mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
10 KiB
394 lines
10 KiB
// Copyright 2009 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// This benchmark is based on a JavaScript log processing module used
|
|
// by the V8 profiler to generate execution time profiles for runs of
|
|
// JavaScript applications, and it effectively measures how fast the
|
|
// JavaScript engine is at allocating nodes and reclaiming the memory
|
|
// used for old nodes. Because of the way splay trees work, the engine
|
|
// also has to deal with a lot of changes to the large tree object
|
|
// graph.
|
|
|
|
var Splay = new BenchmarkSuite('Splay', 81491, [
|
|
new Benchmark("Splay", SplayRun, SplaySetup, SplayTearDown)
|
|
]);
|
|
|
|
|
|
// Configuration.
|
|
var kSplayTreeSize = 8000;
|
|
var kSplayTreeModifications = 80;
|
|
var kSplayTreePayloadDepth = 5;
|
|
|
|
var splayTree = null;
|
|
|
|
|
|
function GeneratePayloadTree(depth, tag) {
|
|
if (depth == 0) {
|
|
return {
|
|
array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
|
|
string : 'String for key ' + tag + ' in leaf node'
|
|
};
|
|
} else {
|
|
return {
|
|
left: GeneratePayloadTree(depth - 1, tag),
|
|
right: GeneratePayloadTree(depth - 1, tag)
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
function GenerateKey() {
|
|
// The benchmark framework guarantees that Math.random is
|
|
// deterministic; see base.js.
|
|
return Math.random();
|
|
}
|
|
|
|
|
|
function InsertNewNode() {
|
|
// Insert new node with a unique key.
|
|
var key;
|
|
do {
|
|
key = GenerateKey();
|
|
} while (splayTree.find(key) != null);
|
|
var payload = GeneratePayloadTree(kSplayTreePayloadDepth, String(key));
|
|
splayTree.insert(key, payload);
|
|
return key;
|
|
}
|
|
|
|
|
|
|
|
function SplaySetup() {
|
|
splayTree = new SplayTree();
|
|
for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode();
|
|
}
|
|
|
|
|
|
function SplayTearDown() {
|
|
// Allow the garbage collector to reclaim the memory
|
|
// used by the splay tree no matter how we exit the
|
|
// tear down function.
|
|
var keys = splayTree.exportKeys();
|
|
splayTree = null;
|
|
|
|
// Verify that the splay tree has the right size.
|
|
var length = keys.length;
|
|
if (length != kSplayTreeSize) {
|
|
throw new Error("Splay tree has wrong size");
|
|
}
|
|
|
|
// Verify that the splay tree has sorted, unique keys.
|
|
for (var i = 0; i < length - 1; i++) {
|
|
if (keys[i] >= keys[i + 1]) {
|
|
throw new Error("Splay tree not sorted");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
function SplayRun() {
|
|
// Replace a few nodes in the splay tree.
|
|
for (var i = 0; i < kSplayTreeModifications; i++) {
|
|
var key = InsertNewNode();
|
|
var greatest = splayTree.findGreatestLessThan(key);
|
|
if (greatest == null) splayTree.remove(key);
|
|
else splayTree.remove(greatest.key);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Constructs a Splay tree. A splay tree is a self-balancing binary
|
|
* search tree with the additional property that recently accessed
|
|
* elements are quick to access again. It performs basic operations
|
|
* such as insertion, look-up and removal in O(log(n)) amortized time.
|
|
*
|
|
* @constructor
|
|
*/
|
|
function SplayTree() {
|
|
};
|
|
|
|
|
|
/**
|
|
* Pointer to the root node of the tree.
|
|
*
|
|
* @type {SplayTree.Node}
|
|
* @private
|
|
*/
|
|
SplayTree.prototype.root_ = null;
|
|
|
|
|
|
/**
|
|
* @return {boolean} Whether the tree is empty.
