flags & UV_HANDLE_ACTIVE) ? 1 : 0;
default:
return 1;
}
}
int uv_async_init(uv_async_t* handle, uv_async_cb async_cb) {
uv_req_t* req;
uv_counters()->handle_init++;
uv_counters()->async_init++;
handle->type = UV_ASYNC;
handle->flags = 0;
handle->async_sent = 0;
handle->error = uv_ok_;
req = &handle->async_req;
uv_req_init(req, (uv_handle_t*)handle, async_cb);
req->type = UV_WAKEUP;
uv_refs_++;
return 0;
}
int uv_async_send(uv_async_t* handle) {
if (handle->type != UV_ASYNC) {
/* Can't set errno because that's not thread-safe. */
return -1;
}
/* The user should make sure never to call uv_async_send to a closing */
/* or closed handle. */
assert(!(handle->flags & UV_HANDLE_CLOSING));
if (!uv_atomic_exchange_set(&handle->async_sent)) {
if (!PostQueuedCompletionStatus(uv_iocp_,
0,
0,
&handle->async_req.overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
}
return 0;
}
static void uv_async_return_req(uv_async_t* handle, uv_req_t* req) {
assert(handle->type == UV_ASYNC);
assert(req->type == UV_WAKEUP);
handle->async_sent = 0;
if (req->cb) {
((uv_async_cb)req->cb)((uv_async_t*) handle, 0);
}
if (handle->flags & UV_HANDLE_CLOSING) {
uv_want_endgame((uv_handle_t*)handle);
}
}
static void uv_process_reqs() {
uv_req_t* req;
uv_handle_t* handle;
while (req = uv_remove_pending_req()) {
handle = req->handle;
switch (handle->type) {
case UV_TCP:
uv_tcp_return_req((uv_tcp_t*)handle, req);
break;
case UV_ASYNC:
uv_async_return_req((uv_async_t*)handle, req);
break;
case UV_ARES:
uv_ares_process((uv_ares_action_t*)handle, req);
break;
case UV_ARES_TASK:
uv_ares_task_cleanup((uv_ares_task_t*)handle, req);
break;
case UV_GETADDRINFO:
uv_getaddrinfo_done((uv_getaddrinfo_t*)handle, req);
break;
default:
assert(0);
}
}
}
static void uv_process_timers() {
uv_timer_t* timer;
/* Call timer callbacks */
for (timer = RB_MIN(uv_timer_tree_s, &uv_timers_);
timer != NULL && timer->due <= uv_now_;
timer = RB_MIN(uv_timer_tree_s, &uv_timers_)) {
RB_REMOVE(uv_timer_tree_s, &uv_timers_, timer);
if (timer->repeat != 0) {
/* If it is a repeating timer, reschedule with repeat timeout. */
timer->due += timer->repeat;
if (timer->due < uv_now_) {
timer->due = uv_now_;
}
if (RB_INSERT(uv_timer_tree_s, &uv_timers_, timer) != NULL) {
uv_fatal_error(ERROR_INVALID_DATA, "RB_INSERT");
}
} else {
/* If non-repeating, mark the timer as inactive. */
timer->flags &= ~UV_HANDLE_ACTIVE;
}
timer->timer_cb((uv_timer_t*) timer, 0);
}
}
static DWORD uv_get_poll_timeout() {
uv_timer_t* timer;
int64_t delta;
/* Check if there are any running timers */
timer = RB_MIN(uv_timer_tree_s, &uv_timers_);
if (timer) {
uv_update_time();
delta = timer->due - uv_now_;
if (delta >= UINT_MAX) {
/* Can't have a timeout greater than UINT_MAX, and a timeout value of */
/* UINT_MAX means infinite, so that's no good either. */
return UINT_MAX - 1;
} else if (delta < 0) {
/* Negative timeout values are not allowed */
return 0;
} else {
return (DWORD)delta;
}
} else {
/* No timers */
return INFINITE;
}
}
static void uv_poll() {
BOOL success;
DWORD bytes;
ULONG_PTR key;
OVERLAPPED* overlapped;
uv_req_t* req;
success = GetQueuedCompletionStatus(uv_iocp_,
