mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
669 lines
22 KiB
669 lines
22 KiB
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef SRC_STRING_SEARCH_H_
|
|
#define SRC_STRING_SEARCH_H_
|
|
|
|
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
|
|
|
|
#include "node.h"
|
|
#include <string.h>
|
|
|
|
namespace node {
|
|
namespace stringsearch {
|
|
|
|
|
|
// Returns the maximum of the two parameters.
|
|
template <typename T>
|
|
T Max(T a, T b) {
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
|
|
static const uint32_t kMaxOneByteCharCodeU = 0xff;
|
|
|
|
template <typename T>
|
|
class Vector {
|
|
public:
|
|
Vector(T* data, size_t length, bool isForward)
|
|
: start_(data), length_(length), is_forward_(isForward) {
|
|
ASSERT(length > 0 && data != nullptr);
|
|
}
|
|
|
|
// Returns the start of the memory range.
|
|
// For vector v this is NOT necessarily &v[0], see forward().
|
|
const T* start() const { return start_; }
|
|
|
|
// Returns the length of the vector, in characters.
|
|
size_t length() const { return length_; }
|
|
|
|
// Returns true if the Vector is front-to-back, false if back-to-front.
|
|
// In the latter case, v[0] corresponds to the *end* of the memory range.
|
|
size_t forward() const { return is_forward_; }
|
|
|
|
// Access individual vector elements - checks bounds in debug mode.
|
|
T& operator[](size_t index) const {
|
|
ASSERT(index < length_);
|
|
return start_[is_forward_ ? index : (length_ - index - 1)];
|
|
}
|
|
|
|
private:
|
|
T* start_;
|
|
size_t length_;
|
|
bool is_forward_;
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
// String Search object.
|
|
//---------------------------------------------------------------------
|
|
|
|
// Class holding constants and methods that apply to all string search variants,
|
|
// independently of subject and pattern char size.
|
|
class StringSearchBase {
|
|
protected:
|
|
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
|
|
// limit, we can fix the size of tables. For a needle longer than this limit,
|
|
// search will not be optimal, since we only build tables for a suffix
|
|
// of the string, but it is a safe approximation.
|
|
static const int kBMMaxShift = 250;
|
|
|
|
// Reduce alphabet to this size.
|
|
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
|
|
// proportional to the input alphabet. We reduce the alphabet size by
|
|
// equating input characters modulo a smaller alphabet size. This gives
|
|
// a potentially less efficient searching, but is a safe approximation.
|
|
// For needles using only characters in the same Unicode 256-code point page,
|
|
// there is no search speed degradation.
|
|
static const int kLatin1AlphabetSize = 256;
|
|
static const int kUC16AlphabetSize = 256;
|
|
|
|
// Bad-char shift table stored in the state. It's length is the alphabet size.
|
|
// For patterns below this length, the skip length of Boyer-Moore is too short
|
|
// to compensate for the algorithmic overhead compared to simple brute force.
|
|
static const int kBMMinPatternLength = 8;
|
|
|
|
// Store for the BoyerMoore(Horspool) bad char shift table.
|
|
static int kBadCharShiftTable[kUC16AlphabetSize];
|
|
// Store for the BoyerMoore good suffix shift table.
|
|
static int kGoodSuffixShiftTable[kBMMaxShift + 1];
|
|
// Table used temporarily while building the BoyerMoore good suffix
|
|
// shift table.
|
|
static int kSuffixTable[kBMMaxShift + 1];
|
|
};
|
|
|
|
template <typename Char>
|
|
class StringSearch : private StringSearchBase {
|
|
public:
|
|
explicit StringSearch(Vector<const Char> pattern)
|
|
: pattern_(pattern), start_(0) {
|
|
if (pattern.length() >= kBMMaxShift) {
|
|
start_ = pattern.length() - kBMMaxShift;
|
|
}
|
|
|
|
size_t pattern_length = pattern_.length();
|
|
CHECK_GT(pattern_length, 0);
|
|
if (pattern_length < kBMMinPatternLength) {
|
|
if (pattern_length == 1) {
|
|
strategy_ = &SingleCharSearch;
|
|
return;
|
|
}
|
|
strategy_ = &LinearSearch;
|
|
return;
|
|
}
|
|
strategy_ = &InitialSearch;
|
|
}
|
|
|
|
size_t Search(Vector<const Char> subject, size_t index) {
|
|
return strategy_(this, subject, index);
|
|
}
|
|
|
|
static inline int AlphabetSize() {
|
|
if (sizeof(Char) == 1) {
|
|
// Latin1 needle.