|
|
*/
|
|
SplayTree.prototype.isEmpty = function() {
|
|
return !this.root_;
|
|
};
|
|
|
|
|
|
/**
|
|
* Inserts a node into the tree with the specified key and value if
|
|
* the tree does not already contain a node with the specified key. If
|
|
* the value is inserted, it becomes the root of the tree.
|
|
*
|
|
* @param {number} key Key to insert into the tree.
|
|
* @param {*} value Value to insert into the tree.
|
|
*/
|
|
SplayTree.prototype.insert = function(key, value) {
|
|
if (this.isEmpty()) {
|
|
this.root_ = new SplayTree.Node(key, value);
|
|
return;
|
|
}
|
|
// Splay on the key to move the last node on the search path for
|
|
// the key to the root of the tree.
|
|
this.splay_(key);
|
|
if (this.root_.key == key) {
|
|
return;
|
|
}
|
|
var node = new SplayTree.Node(key, value);
|
|
if (key > this.root_.key) {
|
|
node.left = this.root_;
|
|
node.right = this.root_.right;
|
|
this.root_.right = null;
|
|
} else {
|
|
node.right = this.root_;
|
|
node.left = this.root_.left;
|
|
this.root_.left = null;
|
|
}
|
|
this.root_ = node;
|
|
};
|
|
|
|
|
|
/**
|
|
* Removes a node with the specified key from the tree if the tree
|
|
* contains a node with this key. The removed node is returned. If the
|
|
* key is not found, an exception is thrown.
|
|
*
|
|
* @param {number} key Key to find and remove from the tree.
|
|
* @return {SplayTree.Node} The removed node.
|
|
*/
|
|
SplayTree.prototype.remove = function(key) {
|
|
if (this.isEmpty()) {
|
|
throw Error('Key not found: ' + key);
|
|
}
|
|
this.splay_(key);
|
|
if (this.root_.key != key) {
|
|
throw Error('Key not found: ' + key);
|
|
}
|
|
var removed = this.root_;
|
|
if (!this.root_.left) {
|
|
this.root_ = this.root_.right;
|
|
} else {
|
|
var right = this.root_.right;
|
|
this.root_ = this.root_.left;
|
|
// Splay to make sure that the new root has an empty right child.
|
|
this.splay_(key);
|
|
// Insert the original right child as the right child of the new
|
|
// root.
|
|
this.root_.right = right;
|
|
}
|
|
return removed;
|
|
};
|
|
|
|
|
|
/**
|
|
* Returns the node having the specified key or null if the tree doesn't contain
|
|
* a node with the specified key.
|
|
*
|
|
* @param {number} key Key to find in the tree.
|
|
* @return {SplayTree.Node} Node having the specified key.
|
|
*/
|
|
SplayTree.prototype.find = function(key) {
|
|
if (this.isEmpty()) {
|
|
return null;
|
|
}
|
|
this.splay_(key);
|
|
return this.root_.key == key ? this.root_ : null;
|
|
};
|
|
|
|
|
|
/**
|
|
* @return {SplayTree.Node} Node having the maximum key value.
|
|
*/
|
|
SplayTree.prototype.findMax = function(opt_startNode) {
|
|
if (this.isEmpty()) {
|
|
return null;
|
|
}
|
|
var current = opt_startNode || this.root_;
|
|
while (current.right) {
|
|
current = current.right;
|
|
}
|
|
return current;
|
|
};
|
|
|
|
|
|
/**
|
|
* @return {SplayTree.Node} Node having the maximum key value that
|
|
* is less than the specified key value.
|
|
*/
|
|
SplayTree.prototype.findGreatestLessThan = function(key) {
|
|
if (this.isEmpty()) {
|
|
return null;
|
|
}
|
|
// Splay on the key to move the node with the given key or the last
|
|
// node on the search path to the top of the tree.
|
|
this.splay_(key);
|
|
// Now the result is either the root node or the greatest node in
|
|
// the left subtree.
