mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
638 lines
19 KiB
638 lines
19 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_X64_ASSEMBLER_X64_INL_H_
|
|
#define V8_X64_ASSEMBLER_X64_INL_H_
|
|
|
|
#include "src/x64/assembler-x64.h"
|
|
|
|
#include "src/base/cpu.h"
|
|
#include "src/debug/debug.h"
|
|
#include "src/v8memory.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
bool CpuFeatures::SupportsCrankshaft() { return true; }
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of Assembler
|
|
|
|
|
|
static const byte kCallOpcode = 0xE8;
|
|
// The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
|
|
static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
|
|
|
|
|
|
void Assembler::emitl(uint32_t x) {
|
|
Memory::uint32_at(pc_) = x;
|
|
pc_ += sizeof(uint32_t);
|
|
}
|
|
|
|
|
|
void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
|
|
uintptr_t value = reinterpret_cast<uintptr_t>(x);
|
|
Memory::uintptr_at(pc_) = value;
|
|
if (!RelocInfo::IsNone(rmode)) {
|
|
RecordRelocInfo(rmode, value);
|
|
}
|
|
pc_ += sizeof(uintptr_t);
|
|
}
|
|
|
|
|
|
void Assembler::emitq(uint64_t x) {
|
|
Memory::uint64_at(pc_) = x;
|
|
pc_ += sizeof(uint64_t);
|
|
}
|
|
|
|
|
|
void Assembler::emitw(uint16_t x) {
|
|
Memory::uint16_at(pc_) = x;
|
|
pc_ += sizeof(uint16_t);
|
|
}
|
|
|
|
|
|
void Assembler::emit_code_target(Handle<Code> target,
|
|
RelocInfo::Mode rmode,
|
|
TypeFeedbackId ast_id) {
|
|
DCHECK(RelocInfo::IsCodeTarget(rmode) ||
|
|
rmode == RelocInfo::CODE_AGE_SEQUENCE);
|
|
if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
|
|
RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
|
|
} else {
|
|
RecordRelocInfo(rmode);
|
|
}
|
|
int current = code_targets_.length();
|
|
if (current > 0 && code_targets_.last().is_identical_to(target)) {
|
|
// Optimization if we keep jumping to the same code target.
|
|
emitl(current - 1);
|
|
} else {
|
|
code_targets_.Add(target);
|
|
emitl(current);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
|
|
DCHECK(RelocInfo::IsRuntimeEntry(rmode));
|
|
RecordRelocInfo(rmode);
|
|
emitl(static_cast<uint32_t>(entry - isolate()->code_range()->start()));
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(Register reg, Register rm_reg) {
|
|
emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
|
|
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
|
|
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(Register reg, const Operand& op) {
|
|
emit(0x48 | reg.high_bit() << 2 | op.rex_);
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
|
|
emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(Register rm_reg) {
|
|
DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
|
|
emit(0x48 | rm_reg.high_bit());
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_64(const Operand& op) {
|
|
emit(0x48 | op.rex_);
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_32(Register reg, Register rm_reg) {
|
|
emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_32(Register reg, const Operand& op) {
|
|
emit(0x40 | reg.high_bit() << 2 | op.rex_);
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_32(Register rm_reg) {
|
|
emit(0x40 | rm_reg.high_bit());
|
|
}
|
|
|
|
|
|
void Assembler::emit_rex_32(const Operand& op) {
|
|
emit(0x40 | op.rex_);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
|
|
byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
|
|
byte rex_bits = reg.high_bit() << 2 | op.rex_;
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register rm_reg) {
|
|
if (rm_reg.high_bit()) emit(0x41);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister rm_reg) {
|
|
if (rm_reg.high_bit()) emit(0x41);
|
|
}
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(const Operand& op) {
|
|
if (op.rex_ != 0) emit(0x40 | op.rex_);
|
|