|
|
return kLatin1AlphabetSize;
|
|
} else {
|
|
// UC16 needle.
|
|
return kUC16AlphabetSize;
|
|
}
|
|
|
|
static_assert(sizeof(Char) == sizeof(uint8_t) ||
|
|
sizeof(Char) == sizeof(uint16_t),
|
|
"sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)");
|
|
}
|
|
|
|
private:
|
|
typedef size_t (*SearchFunction)(
|
|
StringSearch<Char>*,
|
|
Vector<const Char>,
|
|
size_t);
|
|
|
|
static size_t SingleCharSearch(StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index);
|
|
|
|
static size_t LinearSearch(StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index);
|
|
|
|
static size_t InitialSearch(StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index);
|
|
|
|
static size_t BoyerMooreHorspoolSearch(
|
|
StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index);
|
|
|
|
static size_t BoyerMooreSearch(StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index);
|
|
|
|
void PopulateBoyerMooreHorspoolTable();
|
|
|
|
void PopulateBoyerMooreTable();
|
|
|
|
static inline int CharOccurrence(int* bad_char_occurrence,
|
|
Char char_code) {
|
|
if (sizeof(Char) == 1) {
|
|
return bad_char_occurrence[static_cast<int>(char_code)];
|
|
}
|
|
// Both pattern and subject are UC16. Reduce character to equivalence class.
|
|
int equiv_class = char_code % kUC16AlphabetSize;
|
|
return bad_char_occurrence[equiv_class];
|
|
}
|
|
|
|
// Store for the BoyerMoore(Horspool) bad char shift table.
|
|
// Return a table covering the last kBMMaxShift+1 positions of
|
|
// pattern.
|
|
int* bad_char_table() { return kBadCharShiftTable; }
|
|
|
|
// Store for the BoyerMoore good suffix shift table.
|
|
int* good_suffix_shift_table() {
|
|
// Return biased pointer that maps the range [start_..pattern_.length()
|
|
// to the kGoodSuffixShiftTable array.
|
|
return kGoodSuffixShiftTable - start_;
|
|
}
|
|
|
|
// Table used temporarily while building the BoyerMoore good suffix
|
|
// shift table.
|
|
int* suffix_table() {
|
|
// Return biased pointer that maps the range [start_..pattern_.length()
|
|
// to the kSuffixTable array.
|
|
return kSuffixTable - start_;
|
|
}
|
|
|
|
// The pattern to search for.
|
|
Vector<const Char> pattern_;
|
|
// Pointer to implementation of the search.
|
|
SearchFunction strategy_;
|
|
// Cache value of Max(0, pattern_length() - kBMMaxShift)
|
|
size_t start_;
|
|
};
|
|
|
|
|
|
template <typename T, typename U>
|
|
inline T AlignDown(T value, U alignment) {
|
|
return reinterpret_cast<T>(
|
|
(reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
|
|
}
|
|
|
|
|
|
inline uint8_t GetHighestValueByte(uint16_t character) {
|
|
return Max(static_cast<uint8_t>(character & 0xFF),
|
|
static_cast<uint8_t>(character >> 8));
|
|
}
|
|
|
|
|
|
inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
|
|
|
|
|
|
// Searches for a byte value in a memory buffer, back to front.
|
|
// Uses memrchr(3) on systems which support it, for speed.
|
|
// Falls back to a vanilla for loop on non-GNU systems such as Windows.
