mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5487 lines
161 KiB
5487 lines
161 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#if V8_TARGET_ARCH_X64
|
|
|
|
#include "src/base/bits.h"
|
|
#include "src/base/division-by-constant.h"
|
|
#include "src/bootstrapper.h"
|
|
#include "src/codegen.h"
|
|
#include "src/debug/debug.h"
|
|
#include "src/heap/heap.h"
|
|
#include "src/register-configuration.h"
|
|
#include "src/x64/assembler-x64.h"
|
|
#include "src/x64/macro-assembler-x64.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size,
|
|
CodeObjectRequired create_code_object)
|
|
: Assembler(arg_isolate, buffer, size),
|
|
generating_stub_(false),
|
|
has_frame_(false),
|
|
root_array_available_(true) {
|
|
if (create_code_object == CodeObjectRequired::kYes) {
|
|
code_object_ =
|
|
Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
|
|
}
|
|
}
|
|
|
|
|
|
static const int64_t kInvalidRootRegisterDelta = -1;
|
|
|
|
|
|
int64_t MacroAssembler::RootRegisterDelta(ExternalReference other) {
|
|
if (predictable_code_size() &&
|
|
(other.address() < reinterpret_cast<Address>(isolate()) ||
|
|
other.address() >= reinterpret_cast<Address>(isolate() + 1))) {
|
|
return kInvalidRootRegisterDelta;
|
|
}
|
|
Address roots_register_value = kRootRegisterBias +
|
|
reinterpret_cast<Address>(isolate()->heap()->roots_array_start());
|
|
|
|
int64_t delta = kInvalidRootRegisterDelta; // Bogus initialization.
|
|
if (kPointerSize == kInt64Size) {
|
|
delta = other.address() - roots_register_value;
|
|
} else {
|
|
// For x32, zero extend the address to 64-bit and calculate the delta.
|
|
uint64_t o = static_cast<uint32_t>(
|
|
reinterpret_cast<intptr_t>(other.address()));
|
|
uint64_t r = static_cast<uint32_t>(
|
|
reinterpret_cast<intptr_t>(roots_register_value));
|
|
delta = o - r;
|
|
}
|
|
return delta;
|
|
}
|
|
|
|
|
|
Operand MacroAssembler::ExternalOperand(ExternalReference target,
|
|
Register scratch) {
|
|
if (root_array_available_ && !serializer_enabled()) {
|
|
int64_t delta = RootRegisterDelta(target);
|
|
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
|
|
return Operand(kRootRegister, static_cast<int32_t>(delta));
|
|
}
|
|
}
|
|
Move(scratch, target);
|
|
return Operand(scratch, 0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Load(Register destination, ExternalReference source) {
|
|
if (root_array_available_ && !serializer_enabled()) {
|
|
int64_t delta = RootRegisterDelta(source);
|
|
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
|
|
movp(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
|
|
return;
|
|
}
|
|
}
|
|
// Safe code.
|
|
if (destination.is(rax)) {
|
|
load_rax(source);
|
|
} else {
|
|
Move(kScratchRegister, source);
|
|
movp(destination, Operand(kScratchRegister, 0));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Store(ExternalReference destination, Register source) {
|
|
if (root_array_available_ && !serializer_enabled()) {
|
|
int64_t delta = RootRegisterDelta(destination);
|
|
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
|
|
movp(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
|
|
return;
|
|
}
|
|
}
|
|
// Safe code.
|
|
if (source.is(rax)) {
|
|
store_rax(destination);
|
|
} else {
|
|
Move(kScratchRegister, destination);
|
|
movp(Operand(kScratchRegister, 0), source);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadAddress(Register destination,
|
|
ExternalReference source) {
|
|
if (root_array_available_ && !serializer_enabled()) {
|
|
int64_t delta = RootRegisterDelta(source);
|
|
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
|
|
leap(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
|
|
return;
|
|
}
|
|
}
|
|
// Safe code.
|
|
Move(destination, source);
|
|
}
|
|
|
|
|
|
int MacroAssembler::LoadAddressSize(ExternalReference source) {
|
|
if (root_array_available_ && !serializer_enabled()) {
|
|
// This calculation depends on the internals of LoadAddress.
|
|
// It's correctness is ensured by the asserts in the Call
|
|
// instruction below.
|
|
int64_t delta = RootRegisterDelta(source);
|
|
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
|
|
// Operand is leap(scratch, Operand(kRootRegister, delta));
|
|
// Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7.
|
|
int size = 4;
|
|
if (!is_int8(static_cast<int32_t>(delta))) {
|
|
size += 3; // Need full four-byte displacement in lea.