}
|
|
|
|
|
|
// byte 1 of 3-byte VEX
|
|
void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm,
|
|
LeadingOpcode m) {
|
|
byte rxb = ~((reg.high_bit() << 2) | rm.high_bit()) << 5;
|
|
emit(rxb | m);
|
|
}
|
|
|
|
|
|
// byte 1 of 3-byte VEX
|
|
void Assembler::emit_vex3_byte1(XMMRegister reg, const Operand& rm,
|
|
LeadingOpcode m) {
|
|
byte rxb = ~((reg.high_bit() << 2) | rm.rex_) << 5;
|
|
emit(rxb | m);
|
|
}
|
|
|
|
|
|
// byte 1 of 2-byte VEX
|
|
void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
|
|
SIMDPrefix pp) {
|
|
byte rv = ~((reg.high_bit() << 4) | v.code()) << 3;
|
|
emit(rv | l | pp);
|
|
}
|
|
|
|
|
|
// byte 2 of 3-byte VEX
|
|
void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
|
|
SIMDPrefix pp) {
|
|
emit(w | ((~v.code() & 0xf) << 3) | l | pp);
|
|
}
|
|
|
|
|
|
void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
|
|
XMMRegister rm, VectorLength l, SIMDPrefix pp,
|
|
LeadingOpcode mm, VexW w) {
|
|
if (rm.high_bit() || mm != k0F || w != kW0) {
|
|
emit_vex3_byte0();
|
|
emit_vex3_byte1(reg, rm, mm);
|
|
emit_vex3_byte2(w, vreg, l, pp);
|
|
} else {
|
|
emit_vex2_byte0();
|
|
emit_vex2_byte1(reg, vreg, l, pp);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm,
|
|
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
|
|
VexW w) {
|
|
XMMRegister ireg = {reg.code()};
|
|
XMMRegister ivreg = {vreg.code()};
|
|
XMMRegister irm = {rm.code()};
|
|
emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w);
|
|
}
|
|
|
|
|
|
void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
|
|
const Operand& rm, VectorLength l,
|
|
SIMDPrefix pp, LeadingOpcode mm, VexW w) {
|
|
if (rm.rex_ || mm != k0F || w != kW0) {
|
|
emit_vex3_byte0();
|
|
emit_vex3_byte1(reg, rm, mm);
|
|
emit_vex3_byte2(w, vreg, l, pp);
|
|
} else {
|
|
emit_vex2_byte0();
|
|
emit_vex2_byte1(reg, vreg, l, pp);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::emit_vex_prefix(Register reg, Register vreg, const Operand& rm,
|
|
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
|
|
VexW w) {
|
|
XMMRegister ireg = {reg.code()};
|
|
XMMRegister ivreg = {vreg.code()};
|
|
emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w);
|
|
}
|
|
|
|
|
|
Address Assembler::target_address_at(Address pc, Address constant_pool) {
|
|
return Memory::int32_at(pc) + pc + 4;
|
|
}
|
|
|
|
|
|
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
|
|
Address constant_pool, Address target,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
|
|
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
|
Assembler::FlushICache(isolate, pc, sizeof(int32_t));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::deserialization_set_target_internal_reference_at(
|
|
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
|
|
Memory::Address_at(pc) = target;
|
|
}
|
|
|
|
|
|
Address Assembler::target_address_from_return_address(Address pc) {
|
|
return pc - kCallTargetAddressOffset;
|
|
}
|
|
|
|
|
|
Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
|
|
return code_targets_[Memory::int32_at(pc)];
|
|
}
|
|
|
|
|
|
Address Assembler::runtime_entry_at(Address pc) {
|
|
return Memory::int32_at(pc) + isolate()->code_range()->start();
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfo
|
|
|
|
// The modes possibly affected by apply must be in kApplyMask.
|
|
void RelocInfo::apply(intptr_t delta) {
|
|
if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
|
|
Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
|
|
} else if (IsCodeAgeSequence(rmode_)) {
|
|
if (*pc_ == kCallOpcode) {
|
|
int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
|
|
*p -= static_cast<int32_t>(delta); // Relocate entry.
|
|
}
|
|
} else if (IsInternalReference(rmode_)) {
|
|
// absolute code pointer inside code object moves with the code object.