|
|
inline const void* MemrchrFill(const void* haystack, uint8_t needle,
|
|
size_t haystack_len) {
|
|
#ifdef _GNU_SOURCE
|
|
return memrchr(haystack, needle, haystack_len);
|
|
#else
|
|
const uint8_t* haystack8 = static_cast<const uint8_t*>(haystack);
|
|
for (size_t i = haystack_len - 1; i != static_cast<size_t>(-1); i--) {
|
|
if (haystack8[i] == needle) {
|
|
return haystack8 + i;
|
|
}
|
|
}
|
|
return nullptr;
|
|
#endif
|
|
}
|
|
|
|
|
|
// Finds the first occurence of *two-byte* character pattern[0] in the string
|
|
// `subject`. Does not check that the whole pattern matches.
|
|
template <typename Char>
|
|
inline size_t FindFirstCharacter(Vector<const Char> pattern,
|
|
Vector<const Char> subject, size_t index) {
|
|
const Char pattern_first_char = pattern[0];
|
|
const size_t max_n = (subject.length() - pattern.length() + 1);
|
|
|
|
// For speed, search for the more `rare` of the two bytes in pattern[0]
|
|
// using memchr / memrchr (which are much faster than a simple for loop).
|
|
const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
|
|
size_t pos = index;
|
|
do {
|
|
const size_t bytes_to_search = (max_n - pos) * sizeof(Char);
|
|
const void* void_pos;
|
|
if (subject.forward()) {
|
|
// Assert that bytes_to_search won't overflow
|
|
CHECK_LE(pos, max_n);
|
|
CHECK_LE(max_n - pos, SIZE_MAX / sizeof(Char));
|
|
void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search);
|
|
} else {
|
|
CHECK_LE(pos, subject.length());
|
|
CHECK_LE(subject.length() - pos, SIZE_MAX / sizeof(Char));
|
|
void_pos = MemrchrFill(subject.start() + pattern.length() - 1,
|
|
search_byte,
|
|
bytes_to_search);
|
|
}
|
|
const Char* char_pos = static_cast<const Char*>(void_pos);
|
|
if (char_pos == nullptr)
|
|
return subject.length();
|
|
|
|
// Then, for each match, verify that the full two bytes match pattern[0].
|
|
char_pos = AlignDown(char_pos, sizeof(Char));
|
|
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
|
|
pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1);
|
|
if (subject[pos] == pattern_first_char) {
|
|
// Match found, hooray.
|
|
return pos;
|
|
}
|
|
// Search byte matched, but the other byte of pattern[0] didn't. Keep going.
|
|
} while (++pos < max_n);
|
|
|
|
return subject.length();
|
|
}
|
|
|
|
|
|
// Finds the first occurance of the byte pattern[0] in string `subject`.
|
|
// Does not verify that the whole pattern matches.
|
|
template <>
|
|
inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
|
|
Vector<const uint8_t> subject,
|
|
size_t index) {
|
|
const uint8_t pattern_first_char = pattern[0];
|
|
const size_t subj_len = subject.length();
|
|
const size_t max_n = (subject.length() - pattern.length() + 1);
|
|
|
|
const void* pos;
|
|
if (subject.forward()) {
|
|
pos = memchr(subject.start() + index, pattern_first_char, max_n - index);
|
|
} else {
|
|
pos = MemrchrFill(subject.start() + pattern.length() - 1,
|
|
pattern_first_char,
|
|
max_n - index);
|
|
}
|
|
const uint8_t* char_pos = static_cast<const uint8_t*>(pos);
|
|
if (char_pos == nullptr) {
|
|
return subj_len;
|
|
}
|
|
|
|
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
|
|
return subject.forward() ? raw_pos : (subj_len - raw_pos - 1);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Single Character Pattern Search Strategy
|
|
//---------------------------------------------------------------------
|
|
|
|
template <typename Char>
|
|
size_t StringSearch<Char>::SingleCharSearch(
|
|
StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t index) {
|
|
CHECK_EQ(1, search->pattern_.length());
|
|
return FindFirstCharacter(search->pattern_, subject, index);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Linear Search Strategy
|
|
//---------------------------------------------------------------------
|
|
|
|
// Simple linear search for short patterns. Never bails out.