&bytes,
&key,
&overlapped,
uv_get_poll_timeout());
uv_update_time();
if (overlapped) {
/* Package was dequeued */
req = uv_overlapped_to_req(overlapped);
if (success) {
req->error = uv_ok_;
} else {
req->error = uv_new_sys_error(GetLastError());
}
uv_insert_pending_req(req);
} else if (GetLastError() != WAIT_TIMEOUT) {
/* Serious error */
uv_fatal_error(GetLastError(), "GetQueuedCompletionStatus");
}
}
int uv_run() {
while (1) {
uv_update_time();
uv_process_timers();
/* Terrible: please fix me! */
while (uv_refs_ > 0 &&
(uv_idle_handles_ || uv_pending_reqs_tail_ || uv_endgame_handles_)) {
/* Terrible: please fix me! */
while (uv_pending_reqs_tail_ || uv_endgame_handles_) {
uv_process_endgames();
uv_process_reqs();
}
/* Call idle callbacks */
uv_idle_invoke();
}
if (uv_refs_ <= 0) {
break;
}
uv_prepare_invoke();
uv_poll();
uv_check_invoke();
}
assert(uv_refs_ == 0);
return 0;
}
void uv_ref() {
uv_refs_++;
}
void uv_unref() {
uv_refs_--;
}
int uv_utf16_to_utf8(wchar_t* utf16Buffer, size_t utf16Size, char* utf8Buffer, size_t utf8Size) {
return WideCharToMultiByte(CP_UTF8, 0, utf16Buffer, utf16Size, utf8Buffer, utf8Size, NULL, NULL);
}
int uv_utf8_to_utf16(const char* utf8Buffer, wchar_t* utf16Buffer, size_t utf16Size) {
return MultiByteToWideChar(CP_UTF8, 0, utf8Buffer, -1, utf16Buffer, utf16Size);
}
int uv_exepath(char* buffer, size_t* size) {
int retVal;
size_t utf16Size;
wchar_t* utf16Buffer;
if (!buffer || !size) {
return -1;
}
utf16Buffer = (wchar_t*)malloc(sizeof(wchar_t) * *size);
if (!utf16Buffer) {
retVal = -1;
goto done;
}
/* Get the path as UTF-16 */
utf16Size = GetModuleFileNameW(NULL, utf16Buffer, *size - 1);
if (utf16Size <= 0) {
uv_set_sys_error(GetLastError());
retVal = -1;
goto done;
}
utf16Buffer[utf16Size] = L'\0';
/* Convert to UTF-8 */
*size = uv_utf16_to_utf8(utf16Buffer, utf16Size, buffer, *size);
if (!*size) {
uv_set_sys_error(GetLastError());
retVal = -1;
goto done;
}
buffer[*size] = '\0';
retVal = 0;
done:
if (utf16Buffer) {
free(utf16Buffer);
}
return retVal;
}
uint64_t uv_hrtime(void) {
assert(0 && "implement me");
}
/* thread pool callback when socket is signalled */
VOID CALLBACK uv_ares_socksignal_tp(void* parameter, BOOLEAN timerfired) {
WSANETWORKEVENTS network_events;
uv_ares_task_t* sockhandle;
uv_ares_action_t* selhandle;
uv_req_t* uv_ares_req;
assert(parameter != NULL);
if (parameter != NULL) {
sockhandle = (uv_ares_task_t*)parameter;
/* clear socket status for this event */
/* do not fail if error, thread may run after socket close */
/* The code assumes that c-ares will write all pending data in the callback,
unless the socket would block. We can clear the state here to avoid unecessary
signals. */
WSAEnumNetworkEvents(sockhandle->sock, sockhandle->h_event, &network_events);
/* setup new handle */
selhandle = (uv_ares_action_t*)malloc(sizeof(uv_ares_action_t));
if (selhandle == NULL) {
uv_fatal_error(ERROR_OUTOFMEMORY, "malloc");
}
selhandle->type = UV_ARES;
selhandle->close_cb = NULL;
selhandle->data = sockhandle->data;
selhandle->sock = sockhandle->sock;
selhandle->read = (network_events.lNetworkEvents & (FD_READ | FD_CONNECT)) ? 1 : 0;