|
|
Memory::Address_at(pc_) += delta;
|
|
}
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_address() {
|
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
|
return Assembler::target_address_at(pc_, host_);
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_address_address() {
|
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|
|
|| rmode_ == EMBEDDED_OBJECT
|
|
|| rmode_ == EXTERNAL_REFERENCE);
|
|
return reinterpret_cast<Address>(pc_);
|
|
}
|
|
|
|
|
|
Address RelocInfo::constant_pool_entry_address() {
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int RelocInfo::target_address_size() {
|
|
if (IsCodedSpecially()) {
|
|
return Assembler::kSpecialTargetSize;
|
|
} else {
|
|
return kPointerSize;
|
|
}
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_address(Address target,
|
|
WriteBarrierMode write_barrier_mode,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
|
Assembler::set_target_address_at(isolate_, pc_, host_, target,
|
|
icache_flush_mode);
|
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
|
|
IsCodeTarget(rmode_)) {
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
host(), this, HeapObject::cast(target_code));
|
|
}
|
|
}
|
|
|
|
|
|
Object* RelocInfo::target_object() {
|
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
return Memory::Object_at(pc_);
|
|
}
|
|
|
|
|
|
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
|
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
if (rmode_ == EMBEDDED_OBJECT) {
|
|
return Memory::Object_Handle_at(pc_);
|
|
} else {
|
|
return origin->code_target_object_handle_at(pc_);
|
|
}
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_external_reference() {
|
|
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
|
|
return Memory::Address_at(pc_);
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_internal_reference() {
|
|
DCHECK(rmode_ == INTERNAL_REFERENCE);
|
|
return Memory::Address_at(pc_);
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_internal_reference_address() {
|
|
DCHECK(rmode_ == INTERNAL_REFERENCE);
|
|
return reinterpret_cast<Address>(pc_);
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_object(Object* target,
|
|
WriteBarrierMode write_barrier_mode,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
Memory::Object_at(pc_) = target;
|
|
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
|
Assembler::FlushICache(isolate_, pc_, sizeof(Address));
|
|
}
|
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
|
|
host() != NULL &&
|
|
target->IsHeapObject()) {
|
|
host()->GetHeap()->incremental_marking()->RecordWrite(
|
|
host(), &Memory::Object_at(pc_), HeapObject::cast(target));
|
|
}
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_runtime_entry(Assembler* origin) {
|
|
DCHECK(IsRuntimeEntry(rmode_));
|
|
return origin->runtime_entry_at(pc_);
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_runtime_entry(Address target,
|
|
WriteBarrierMode write_barrier_mode,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsRuntimeEntry(rmode_));
|
|
if (target_address() != target) {
|
|
set_target_address(target, write_barrier_mode, icache_flush_mode);
|
|
}
|
|
}
|
|
|
|
|
|
Handle<Cell> RelocInfo::target_cell_handle() {
|
|
DCHECK(rmode_ == RelocInfo::CELL);
|
|
Address address = Memory::Address_at(pc_);
|
|
return Handle<Cell>(reinterpret_cast<Cell**>(address));
|
|
}
|
|
|
|
|
|
Cell* RelocInfo::target_cell() {
|
|
DCHECK(rmode_ == RelocInfo::CELL);
|
|
return Cell::FromValueAddress(Memory::Address_at(pc_));
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_cell(Cell* cell,
|
|
WriteBarrierMode write_barrier_mode,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(rmode_ == RelocInfo::CELL);
|
|
Address address = cell->address() + Cell::kValueOffset;
|
|
Memory::Address_at(pc_) = address;
|
|
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
|
Assembler::FlushICache(isolate_, pc_, sizeof(Address));
|
|
}
|
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
|
|
host() != NULL) {
|
|
// TODO(1550) We are passing NULL as a slot because cell can never be on
|
|
// evacuation candidate.
|
|
host()->GetHeap()->incremental_marking()->RecordWrite(
|
|
host(), NULL, cell);
|
|
}
|
|
}
|
|
|
|
|
|
void RelocInfo::WipeOut() {
|
|
if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
|
|
IsInternalReference(rmode_)) {
|
|
Memory::Address_at(pc_) = NULL;
|
|
} else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
|
|
// Effectively write zero into the relocation.
|
|
Assembler::set_target_address_at(isolate_, pc_, host_,
|
|
pc_ + sizeof(int32_t));
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
bool RelocInfo::IsPatchedReturnSequence() {
|
|
// The recognized call sequence is:
|
|
// movq(kScratchRegister, address); call(kScratchRegister);
|
|
// It only needs to be distinguished from a return sequence
|
|
// movq(rsp, rbp); pop(rbp); ret(n); int3 *6
|
|
// The 11th byte is int3 (0xCC) in the return sequence and
|
|
// REX.WB (0x48+register bit) for the call sequence.