|
|
template <typename Char>
|
|
size_t StringSearch<Char>::LinearSearch(
|
|
StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t index) {
|
|
Vector<const Char> pattern = search->pattern_;
|
|
CHECK_GT(pattern.length(), 1);
|
|
const size_t pattern_length = pattern.length();
|
|
const size_t n = subject.length() - pattern_length;
|
|
for (size_t i = index; i <= n; i++) {
|
|
i = FindFirstCharacter(pattern, subject, i);
|
|
if (i == subject.length())
|
|
return subject.length();
|
|
ASSERT_LE(i, n);
|
|
|
|
bool matches = true;
|
|
for (size_t j = 1; j < pattern_length; j++) {
|
|
if (pattern[j] != subject[i + j]) {
|
|
matches = false;
|
|
break;
|
|
}
|
|
}
|
|
if (matches) {
|
|
return i;
|
|
}
|
|
}
|
|
return subject.length();
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Boyer-Moore string search
|
|
//---------------------------------------------------------------------
|
|
|
|
template <typename Char>
|
|
size_t StringSearch<Char>::BoyerMooreSearch(
|
|
StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index) {
|
|
Vector<const Char> pattern = search->pattern_;
|
|
const size_t subject_length = subject.length();
|
|
const size_t pattern_length = pattern.length();
|
|
// Only preprocess at most kBMMaxShift last characters of pattern.
|
|
size_t start = search->start_;
|
|
|
|
int* bad_char_occurence = search->bad_char_table();
|
|
int* good_suffix_shift = search->good_suffix_shift_table();
|
|
|
|
Char last_char = pattern[pattern_length - 1];
|
|
size_t index = start_index;
|
|
// Continue search from i.
|
|
while (index <= subject_length - pattern_length) {
|
|
size_t j = pattern_length - 1;
|
|
int c;
|
|
while (last_char != (c = subject[index + j])) {
|
|
int shift = j - CharOccurrence(bad_char_occurence, c);
|
|
index += shift;
|
|
if (index > subject_length - pattern_length) {
|
|
return subject.length();
|
|
}
|
|
}
|
|
while (pattern[j] == (c = subject[index + j])) {
|
|
if (j == 0) {
|
|
return index;
|
|
}
|
|
j--;
|
|
}
|
|
if (j < start) {
|
|
// we have matched more than our tables allow us to be smart about.
|
|
// Fall back on BMH shift.
|
|
index += pattern_length - 1 -
|
|
CharOccurrence(bad_char_occurence,
|
|
static_cast<Char>(last_char));
|
|
} else {
|
|
int gs_shift = good_suffix_shift[j + 1];
|
|
int bc_occ = CharOccurrence(bad_char_occurence, c);
|
|
int shift = j - bc_occ;
|
|
if (gs_shift > shift) {
|
|
shift = gs_shift;
|
|
}
|
|
index += shift;
|
|
}
|
|
}
|
|
|
|
return subject.length();
|
|
}
|
|
|
|
template <typename Char>
|
|
void StringSearch<Char>::PopulateBoyerMooreTable() {
|
|
const size_t pattern_length = pattern_.length();
|
|
Vector<const Char> pattern = pattern_;
|
|
// Only look at the last kBMMaxShift characters of pattern (from start_
|
|
// to pattern_length).
|
|
const size_t start = start_;
|
|
const size_t length = pattern_length - start;
|
|
|
|
// Biased tables so that we can use pattern indices as table indices,
|
|
// even if we only cover the part of the pattern from offset start.
|
|
int* shift_table = good_suffix_shift_table();
|
|
int* suffix_table = this->suffix_table();
|
|
|
|
// Initialize table.
|
|
for (size_t i = start; i < pattern_length; i++) {
|
|
shift_table[i] = length;
|
|
}
|
|
shift_table[pattern_length] = 1;
|
|
suffix_table[pattern_length] = pattern_length + 1;
|
|
|
|
if (pattern_length <= start) {
|
|
return;
|
|
}
|
|
|
|
// Find suffixes.
|
|
Char last_char = pattern_[pattern_length - 1];
|
|
size_t suffix = pattern_length + 1;
|
|
{
|
|
size_t i = pattern_length;
|
|
while (i > start) {
|
|
Char c = pattern[i - 1];
|
|
while (suffix <= pattern_length && c != pattern[suffix - 1]) {
|
|
if (static_cast<size_t>(shift_table[suffix]) == length) {
|
|
shift_table[suffix] = suffix - i;
|
|
}
|
|
suffix = suffix_table[suffix];
|
|
}
|
|
suffix_table[--i] = --suffix;
|
|
if (suffix == pattern_length) {
|
|
// No suffix to extend, so we check against last_char only.