|
|
}
|
|
return size;
|
|
}
|
|
}
|
|
// Size of movp(destination, src);
|
|
return Assembler::kMoveAddressIntoScratchRegisterInstructionLength;
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushAddress(ExternalReference source) {
|
|
int64_t address = reinterpret_cast<int64_t>(source.address());
|
|
if (is_int32(address) && !serializer_enabled()) {
|
|
if (emit_debug_code()) {
|
|
Move(kScratchRegister, kZapValue, Assembler::RelocInfoNone());
|
|
}
|
|
Push(Immediate(static_cast<int32_t>(address)));
|
|
return;
|
|
}
|
|
LoadAddress(kScratchRegister, source);
|
|
Push(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
|
|
DCHECK(root_array_available_);
|
|
movp(destination, Operand(kRootRegister,
|
|
(index << kPointerSizeLog2) - kRootRegisterBias));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadRootIndexed(Register destination,
|
|
Register variable_offset,
|
|
int fixed_offset) {
|
|
DCHECK(root_array_available_);
|
|
movp(destination,
|
|
Operand(kRootRegister,
|
|
variable_offset, times_pointer_size,
|
|
(fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
|
|
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
|
|
DCHECK(root_array_available_);
|
|
movp(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
|
|
source);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
|
|
DCHECK(root_array_available_);
|
|
Push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
|
|
DCHECK(root_array_available_);
|
|
cmpp(with, Operand(kRootRegister,
|
|
(index << kPointerSizeLog2) - kRootRegisterBias));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(const Operand& with,
|
|
Heap::RootListIndex index) {
|
|
DCHECK(root_array_available_);
|
|
DCHECK(!with.AddressUsesRegister(kScratchRegister));
|
|
LoadRoot(kScratchRegister, index);
|
|
cmpp(with, kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
|
|
Register addr,
|
|
Register scratch,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetFinalAction and_then) {
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
// Load store buffer top.
|
|
LoadRoot(scratch, Heap::kStoreBufferTopRootIndex);
|
|
// Store pointer to buffer.
|
|
movp(Operand(scratch, 0), addr);
|
|
// Increment buffer top.
|
|
addp(scratch, Immediate(kPointerSize));
|
|
// Write back new top of buffer.
|
|
StoreRoot(scratch, Heap::kStoreBufferTopRootIndex);
|
|
// Call stub on end of buffer.
|
|
Label done;
|
|
// Check for end of buffer.
|
|
testp(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
|
|
if (and_then == kReturnAtEnd) {
|
|
Label buffer_overflowed;
|
|
j(not_equal, &buffer_overflowed, Label::kNear);
|
|
ret(0);
|
|
bind(&buffer_overflowed);
|
|
} else {
|
|
DCHECK(and_then == kFallThroughAtEnd);
|
|
j(equal, &done, Label::kNear);
|
|
}
|
|
StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
|
|
CallStub(&store_buffer_overflow);
|
|
if (and_then == kReturnAtEnd) {
|
|
ret(0);
|
|
} else {
|
|
DCHECK(and_then == kFallThroughAtEnd);
|
|
bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::InNewSpace(Register object,
|
|
Register scratch,
|
|
Condition cc,
|
|
Label* branch,
|
|
Label::Distance distance) {
|
|
if (serializer_enabled()) {
|
|
// Can't do arithmetic on external references if it might get serialized.
|
|
// The mask isn't really an address. We load it as an external reference in
|
|
// case the size of the new space is different between the snapshot maker
|
|
// and the running system.
|
|
if (scratch.is(object)) {
|
|
Move(kScratchRegister, ExternalReference::new_space_mask(isolate()));
|
|
andp(scratch, kScratchRegister);
|
|
} else {
|
|
Move(scratch, ExternalReference::new_space_mask(isolate()));
|
|
andp(scratch, object);
|
|
}
|
|
Move(kScratchRegister, ExternalReference::new_space_start(isolate()));
|
|
cmpp(scratch, kScratchRegister);
|
|
j(cc, branch, distance);
|
|
} else {
|
|
DCHECK(kPointerSize == kInt64Size
|
|
? is_int32(static_cast<int64_t>(isolate()->heap()->NewSpaceMask()))
|
|
: kPointerSize == kInt32Size);
|
|
intptr_t new_space_start =
|
|
reinterpret_cast<intptr_t>(isolate()->heap()->NewSpaceStart());
|
|
Move(kScratchRegister, reinterpret_cast<Address>(-new_space_start),
|
|
Assembler::RelocInfoNone());
|
|
if (scratch.is(object)) {
|
|
addp(scratch, kScratchRegister);
|
|
} else {
|
|
leap(scratch, Operand(object, kScratchRegister, times_1, 0));
|
|
}
|
|
andp(scratch,
|
|
Immediate(static_cast<int32_t>(isolate()->heap()->NewSpaceMask())));
|
|
j(cc, branch, distance);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteField(
|
|
Register object,
|
|
int offset,
|
|
Register value,
|
|
Register dst,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action,
|
|
SmiCheck smi_check,
|
|
PointersToHereCheck pointers_to_here_check_for_value) {
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis.