|
|
return pc_[Assembler::kMoveAddressIntoScratchRegisterInstructionLength] !=
|
|
0xCC;
|
|
}
|
|
|
|
|
|
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
|
|
return !Assembler::IsNop(pc());
|
|
}
|
|
|
|
|
|
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
|
|
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
|
DCHECK(*pc_ == kCallOpcode);
|
|
return origin->code_target_object_handle_at(pc_ + 1);
|
|
}
|
|
|
|
|
|
Code* RelocInfo::code_age_stub() {
|
|
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
|
DCHECK(*pc_ == kCallOpcode);
|
|
return Code::GetCodeFromTargetAddress(
|
|
Assembler::target_address_at(pc_ + 1, host_));
|
|
}
|
|
|
|
|
|
void RelocInfo::set_code_age_stub(Code* stub,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(*pc_ == kCallOpcode);
|
|
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
|
Assembler::set_target_address_at(
|
|
isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode);
|
|
}
|
|
|
|
|
|
Address RelocInfo::debug_call_address() {
|
|
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
|
|
return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
|
|
}
|
|
|
|
|
|
void RelocInfo::set_debug_call_address(Address target) {
|
|
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
|
|
Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
|
|
target;
|
|
Assembler::FlushICache(isolate_,
|
|
pc_ + Assembler::kPatchDebugBreakSlotAddressOffset,
|
|
sizeof(Address));
|
|
if (host() != NULL) {
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
host(), this, HeapObject::cast(target_code));
|
|
}
|
|
}
|
|
|
|
|
|
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
|
|
RelocInfo::Mode mode = rmode();
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
visitor->VisitEmbeddedPointer(this);
|
|
Assembler::FlushICache(isolate, pc_, sizeof(Address));
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
visitor->VisitCodeTarget(this);
|
|
} else if (mode == RelocInfo::CELL) {
|
|
visitor->VisitCell(this);
|
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
visitor->VisitExternalReference(this);
|
|
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
|
|
visitor->VisitInternalReference(this);
|
|
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
|
|
visitor->VisitCodeAgeSequence(this);
|
|
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
|
|
IsPatchedDebugBreakSlotSequence()) {
|
|
visitor->VisitDebugTarget(this);
|
|
} else if (RelocInfo::IsRuntimeEntry(mode)) {
|
|
visitor->VisitRuntimeEntry(this);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void RelocInfo::Visit(Heap* heap) {
|
|
RelocInfo::Mode mode = rmode();
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
StaticVisitor::VisitEmbeddedPointer(heap, this);
|
|
Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
StaticVisitor::VisitCodeTarget(heap, this);
|
|
} else if (mode == RelocInfo::CELL) {
|
|
StaticVisitor::VisitCell(heap, this);
|
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
StaticVisitor::VisitExternalReference(this);
|
|
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
|
|
StaticVisitor::VisitInternalReference(this);
|
|
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
|
|
StaticVisitor::VisitCodeAgeSequence(heap, this);
|
|
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
|
|
IsPatchedDebugBreakSlotSequence()) {
|
|
StaticVisitor::VisitDebugTarget(heap, this);
|
|
} else if (RelocInfo::IsRuntimeEntry(mode)) {
|
|
StaticVisitor::VisitRuntimeEntry(this);
|
|
}
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of Operand
|
|
|
|
void Operand::set_modrm(int mod, Register rm_reg) {
|
|
DCHECK(is_uint2(mod));
|
|
buf_[0] = mod << 6 | rm_reg.low_bits();
|
|
// Set REX.B to the high bit of rm.code().
|
|
rex_ |= rm_reg.high_bit();
|
|
}
|
|
|
|
|
|
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
|
|
DCHECK(len_ == 1);
|
|
DCHECK(is_uint2(scale));
|
|
// Use SIB with no index register only for base rsp or r12. Otherwise we
|
|
// would skip the SIB byte entirely.
|
|
DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
|
|
buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
|
|
rex_ |= index.high_bit() << 1 | base.high_bit();
|
|
len_ = 2;
|
|
}
|
|
|
|
void Operand::set_disp8(int disp) {
|
|
DCHECK(is_int8(disp));
|
|
DCHECK(len_ == 1 || len_ == 2);
|
|
int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
|
|
*p = disp;
|
|
len_ += sizeof(int8_t);
|
|
}
|
|
|
|
void Operand::set_disp32(int disp) {
|
|
DCHECK(len_ == 1 || len_ == 2);
|
|
int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
|
|
*p = disp;
|
|
len_ += sizeof(int32_t);
|
|
}
|
|
|
|
void Operand::set_disp64(int64_t disp) {
|
|
DCHECK_EQ(1, len_);
|
|
int64_t* p = reinterpret_cast<int64_t*>(&buf_[len_]);
|
|
*p = disp;
|
|
len_ += sizeof(disp);
|
|
}
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_X64_ASSEMBLER_X64_INL_H_
|
|
|