selhandle->write = (network_events.lNetworkEvents & (FD_WRITE | FD_CONNECT)) ? 1 : 0;
uv_ares_req = &selhandle->ares_req;
uv_req_init(uv_ares_req, (uv_handle_t*)selhandle, NULL);
uv_ares_req->type = UV_WAKEUP;
/* post ares needs to called */
if (!PostQueuedCompletionStatus(uv_iocp_,
0,
0,
&uv_ares_req->overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
}
}
/* callback from ares when socket operation is started */
void uv_ares_sockstate_cb(void *data, ares_socket_t sock, int read, int write) {
/* look to see if we have a handle for this socket in our list */
uv_ares_task_t* uv_handle_ares = uv_find_ares_handle(sock);
uv_ares_channel_t* uv_ares_data_ptr = (uv_ares_channel_t*)data;
struct timeval tv;
struct timeval* tvptr;
int timeoutms = 0;
if (read == 0 && write == 0) {
/* if read and write are 0, cleanup existing data */
/* The code assumes that c-ares does a callback with read = 0 and write = 0
when the socket is closed. After we recieve this we stop monitoring the socket. */
if (uv_handle_ares != NULL) {
uv_req_t* uv_ares_req;
uv_handle_ares->h_close_event = CreateEvent(NULL, FALSE, FALSE, NULL);
/* remove Wait */
if (uv_handle_ares->h_wait) {
UnregisterWaitEx(uv_handle_ares->h_wait, uv_handle_ares->h_close_event);
uv_handle_ares->h_wait = NULL;
}
/* detach socket from the event */
WSAEventSelect(sock, NULL, 0);
if (uv_handle_ares->h_event != WSA_INVALID_EVENT) {
WSACloseEvent(uv_handle_ares->h_event);
uv_handle_ares->h_event = WSA_INVALID_EVENT;
}
/* remove handle from list */
uv_remove_ares_handle(uv_handle_ares);
/* Post request to cleanup the Task */
uv_ares_req = &uv_handle_ares->ares_req;
uv_req_init(uv_ares_req, (uv_handle_t*)uv_handle_ares, NULL);
uv_ares_req->type = UV_WAKEUP;
/* post ares done with socket - finish cleanup when all threads done. */
if (!PostQueuedCompletionStatus(uv_iocp_,
0,
0,
&uv_ares_req->overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
} else {
assert(0);
uv_fatal_error(ERROR_INVALID_DATA, "ares_SockStateCB");
}
} else {
if (uv_handle_ares == NULL) {
/* setup new handle */
/* The code assumes that c-ares will call us when it has an open socket.
We need to call into c-ares when there is something to read,
or when it becomes writable. */
uv_handle_ares = (uv_ares_task_t*)malloc(sizeof(uv_ares_task_t));
if (uv_handle_ares == NULL) {
uv_fatal_error(ERROR_OUTOFMEMORY, "malloc");
}
uv_handle_ares->type = UV_ARES_TASK;
uv_handle_ares->close_cb = NULL;
uv_handle_ares->data = uv_ares_data_ptr;
uv_handle_ares->sock = sock;
uv_handle_ares->h_wait = NULL;
uv_handle_ares->flags = 0;
/* create an event to wait on socket signal */
uv_handle_ares->h_event = WSACreateEvent();
if (uv_handle_ares->h_event == WSA_INVALID_EVENT) {
uv_fatal_error(WSAGetLastError(), "WSACreateEvent");
}
/* tie event to socket */
if (SOCKET_ERROR == WSAEventSelect(sock, uv_handle_ares->h_event, FD_READ | FD_WRITE | FD_CONNECT)) {
uv_fatal_error(WSAGetLastError(), "WSAEventSelect");
}
/* add handle to list */
uv_add_ares_handle(uv_handle_ares);
uv_refs_++;
/*
* we have a single polling timer for all ares sockets.
* This is preferred to using ares_timeout. See ares_timeout.c warning.