|
|
Label done;
|
|
|
|
// Skip barrier if writing a smi.
|
|
if (smi_check == INLINE_SMI_CHECK) {
|
|
JumpIfSmi(value, &done);
|
|
}
|
|
|
|
// Although the object register is tagged, the offset is relative to the start
|
|
// of the object, so so offset must be a multiple of kPointerSize.
|
|
DCHECK(IsAligned(offset, kPointerSize));
|
|
|
|
leap(dst, FieldOperand(object, offset));
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
testb(dst, Immediate((1 << kPointerSizeLog2) - 1));
|
|
j(zero, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
RecordWrite(object, dst, value, save_fp, remembered_set_action,
|
|
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber clobbered input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
Move(value, kZapValue, Assembler::RelocInfoNone());
|
|
Move(dst, kZapValue, Assembler::RelocInfoNone());
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteArray(
|
|
Register object,
|
|
Register value,
|
|
Register index,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action,
|
|
SmiCheck smi_check,
|
|
PointersToHereCheck pointers_to_here_check_for_value) {
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis.
|
|
Label done;
|
|
|
|
// Skip barrier if writing a smi.
|
|
if (smi_check == INLINE_SMI_CHECK) {
|
|
JumpIfSmi(value, &done);
|
|
}
|
|
|
|
// Array access: calculate the destination address. Index is not a smi.
|
|
Register dst = index;
|
|
leap(dst, Operand(object, index, times_pointer_size,
|
|
FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
RecordWrite(object, dst, value, save_fp, remembered_set_action,
|
|
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber clobbered input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
Move(value, kZapValue, Assembler::RelocInfoNone());
|
|
Move(index, kZapValue, Assembler::RelocInfoNone());
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteForMap(Register object,
|
|
Register map,
|
|
Register dst,
|
|
SaveFPRegsMode fp_mode) {
|
|
DCHECK(!object.is(kScratchRegister));
|
|
DCHECK(!object.is(map));
|
|
DCHECK(!object.is(dst));
|
|
DCHECK(!map.is(dst));
|
|
AssertNotSmi(object);
|
|
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
if (map.is(kScratchRegister)) pushq(map);
|
|
CompareMap(map, isolate()->factory()->meta_map());
|
|
if (map.is(kScratchRegister)) popq(map);
|
|
j(equal, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
if (!FLAG_incremental_marking) {
|
|
return;
|
|
}
|
|
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
if (map.is(kScratchRegister)) pushq(map);
|
|
cmpp(map, FieldOperand(object, HeapObject::kMapOffset));
|
|
if (map.is(kScratchRegister)) popq(map);
|
|
j(equal, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
// Compute the address.
|
|
leap(dst, FieldOperand(object, HeapObject::kMapOffset));
|
|
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of smis and stores into the young generation.
|
|
Label done;
|
|
|
|
// A single check of the map's pages interesting flag suffices, since it is
|
|
// only set during incremental collection, and then it's also guaranteed that
|
|
// the from object's page's interesting flag is also set. This optimization
|
|
// relies on the fact that maps can never be in new space.
|
|
CheckPageFlag(map,
|
|
map, // Used as scratch.
|
|
MemoryChunk::kPointersToHereAreInterestingMask,
|
|
zero,
|
|
&done,
|
|
Label::kNear);
|
|
|
|
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
|
|
fp_mode);
|
|
CallStub(&stub);
|
|
|
|
bind(&done);
|
|
|
|
// Count number of write barriers in generated code.
|
|
isolate()->counters()->write_barriers_static()->Increment();
|
|
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
|
|
|
|
// Clobber clobbered registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
Move(dst, kZapValue, Assembler::RelocInfoNone());
|
|
Move(map, kZapValue, Assembler::RelocInfoNone());
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWrite(
|
|
Register object,
|
|
Register address,
|
|
Register value,
|
|
SaveFPRegsMode fp_mode,
|
|
RememberedSetAction remembered_set_action,
|
|
SmiCheck smi_check,
|
|
PointersToHereCheck pointers_to_here_check_for_value) {
|
|
DCHECK(!object.is(value));
|
|
DCHECK(!object.is(address));
|
|
DCHECK(!value.is(address));
|
|
AssertNotSmi(object);
|
|
|
|
if (remembered_set_action == OMIT_REMEMBERED_SET &&
|
|
!FLAG_incremental_marking) {
|
|
return;
|
|
}
|
|
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
cmpp(value, Operand(address, 0));
|
|
j(equal, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of smis and stores into the young generation.