|
|
if (this.root_.key < key) {
|
|
return this.root_;
|
|
} else if (this.root_.left) {
|
|
return this.findMax(this.root_.left);
|
|
} else {
|
|
return null;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* @return {Array<*>} An array containing all the keys of tree's nodes.
|
|
*/
|
|
SplayTree.prototype.exportKeys = function() {
|
|
var result = [];
|
|
if (!this.isEmpty()) {
|
|
this.root_.traverse_(function(node) { result.push(node.key); });
|
|
}
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Perform the splay operation for the given key. Moves the node with
|
|
* the given key to the top of the tree. If no node has the given
|
|
* key, the last node on the search path is moved to the top of the
|
|
* tree. This is the simplified top-down splaying algorithm from:
|
|
* "Self-adjusting Binary Search Trees" by Sleator and Tarjan
|
|
*
|
|
* @param {number} key Key to splay the tree on.
|
|
* @private
|
|
*/
|
|
SplayTree.prototype.splay_ = function(key) {
|
|
if (this.isEmpty()) {
|
|
return;
|
|
}
|
|
// Create a dummy node. The use of the dummy node is a bit
|
|
// counter-intuitive: The right child of the dummy node will hold
|
|
// the L tree of the algorithm. The left child of the dummy node
|
|
// will hold the R tree of the algorithm. Using a dummy node, left
|
|
// and right will always be nodes and we avoid special cases.
|
|
var dummy, left, right;
|
|
dummy = left = right = new SplayTree.Node(null, null);
|
|
var current = this.root_;
|
|
while (true) {
|
|
if (key < current.key) {
|
|
if (!current.left) {
|
|
break;
|
|
}
|
|
if (key < current.left.key) {
|
|
// Rotate right.
|
|
var tmp = current.left;
|
|
current.left = tmp.right;
|
|
tmp.right = current;
|
|
current = tmp;
|
|
if (!current.left) {
|
|
break;
|
|
}
|
|
}
|
|
// Link right.
|
|
right.left = current;
|
|
right = current;
|
|
current = current.left;
|
|
} else if (key > current.key) {
|
|
if (!current.right) {
|
|
break;
|
|
}
|
|
if (key > current.right.key) {
|
|
// Rotate left.
|
|
var tmp = current.right;
|
|
current.right = tmp.left;
|
|
tmp.left = current;
|
|
current = tmp;
|
|
if (!current.right) {
|
|
break;
|
|
}
|
|
}
|
|
// Link left.
|
|
left.right = current;
|
|
left = current;
|
|
current = current.right;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
// Assemble.
|
|
left.right = current.left;
|
|
right.left = current.right;
|
|
current.left = dummy.right;
|
|
current.right = dummy.left;
|
|
this.root_ = current;
|
|
};
|
|
|
|
|
|
/**
|
|
* Constructs a Splay tree node.
|
|
*
|
|
* @param {number} key Key.
|
|
* @param {*} value Value.
|
|
*/
|
|
SplayTree.Node = function(key, value) {
|
|
this.key = key;
|
|
this.value = value;
|
|
};
|
|
|
|
|
|
/**
|
|
* @type {SplayTree.Node}
|
|
*/
|
|
SplayTree.Node.prototype.left = null;
|
|
|
|
|
|
/**
|
|
* @type {SplayTree.Node}
|
|
*/
|
|
SplayTree.Node.prototype.right = null;
|
|
|
|
|
|
/**
|
|
* Performs an ordered traversal of the subtree starting at
|
|
* this SplayTree.Node.
|
|
*
|
|
* @param {function(SplayTree.Node)} f Visitor function.
|
|
* @private
|
|
*/
|
|
SplayTree.Node.prototype.traverse_ = function(f) {
|
|
var current = this;
|
|
while (current) {
|
|
var left = current.left;
|
|
if (left) left.traverse_(f);
|
|
f(current);
|
|
current = current.right;
|
|
}
|
|
};
|
|
|