* if timer is not running start it, and keep socket count
*/
if (uv_ares_data_ptr->activesockets == 0) {
uv_timer_init(&uv_ares_data_ptr->pollingtimer);
uv_timer_start(&uv_ares_data_ptr->pollingtimer, uv_ares_poll, 1000L, 1000L);
}
uv_ares_data_ptr->activesockets++;
/* specify thread pool function to call when event is signaled */
if (RegisterWaitForSingleObject(&uv_handle_ares->h_wait,
uv_handle_ares->h_event,
uv_ares_socksignal_tp,
(void*)uv_handle_ares,
INFINITE,
WT_EXECUTEINWAITTHREAD) == 0) {
uv_fatal_error(GetLastError(), "RegisterWaitForSingleObject");
}
} else {
/* found existing handle. */
assert(uv_handle_ares->type == UV_ARES_TASK);
assert(uv_handle_ares->data != NULL);
assert(uv_handle_ares->h_event != WSA_INVALID_EVENT);
}
}
}
/* called via uv_poll when ares completion port signaled */
void uv_ares_process(uv_ares_action_t* handle, uv_req_t* req) {
uv_ares_channel_t* uv_ares_data_ptr = (uv_ares_channel_t*)handle->data;
ares_process_fd(uv_ares_data_ptr->channel,
handle->read ? handle->sock : INVALID_SOCKET,
handle->write ? handle->sock : INVALID_SOCKET);
/* release handle for select here */
free(handle);
}
/* called via uv_poll when ares is finished with socket */
void uv_ares_task_cleanup(uv_ares_task_t* handle, uv_req_t* req) {
/* check for event complete without waiting */
unsigned int signaled = WaitForSingleObject(handle->h_close_event, 0);
if (signaled != WAIT_TIMEOUT) {
uv_ares_channel_t* uv_ares_data_ptr = (uv_ares_channel_t*)handle->data;
uv_refs_--;
/* close event handle and free uv handle memory */
CloseHandle(handle->h_close_event);
free(handle);
/* decrement active count. if it becomes 0 stop polling */
if (uv_ares_data_ptr->activesockets > 0) {
uv_ares_data_ptr->activesockets--;
if (uv_ares_data_ptr->activesockets == 0) {
uv_close((uv_handle_t*)&uv_ares_data_ptr->pollingtimer, NULL);
}
}
} else {
/* stil busy - repost and try again */
if (!PostQueuedCompletionStatus(uv_iocp_,
0,
0,
&req->overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
}
}
/* periodically call ares to check for timeouts */
void uv_ares_poll(uv_timer_t* handle, int status) {
if (uv_ares_data.channel != NULL && uv_ares_data.activesockets > 0) {
ares_process_fd(uv_ares_data.channel, ARES_SOCKET_BAD, ARES_SOCKET_BAD);
}
}
/* set ares SOCK_STATE callback to our handler */
int uv_ares_init_options(ares_channel *channelptr,
struct ares_options *options,
int optmask) {
int rc;
/* only allow single init at a time */
if (uv_ares_data.channel != NULL) {
return UV_EALREADY;
}
/* set our callback as an option */
options->sock_state_cb = uv_ares_sockstate_cb;
options->sock_state_cb_data = &uv_ares_data;
optmask |= ARES_OPT_SOCK_STATE_CB;
/* We do the call to ares_init_option for caller. */
rc = ares_init_options(channelptr, options, optmask);
/* if success, save channel */
if (rc == ARES_SUCCESS) {
uv_ares_data.channel = *channelptr;
}
return rc;
}
/* release memory */
void uv_ares_destroy(ares_channel channel) {
/* only allow destroy if did init */
if (uv_ares_data.channel != NULL) {
ares_destroy(channel);
uv_ares_data.channel = NULL;
}
}
/*
* getaddrinfo error code mapping
* Falls back to uv_translate_sys_error if no match
*/
static uv_err_code uv_translate_eai_error(int eai_errno) {
switch (eai_errno) {
case ERROR_SUCCESS: return UV_OK;
case EAI_BADFLAGS: return UV_EBADF;
case EAI_FAIL: return UV_EFAULT;
case EAI_FAMILY: return UV_EAIFAMNOSUPPORT;
case EAI_MEMORY: return UV_ENOMEM;
case EAI_NONAME: return UV_EAINONAME;
case EAI_AGAIN: return UV_EAGAIN;
case EAI_SERVICE: return UV_EAISERVICE;
case EAI_SOCKTYPE: return UV_EAISOCKTYPE;
default: return uv_translate_sys_error(eai_errno);
}
}
/* getaddrinfo worker thread implementation */
static DWORD WINAPI getaddrinfo_thread_proc(void* parameter) {
uv_getaddrinfo_t* handle = (uv_getaddrinfo_t*)parameter;
int ret;
assert(handle != NULL);
if (handle != NULL) {
/* call OS function on this thread */
ret = GetAddrInfoW(handle->node, handle->service, handle->hints, &handle->res);
handle->retcode = ret;
/* post getaddrinfo completed */
if (!PostQueuedCompletionStatus(uv_iocp_,
0,
0,
&handle->getadddrinfo_req.overlapped)) {
uv_fatal_error(GetLastError(), "PostQueuedCompletionStatus");
}
}
return 0;
}
/*
* Called from uv_run when complete. Call user specified callback
* then free returned addrinfo
* Returned addrinfo strings are converted from UTF-16 to UTF-8.