|
|
Label done;
|
|
|
|
if (smi_check == INLINE_SMI_CHECK) {
|
|
// Skip barrier if writing a smi.
|
|
JumpIfSmi(value, &done);
|
|
}
|
|
|
|
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
|
|
CheckPageFlag(value,
|
|
value, // Used as scratch.
|
|
MemoryChunk::kPointersToHereAreInterestingMask,
|
|
zero,
|
|
&done,
|
|
Label::kNear);
|
|
}
|
|
|
|
CheckPageFlag(object,
|
|
value, // Used as scratch.
|
|
MemoryChunk::kPointersFromHereAreInterestingMask,
|
|
zero,
|
|
&done,
|
|
Label::kNear);
|
|
|
|
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
|
|
fp_mode);
|
|
CallStub(&stub);
|
|
|
|
bind(&done);
|
|
|
|
// Count number of write barriers in generated code.
|
|
isolate()->counters()->write_barriers_static()->Increment();
|
|
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
|
|
|
|
// Clobber clobbered registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
Move(address, kZapValue, Assembler::RelocInfoNone());
|
|
Move(value, kZapValue, Assembler::RelocInfoNone());
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
|
|
if (emit_debug_code()) Check(cc, reason);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertFastElements(Register elements) {
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Heap::kFixedArrayMapRootIndex);
|
|
j(equal, &ok, Label::kNear);
|
|
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Heap::kFixedDoubleArrayMapRootIndex);
|
|
j(equal, &ok, Label::kNear);
|
|
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Heap::kFixedCOWArrayMapRootIndex);
|
|
j(equal, &ok, Label::kNear);
|
|
Abort(kJSObjectWithFastElementsMapHasSlowElements);
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
|
|
Label L;
|
|
j(cc, &L, Label::kNear);
|
|
Abort(reason);
|
|
// Control will not return here.
|
|
bind(&L);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckStackAlignment() {
|
|
int frame_alignment = base::OS::ActivationFrameAlignment();
|
|
int frame_alignment_mask = frame_alignment - 1;
|
|
if (frame_alignment > kPointerSize) {
|
|
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
|
|
Label alignment_as_expected;
|
|
testp(rsp, Immediate(frame_alignment_mask));
|
|
j(zero, &alignment_as_expected, Label::kNear);
|
|
// Abort if stack is not aligned.
|
|
int3();
|
|
bind(&alignment_as_expected);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::NegativeZeroTest(Register result,
|
|
Register op,
|
|
Label* then_label) {
|
|
Label ok;
|
|
testl(result, result);
|
|
j(not_zero, &ok, Label::kNear);
|
|
testl(op, op);
|
|
j(sign, then_label);
|
|
bind(&ok);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Abort(BailoutReason reason) {
|
|
#ifdef DEBUG
|
|
const char* msg = GetBailoutReason(reason);
|
|
if (msg != NULL) {
|
|
RecordComment("Abort message: ");
|
|
RecordComment(msg);
|
|
}
|
|
|
|
if (FLAG_trap_on_abort) {
|
|
int3();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
Move(kScratchRegister, Smi::FromInt(static_cast<int>(reason)),
|
|
Assembler::RelocInfoNone());
|
|
Push(kScratchRegister);
|
|
|
|
if (!has_frame_) {
|
|
// We don't actually want to generate a pile of code for this, so just
|
|
// claim there is a stack frame, without generating one.
|
|
FrameScope scope(this, StackFrame::NONE);
|
|
CallRuntime(Runtime::kAbort, 1);
|
|
} else {
|
|
CallRuntime(Runtime::kAbort, 1);
|
|
}
|
|
// Control will not return here.
|
|
int3();
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
|
|
DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs
|
|
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallStub(CodeStub* stub) {
|
|
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StubReturn(int argc) {
|
|
DCHECK(argc >= 1 && generating_stub());
|
|
ret((argc - 1) * kPointerSize);
|
|
}
|
|
|
|
|
|
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
|
|
return has_frame_ || !stub->SometimesSetsUpAFrame();
|
|
}
|
|
|
|
|
|
void MacroAssembler::IndexFromHash(Register hash, Register index) {
|
|
// The assert checks that the constants for the maximum number of digits
|
|
// for an array index cached in the hash field and the number of bits
|
|
// reserved for it does not conflict.
|
|
DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
|
|
(1 << String::kArrayIndexValueBits));
|
|
if (!hash.is(index)) {
|
|
movl(index, hash);
|
|
}
|
|
DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallRuntime(const Runtime::Function* f,
|
|
int num_arguments,
|
|
SaveFPRegsMode save_doubles) {
|
|
// If the expected number of arguments of the runtime function is
|
|
// constant, we check that the actual number of arguments match the
|
|
// expectation.