|
|
while ((i > start) && (pattern[i - 1] != last_char)) {
|
|
if (static_cast<size_t>(shift_table[pattern_length]) == length) {
|
|
shift_table[pattern_length] = pattern_length - i;
|
|
}
|
|
suffix_table[--i] = pattern_length;
|
|
}
|
|
if (i > start) {
|
|
suffix_table[--i] = --suffix;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Build shift table using suffixes.
|
|
if (suffix < pattern_length) {
|
|
for (size_t i = start; i <= pattern_length; i++) {
|
|
if (static_cast<size_t>(shift_table[i]) == length) {
|
|
shift_table[i] = suffix - start;
|
|
}
|
|
if (i == suffix) {
|
|
suffix = suffix_table[suffix];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Boyer-Moore-Horspool string search.
|
|
//---------------------------------------------------------------------
|
|
|
|
template <typename Char>
|
|
size_t StringSearch<Char>::BoyerMooreHorspoolSearch(
|
|
StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t start_index) {
|
|
Vector<const Char> pattern = search->pattern_;
|
|
const size_t subject_length = subject.length();
|
|
const size_t pattern_length = pattern.length();
|
|
int* char_occurrences = search->bad_char_table();
|
|
int64_t badness = -pattern_length;
|
|
|
|
// How bad we are doing without a good-suffix table.
|
|
Char last_char = pattern[pattern_length - 1];
|
|
int last_char_shift =
|
|
pattern_length - 1 -
|
|
CharOccurrence(char_occurrences, static_cast<Char>(last_char));
|
|
|
|
// Perform search
|
|
size_t index = start_index; // No matches found prior to this index.
|
|
while (index <= subject_length - pattern_length) {
|
|
size_t j = pattern_length - 1;
|
|
int subject_char;
|
|
while (last_char != (subject_char = subject[index + j])) {
|
|
int bc_occ = CharOccurrence(char_occurrences, subject_char);
|
|
int shift = j - bc_occ;
|
|
index += shift;
|
|
badness += 1 - shift; // at most zero, so badness cannot increase.
|
|
if (index > subject_length - pattern_length) {
|
|
return subject_length;
|
|
}
|
|
}
|
|
j--;
|
|
while (pattern[j] == (subject[index + j])) {
|
|
if (j == 0) {
|
|
return index;
|
|
}
|
|
j--;
|
|
}
|
|
index += last_char_shift;
|
|
// Badness increases by the number of characters we have
|
|
// checked, and decreases by the number of characters we
|
|
// can skip by shifting. It's a measure of how we are doing
|
|
// compared to reading each character exactly once.
|
|
badness += (pattern_length - j) - last_char_shift;
|
|
if (badness > 0) {
|
|
search->PopulateBoyerMooreTable();
|
|
search->strategy_ = &BoyerMooreSearch;
|
|
return BoyerMooreSearch(search, subject, index);
|
|
}
|
|
}
|
|
return subject.length();
|
|
}
|
|
|
|
template <typename Char>
|
|
void StringSearch<Char>::PopulateBoyerMooreHorspoolTable() {
|
|
const size_t pattern_length = pattern_.length();
|
|
|
|
int* bad_char_occurrence = bad_char_table();
|
|
|
|
// Only preprocess at most kBMMaxShift last characters of pattern.
|
|
const size_t start = start_;
|
|
// Run forwards to populate bad_char_table, so that *last* instance
|
|
// of character equivalence class is the one registered.
|
|
// Notice: Doesn't include the last character.
|
|
const size_t table_size = AlphabetSize();
|
|
if (start == 0) {
|
|
// All patterns less than kBMMaxShift in length.