*
* To minimize allocation we calculate total size required,
* and copy all structs and referenced strings into the one block.
* Each size calculation is adjusted to avoid unaligned pointers.
*/
static void uv_getaddrinfo_done(uv_getaddrinfo_t* handle, uv_req_t* req) {
int addrinfo_len = 0;
int name_len = 0;
size_t addrinfo_struct_len = ALIGNED_SIZE(sizeof(struct addrinfo));
struct addrinfoW* addrinfow_ptr;
struct addrinfo* addrinfo_ptr;
char* alloc_ptr = NULL;
char* cur_ptr = NULL;
uv_err_code uv_ret;
/* release input parameter memory */
if (handle->alloc != NULL) {
free(handle->alloc);
handle->alloc = NULL;
}
uv_ret = uv_translate_eai_error(handle->retcode);
if (handle->retcode == 0) {
/* convert addrinfoW to addrinfo */
/* first calculate required length */
addrinfow_ptr = handle->res;
while (addrinfow_ptr != NULL) {
addrinfo_len += addrinfo_struct_len + ALIGNED_SIZE(addrinfow_ptr->ai_addrlen);
if (addrinfow_ptr->ai_canonname != NULL) {
name_len = uv_utf16_to_utf8(addrinfow_ptr->ai_canonname, -1, NULL, 0);
if (name_len == 0) {
uv_ret = uv_translate_sys_error(GetLastError());
goto complete;
}
addrinfo_len += ALIGNED_SIZE(name_len);
}
addrinfow_ptr = addrinfow_ptr->ai_next;
}
/* allocate memory for addrinfo results */
alloc_ptr = (char*)malloc(addrinfo_len);
/* do conversions */
if (alloc_ptr != NULL) {
cur_ptr = alloc_ptr;
addrinfow_ptr = handle->res;
while (addrinfow_ptr != NULL) {
/* copy addrinfo struct data */
assert(cur_ptr + addrinfo_struct_len <= alloc_ptr + addrinfo_len);
addrinfo_ptr = (struct addrinfo*)cur_ptr;
addrinfo_ptr->ai_family = addrinfow_ptr->ai_family;
addrinfo_ptr->ai_socktype = addrinfow_ptr->ai_socktype;
addrinfo_ptr->ai_protocol = addrinfow_ptr->ai_protocol;
addrinfo_ptr->ai_flags = addrinfow_ptr->ai_flags;
addrinfo_ptr->ai_addrlen = addrinfow_ptr->ai_addrlen;
addrinfo_ptr->ai_canonname = NULL;
addrinfo_ptr->ai_addr = NULL;
addrinfo_ptr->ai_next = NULL;
cur_ptr += addrinfo_struct_len;
/* copy sockaddr */
if (addrinfo_ptr->ai_addrlen > 0) {
assert(cur_ptr + addrinfo_ptr->ai_addrlen <= alloc_ptr + addrinfo_len);
memcpy(cur_ptr, addrinfow_ptr->ai_addr, addrinfo_ptr->ai_addrlen);
addrinfo_ptr->ai_addr = (struct sockaddr*)cur_ptr;
cur_ptr += ALIGNED_SIZE(addrinfo_ptr->ai_addrlen);
}
/* convert canonical name to UTF-8 */
if (addrinfow_ptr->ai_canonname != NULL) {
name_len = uv_utf16_to_utf8(addrinfow_ptr->ai_canonname, -1, NULL, 0);
assert(name_len > 0);
assert(cur_ptr + name_len <= alloc_ptr + addrinfo_len);
name_len = uv_utf16_to_utf8(addrinfow_ptr->ai_canonname, -1, cur_ptr, name_len);
assert(name_len > 0);
addrinfo_ptr->ai_canonname = cur_ptr;
cur_ptr += ALIGNED_SIZE(name_len);
}
assert(cur_ptr <= alloc_ptr + addrinfo_len);
/* set next ptr */
addrinfow_ptr = addrinfow_ptr->ai_next;
if (addrinfow_ptr != NULL) {
addrinfo_ptr->ai_next = (struct addrinfo*)cur_ptr;
}
}
} else {
uv_ret = UV_ENOMEM;
}
}
/* return memory to system */
if (handle->res != NULL) {
FreeAddrInfoW(handle->res);
handle->res = NULL;
}
complete:
/* finally do callback with converted result */
handle->getaddrinfo_cb(handle, uv_ret, (struct addrinfo*)alloc_ptr);
/* release copied result memory */
if (alloc_ptr != NULL) {
free(alloc_ptr);
}
uv_refs_--;
}
/*
* Entry point for getaddrinfo
* we convert the UTF-8 strings to UNICODE
* and save the UNICODE string pointers in the handle
* We also copy hints so that caller does not need to keep memory until the callback.