|
|
CHECK(f->nargs < 0 || f->nargs == num_arguments);
|
|
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Set(rax, num_arguments);
|
|
LoadAddress(rbx, ExternalReference(f, isolate()));
|
|
CEntryStub ces(isolate(), f->result_size, save_doubles);
|
|
CallStub(&ces);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
|
|
int num_arguments) {
|
|
Set(rax, num_arguments);
|
|
LoadAddress(rbx, ext);
|
|
|
|
CEntryStub stub(isolate(), 1);
|
|
CallStub(&stub);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
|
|
// ----------- S t a t e -------------
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : argument num_arguments - 1
|
|
// ...
|
|
// -- rsp[8 * num_arguments] : argument 0 (receiver)
|
|
//
|
|
// For runtime functions with variable arguments:
|
|
// -- rax : number of arguments
|
|
// -----------------------------------
|
|
|
|
const Runtime::Function* function = Runtime::FunctionForId(fid);
|
|
DCHECK_EQ(1, function->result_size);
|
|
if (function->nargs >= 0) {
|
|
Set(rax, function->nargs);
|
|
}
|
|
JumpToExternalReference(ExternalReference(fid, isolate()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
|
|
// Set the entry point and jump to the C entry runtime stub.
|
|
LoadAddress(rbx, ext);
|
|
CEntryStub ces(isolate(), 1);
|
|
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeBuiltin(int native_context_index, InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
// You can't call a builtin without a valid frame.
|
|
DCHECK(flag == JUMP_FUNCTION || has_frame());
|
|
|
|
// Fake a parameter count to avoid emitting code to do the check.
|
|
ParameterCount expected(0);
|
|
LoadNativeContextSlot(native_context_index, rdi);
|
|
InvokeFunctionCode(rdi, no_reg, expected, expected, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
#define REG(Name) \
|
|
{ Register::kCode_##Name }
|
|
|
|
static const Register saved_regs[] = {
|
|
REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8),
|
|
REG(r9), REG(r10), REG(r11)
|
|
};
|
|
|
|
#undef REG
|
|
|
|
static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
|
|
|
|
|
|
void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
|
|
Register exclusion1,
|
|
Register exclusion2,
|
|
Register exclusion3) {
|
|
// We don't allow a GC during a store buffer overflow so there is no need to
|
|
// store the registers in any particular way, but we do have to store and
|
|
// restore them.
|
|
for (int i = 0; i < kNumberOfSavedRegs; i++) {
|
|
Register reg = saved_regs[i];
|
|
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
|
|
pushq(reg);
|
|
}
|
|
}
|
|
// R12 to r15 are callee save on all platforms.
|
|
if (fp_mode == kSaveFPRegs) {
|
|
subp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
|
|
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
|
|
XMMRegister reg = XMMRegister::from_code(i);
|
|
Movsd(Operand(rsp, i * kDoubleSize), reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode,
|
|
Register exclusion1,
|
|
Register exclusion2,
|
|
Register exclusion3) {
|
|
if (fp_mode == kSaveFPRegs) {
|
|
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
|
|
XMMRegister reg = XMMRegister::from_code(i);
|
|
Movsd(reg, Operand(rsp, i * kDoubleSize));
|
|
}
|
|
addp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
|
|
}
|
|
for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
|
|
Register reg = saved_regs[i];
|
|
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
|
|
popq(reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvtss2sd(dst, src, src);
|
|
} else {
|
|
cvtss2sd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtss2sd(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvtss2sd(dst, dst, src);
|
|
} else {
|
|
cvtss2sd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvtsd2ss(dst, src, src);
|
|
} else {
|
|
cvtsd2ss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtsd2ss(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvtsd2ss(dst, dst, src);
|
|
} else {
|
|
cvtsd2ss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, Register src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vxorpd(dst, dst, dst);
|
|
vcvtlsi2sd(dst, dst, src);
|
|
} else {
|
|
xorpd(dst, dst);
|
|
cvtlsi2sd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vxorpd(dst, dst, dst);
|
|
vcvtlsi2sd(dst, dst, src);
|
|
} else {
|
|
xorpd(dst, dst);
|
|
cvtlsi2sd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtqsi2ss(XMMRegister dst, Register src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vxorps(dst, dst, dst);
|
|
vcvtqsi2ss(dst, dst, src);
|
|
} else {
|
|
xorps(dst, dst);
|
|
cvtqsi2ss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtqsi2ss(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vxorps(dst, dst, dst);
|
|
vcvtqsi2ss(dst, dst, src);
|
|
} else {
|
|
xorps(dst, dst);
|
|
cvtqsi2ss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtqsi2sd(XMMRegister dst, Register src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vxorpd(dst, dst, dst);
|
|
vcvtqsi2sd(dst, dst, src);
|
|
} else {
|
|
xorpd(dst, dst);
|
|
cvtqsi2sd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtqsi2sd(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vxorpd(dst, dst, dst);
|
|
vcvtqsi2sd(dst, dst, src);
|
|
} else {
|
|
xorpd(dst, dst);
|
|
cvtqsi2sd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtqui2ss(XMMRegister dst, Register src, Register tmp) {
|
|
Label msb_set_src;
|
|
Label jmp_return;
|
|
testq(src, src);
|
|
j(sign, &msb_set_src, Label::kNear);
|
|
Cvtqsi2ss(dst, src);
|
|
jmp(&jmp_return, Label::kNear);
|
|
bind(&msb_set_src);
|
|
movq(tmp, src);
|
|
shrq(src, Immediate(1));
|
|
// Recover the least significant bit to avoid rounding errors.