|
|
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
|
|
} else {
|
|
for (size_t i = 0; i < table_size; i++) {
|
|
bad_char_occurrence[i] = start - 1;
|
|
}
|
|
}
|
|
for (size_t i = start; i < pattern_length - 1; i++) {
|
|
Char c = pattern_[i];
|
|
int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize();
|
|
bad_char_occurrence[bucket] = i;
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Linear string search with bailout to BMH.
|
|
//---------------------------------------------------------------------
|
|
|
|
// Simple linear search for short patterns, which bails out if the string
|
|
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
|
|
template <typename Char>
|
|
size_t StringSearch<Char>::InitialSearch(
|
|
StringSearch<Char>* search,
|
|
Vector<const Char> subject,
|
|
size_t index) {
|
|
Vector<const Char> pattern = search->pattern_;
|
|
const size_t pattern_length = pattern.length();
|
|
// Badness is a count of how much work we have done. When we have
|
|
// done enough work we decide it's probably worth switching to a better
|
|
// algorithm.
|
|
int64_t badness = -10 - (pattern_length << 2);
|
|
|
|
// We know our pattern is at least 2 characters, we cache the first so
|
|
// the common case of the first character not matching is faster.
|
|
for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
|
|
badness++;
|
|
if (badness <= 0) {
|
|
i = FindFirstCharacter(pattern, subject, i);
|
|
if (i == subject.length())
|
|
return subject.length();
|
|
ASSERT_LE(i, n);
|
|
size_t j = 1;
|
|
do {
|
|
if (pattern[j] != subject[i + j]) {
|
|
break;
|
|
}
|
|
j++;
|
|
} while (j < pattern_length);
|
|
if (j == pattern_length) {
|
|
return i;
|
|
}
|
|
badness += j;
|
|
} else {
|
|
search->PopulateBoyerMooreHorspoolTable();
|
|
search->strategy_ = &BoyerMooreHorspoolSearch;
|
|
return BoyerMooreHorspoolSearch(search, subject, i);
|
|
}
|
|
}
|
|
return subject.length();
|
|
}
|
|
|
|
// Perform a a single stand-alone search.
|
|
// If searching multiple times for the same pattern, a search
|
|
// object should be constructed once and the Search function then called
|
|
// for each search.
|
|
template <typename Char>
|
|
size_t SearchString(Vector<const Char> subject,
|
|
Vector<const Char> pattern,
|
|
size_t start_index) {
|
|
StringSearch<Char> search(pattern);
|
|
return search.Search(subject, start_index);
|
|
}
|
|
} // namespace stringsearch
|
|
} // namespace node
|
|
|
|
namespace node {
|
|
using node::stringsearch::Vector;
|
|
|
|
template <typename Char>
|
|
size_t SearchString(const Char* haystack,
|
|
size_t haystack_length,
|
|
const Char* needle,
|
|
size_t needle_length,
|
|
size_t start_index,
|
|
bool is_forward) {
|
|
// To do a reverse search (lastIndexOf instead of indexOf) without redundant
|
|
// code, create two vectors that are reversed views into the input strings.
|
|
// For example, v_needle[0] would return the *last* character of the needle.
|
|
// So we're searching for the first instance of rev(needle) in rev(haystack)
|
|
Vector<const Char> v_needle = Vector<const Char>(
|
|
needle, needle_length, is_forward);
|
|
Vector<const Char> v_haystack = Vector<const Char>(
|
|
haystack, haystack_length, is_forward);
|
|
ASSERT(haystack_length >= needle_length);
|
|
size_t diff = haystack_length - needle_length;
|
|
size_t relative_start_index;
|
|
if (is_forward) {
|
|
relative_start_index = start_index;
|
|
} else if (diff < start_index) {
|
|
relative_start_index = 0;
|
|
} else {
|
|
relative_start_index = diff - start_index;
|
|
}
|
|
size_t pos = node::stringsearch::SearchString(
|
|
v_haystack, v_needle, relative_start_index);
|
|
if (pos == haystack_length) {
|
|
// not found
|
|
return pos;
|
|
}
|
|
return is_forward ? pos : (haystack_length - needle_length - pos);
|
|
}
|
|
} // namespace node
|
|
|
|
#endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
|
|
|
|
#endif // SRC_STRING_SEARCH_H_
|
|
|