* return UV_OK if a callback will be made
* return error code if validation fails
*
* To minimize allocation we calculate total size required,
* and copy all structs and referenced strings into the one block.
* Each size calculation is adjusted to avoid unaligned pointers.
*/
int uv_getaddrinfo(uv_getaddrinfo_t* handle,
uv_getaddrinfo_cb getaddrinfo_cb,
const char* node,
const char* service,
const struct addrinfo* hints) {
int nodesize = 0;
int servicesize = 0;
int hintssize = 0;
char* alloc_ptr = NULL;
if (handle == NULL || getaddrinfo_cb == NULL ||
(node == NULL && service == NULL)) {
uv_set_sys_error(WSAEINVAL);
goto error;
}
handle->getaddrinfo_cb = getaddrinfo_cb;
handle->res = NULL;
handle->type = UV_GETADDRINFO;
/* calculate required memory size for all input values */
if (node != NULL) {
nodesize = ALIGNED_SIZE(uv_utf8_to_utf16(node, NULL, 0) * sizeof(wchar_t));
if (nodesize == 0) {
uv_set_sys_error(GetLastError());
goto error;
}
}
if (service != NULL) {
servicesize = ALIGNED_SIZE(uv_utf8_to_utf16(service, NULL, 0) * sizeof(wchar_t));
if (servicesize == 0) {
uv_set_sys_error(GetLastError());
goto error;
}
}
if (hints != NULL) {
hintssize = ALIGNED_SIZE(sizeof(struct addrinfoW));
}
/* allocate memory for inputs, and partition it as needed */
alloc_ptr = (char*)malloc(nodesize + servicesize + hintssize);
if (!alloc_ptr) {
uv_set_sys_error(WSAENOBUFS);
goto error;
}
/* save alloc_ptr now so we can free if error */
handle->alloc = (void*)alloc_ptr;
/* convert node string to UTF16 into allocated memory and save pointer in handle */
if (node != NULL) {
handle->node = (wchar_t*)alloc_ptr;
if (uv_utf8_to_utf16(node, (wchar_t*)alloc_ptr, nodesize / sizeof(wchar_t)) == 0) {
uv_set_sys_error(GetLastError());
goto error;
}
alloc_ptr += nodesize;
} else {
handle->node = NULL;
}
/* convert service string to UTF16 into allocated memory and save pointer in handle */
if (service != NULL) {
handle->service = (wchar_t*)alloc_ptr;
if (uv_utf8_to_utf16(service, (wchar_t*)alloc_ptr, servicesize / sizeof(wchar_t)) == 0) {
uv_set_sys_error(GetLastError());
goto error;
}
alloc_ptr += servicesize;
} else {
handle->service = NULL;
}
/* copy hints to allocated memory and save pointer in handle */
if (hints != NULL) {
handle->hints = (struct addrinfoW*)alloc_ptr;
handle->hints->ai_family = hints->ai_family;
handle->hints->ai_socktype = hints->ai_socktype;
handle->hints->ai_protocol = hints->ai_protocol;
handle->hints->ai_flags = hints->ai_flags;
handle->hints->ai_addrlen = 0;
handle->hints->ai_canonname = NULL;
handle->hints->ai_addr = NULL;
handle->hints->ai_next = NULL;
} else {
handle->hints = NULL;
}
/* init request for Post handling */
uv_req_init(&handle->getadddrinfo_req, (uv_handle_t*)handle, NULL);
handle->getadddrinfo_req.type = UV_WAKEUP;
/* Ask thread to run. Treat this as a long operation */
if (QueueUserWorkItem(&getaddrinfo_thread_proc, handle, WT_EXECUTELONGFUNCTION) == 0) {
uv_set_sys_error(GetLastError());
goto error;
}
uv_refs_++;
return 0;
error:
if (handle != NULL && handle->alloc != NULL) {
free(handle->alloc);
}
return -1;
}