|
|
andq(tmp, Immediate(1));
|
|
orq(src, tmp);
|
|
Cvtqsi2ss(dst, src);
|
|
addss(dst, dst);
|
|
bind(&jmp_return);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtqui2sd(XMMRegister dst, Register src, Register tmp) {
|
|
Label msb_set_src;
|
|
Label jmp_return;
|
|
testq(src, src);
|
|
j(sign, &msb_set_src, Label::kNear);
|
|
Cvtqsi2sd(dst, src);
|
|
jmp(&jmp_return, Label::kNear);
|
|
bind(&msb_set_src);
|
|
movq(tmp, src);
|
|
shrq(src, Immediate(1));
|
|
andq(tmp, Immediate(1));
|
|
orq(src, tmp);
|
|
Cvtqsi2sd(dst, src);
|
|
addsd(dst, dst);
|
|
bind(&jmp_return);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtsd2si(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvtsd2si(dst, src);
|
|
} else {
|
|
cvtsd2si(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvttsd2si(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvttsd2si(dst, src);
|
|
} else {
|
|
cvttsd2si(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvttsd2si(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvttsd2si(dst, src);
|
|
} else {
|
|
cvttsd2si(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvttss2siq(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvttss2siq(dst, src);
|
|
} else {
|
|
cvttss2siq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvttss2siq(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvttss2siq(dst, src);
|
|
} else {
|
|
cvttss2siq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvttsd2siq(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvttsd2siq(dst, src);
|
|
} else {
|
|
cvttsd2siq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvttsd2siq(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vcvttsd2siq(dst, src);
|
|
} else {
|
|
cvttsd2siq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
|
|
DCHECK(!r.IsDouble());
|
|
if (r.IsInteger8()) {
|
|
movsxbq(dst, src);
|
|
} else if (r.IsUInteger8()) {
|
|
movzxbl(dst, src);
|
|
} else if (r.IsInteger16()) {
|
|
movsxwq(dst, src);
|
|
} else if (r.IsUInteger16()) {
|
|
movzxwl(dst, src);
|
|
} else if (r.IsInteger32()) {
|
|
movl(dst, src);
|
|
} else {
|
|
movp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Store(const Operand& dst, Register src, Representation r) {
|
|
DCHECK(!r.IsDouble());
|
|
if (r.IsInteger8() || r.IsUInteger8()) {
|
|
movb(dst, src);
|
|
} else if (r.IsInteger16() || r.IsUInteger16()) {
|
|
movw(dst, src);
|
|
} else if (r.IsInteger32()) {
|
|
movl(dst, src);
|
|
} else {
|
|
if (r.IsHeapObject()) {
|
|
AssertNotSmi(src);
|
|
} else if (r.IsSmi()) {
|
|
AssertSmi(src);
|
|
}
|
|
movp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Set(Register dst, int64_t x) {
|
|
if (x == 0) {
|
|
xorl(dst, dst);
|
|
} else if (is_uint32(x)) {
|
|
movl(dst, Immediate(static_cast<uint32_t>(x)));
|
|
} else if (is_int32(x)) {
|
|
movq(dst, Immediate(static_cast<int32_t>(x)));
|
|
} else {
|
|
movq(dst, x);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Set(const Operand& dst, intptr_t x) {
|
|
if (kPointerSize == kInt64Size) {
|
|
if (is_int32(x)) {
|
|
movp(dst, Immediate(static_cast<int32_t>(x)));
|
|
} else {
|
|
Set(kScratchRegister, x);
|
|
movp(dst, kScratchRegister);
|
|
}
|
|
} else {
|
|
movp(dst, Immediate(static_cast<int32_t>(x)));
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Smi tagging, untagging and tag detection.
|
|
|
|
bool MacroAssembler::IsUnsafeInt(const int32_t x) {
|
|
static const int kMaxBits = 17;
|
|
return !is_intn(x, kMaxBits);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SafeMove(Register dst, Smi* src) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
|
|
if (SmiValuesAre32Bits()) {
|
|
// JIT cookie can be converted to Smi.
|
|
Move(dst, Smi::FromInt(src->value() ^ jit_cookie()));
|
|
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
|
|
xorp(dst, kScratchRegister);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
|
|
movp(dst, Immediate(value ^ jit_cookie()));
|
|
xorp(dst, Immediate(jit_cookie()));
|
|
}
|
|
} else {
|
|
Move(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SafePush(Smi* src) {
|
|
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
|
|
if (SmiValuesAre32Bits()) {
|
|
// JIT cookie can be converted to Smi.
|
|
Push(Smi::FromInt(src->value() ^ jit_cookie()));
|
|
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
|
|
xorp(Operand(rsp, 0), kScratchRegister);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
|
|
Push(Immediate(value ^ jit_cookie()));
|
|
xorp(Operand(rsp, 0), Immediate(jit_cookie()));
|
|
}
|
|
} else {
|
|
Push(src);
|
|
}
|
|
}
|
|
|
|
|
|
Register MacroAssembler::GetSmiConstant(Smi* source) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
int value = source->value();
|
|
if (value == 0) {
|
|
xorl(kScratchRegister, kScratchRegister);
|
|
return kScratchRegister;
|
|
}
|
|
LoadSmiConstant(kScratchRegister, source);
|
|
return kScratchRegister;
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
int value = source->value();
|
|
if (value == 0) {
|
|
xorl(dst, dst);
|
|
} else {
|
|
Move(dst, source, Assembler::RelocInfoNone());
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
if (!dst.is(src)) {
|
|
movl(dst, src);
|
|
}
|
|
shlp(dst, Immediate(kSmiShift));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
|
|
if (emit_debug_code()) {
|
|
testb(dst, Immediate(0x01));
|
|
Label ok;
|
|
j(zero, &ok, Label::kNear);
|
|
Abort(kInteger32ToSmiFieldWritingToNonSmiLocation);
|
|
bind(&ok);
|
|
}
|
|
|
|
if (SmiValuesAre32Bits()) {
|
|
DCHECK(kSmiShift % kBitsPerByte == 0);
|
|
movl(Operand(dst, kSmiShift / kBitsPerByte), src);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
Integer32ToSmi(kScratchRegister, src);
|
|
movp(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
|
|
Register src,
|
|
int constant) {
|
|
if (dst.is(src)) {
|
|
addl(dst, Immediate(constant));
|
|
} else {
|
|
leal(dst, Operand(src, constant));
|
|
}
|
|
shlp(dst, Immediate(kSmiShift));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger32(Register dst, Register src) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
|
|
if (SmiValuesAre32Bits()) {
|
|
shrp(dst, Immediate(kSmiShift));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
sarl(dst, Immediate(kSmiShift));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
|
|
if (SmiValuesAre32Bits()) {
|
|
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
movl(dst, src);
|
|
sarl(dst, Immediate(kSmiShift));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger64(Register dst, Register src) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
sarp(dst, Immediate(kSmiShift));
|
|
if (kPointerSize == kInt32Size) {
|
|
// Sign extend to 64-bit.
|
|
movsxlq(dst, dst);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
|
|
if (SmiValuesAre32Bits()) {
|
|
movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
movp(dst, src);
|
|
SmiToInteger64(dst, dst);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiTest(Register src) {
|
|
AssertSmi(src);
|
|
testp(src, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
|
|
AssertSmi(smi1);
|
|
AssertSmi(smi2);
|
|
cmpp(smi1, smi2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(Register dst, Smi* src) {
|
|
AssertSmi(dst);
|
|
Cmp(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cmp(Register dst, Smi* src) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
if (src->value() == 0) {
|
|
testp(dst, dst);
|
|
} else {
|
|
Register constant_reg = GetSmiConstant(src);
|
|
cmpp(dst, constant_reg);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
|
|
AssertSmi(dst);
|
|
AssertSmi(src);
|
|
cmpp(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
|
|
AssertSmi(dst);
|
|
AssertSmi(src);
|
|
cmpp(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
|
|
AssertSmi(dst);
|
|
if (SmiValuesAre32Bits()) {
|
|
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
cmpl(dst, Immediate(src));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
|
|
// The Operand cannot use the smi register.
|
|
Register smi_reg = GetSmiConstant(src);
|
|
DCHECK(!dst.AddressUsesRegister(smi_reg));
|
|
cmpp(dst, smi_reg);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
|
|
if (SmiValuesAre32Bits()) {
|
|
cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
SmiToInteger32(kScratchRegister, dst);
|
|
cmpl(kScratchRegister, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
|
|
Register src,
|
|
int power) {
|
|
DCHECK(power >= 0);
|
|
DCHECK(power < 64);
|
|
if (power == 0) {
|
|
SmiToInteger64(dst, src);
|
|
return;
|
|
}
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
if (power < kSmiShift) {
|
|
sarp(dst, Immediate(kSmiShift - power));
|
|
} else if (power > kSmiShift) {
|
|
shlp(dst, Immediate(power - kSmiShift));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
|
|
Register src,
|
|
int power) {
|
|
DCHECK((0 <= power) && (power < 32));
|
|
if (dst.is(src)) {
|
|
shrp(dst, Immediate(power + kSmiShift));
|
|
} else {
|
|
UNIMPLEMENTED(); // Not used.
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
|
|
Label* on_not_smis,
|
|
Label::Distance near_jump) {
|
|
if (dst.is(src1) || dst.is(src2)) {
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
movp(kScratchRegister, src1);
|
|
orp(kScratchRegister, src2);
|
|
JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
|
|
movp(dst, kScratchRegister);
|
|
} else {
|
|
movp(dst, src1);
|
|
orp(dst, src2);
|
|
JumpIfNotSmi(dst, on_not_smis, near_jump);
|
|
}
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckSmi(Register src) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
testb(src, Immediate(kSmiTagMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckSmi(const Operand& src) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
testb(src, Immediate(kSmiTagMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
// Test that both bits of the mask 0x8000000000000001 are zero.
|
|
movp(kScratchRegister, src);
|
|
rolp(kScratchRegister, Immediate(1));
|
|
testb(kScratchRegister, Immediate(3));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
|
|
if (first.is(second)) {
|
|
return CheckSmi(first);
|
|
}
|
|
STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
|
|
if (SmiValuesAre32Bits()) {
|
|
leal(kScratchRegister, Operand(first, second, times_1, 0));
|
|
testb(kScratchRegister, Immediate(0x03));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
movl(kScratchRegister, first);
|
|
orl(kScratchRegister, second);
|
|
testb(kScratchRegister, Immediate(kSmiTagMask));
|
|
}
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
|
|
Register second) {
|
|
if (first.is(second)) {
|
|
return CheckNonNegativeSmi(first);
|
|
}
|
|
movp(kScratchRegister, first);
|
|
orp(kScratchRegister, second);
|
|
rolp(kScratchRegister, Immediate(1));
|
|
testl(kScratchRegister, Immediate(3));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckEitherSmi(Register first,
|
|
Register second,
|
|
Register scratch) {
|
|
if (first.is(second)) {
|
|
return CheckSmi(first);
|
|
}
|
|
if (scratch.is(second)) {
|
|
andl(scratch, first);
|
|
} else {
|
|
if (!scratch.is(first)) {
|
|
movl(scratch, first);
|
|
}
|
|
andl(scratch, second);
|
|
}
|
|
testb(scratch, Immediate(kSmiTagMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
|
|
if (SmiValuesAre32Bits()) {
|
|
// A 32-bit integer value can always be converted to a smi.
|
|
return always;
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
cmpl(src, Immediate(0xc0000000));
|
|
return positive;
|
|
}
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
|
|
if (SmiValuesAre32Bits()) {
|
|
// An unsigned 32-bit integer value is valid as long as the high bit
|
|
// is not set.
|
|
testl(src, src);
|
|
return positive;
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
testl(src, Immediate(0xc0000000));
|
|
return zero;
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
|
|
if (dst.is(src)) {
|
|
andl(dst, Immediate(kSmiTagMask));
|
|
} else {
|
|
movl(dst, Immediate(kSmiTagMask));
|
|
andl(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
|
|
if (!(src.AddressUsesRegister(dst))) {
|
|
movl(dst, Immediate(kSmiTagMask));
|
|
andl(dst, src);
|
|
} else {
|
|
movl(dst, src);
|
|
andl(dst, Immediate(kSmiTagMask));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfValidSmiValue(Register src,
|
|
Label* on_valid,
|
|
Label::Distance near_jump) {
|
|
Condition is_valid = CheckInteger32ValidSmiValue(src);
|
|
j(is_valid, on_valid, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
|
|
Label* on_invalid,
|
|
Label::Distance near_jump) {
|
|
Condition is_valid = CheckInteger32ValidSmiValue(src);
|
|
j(NegateCondition(is_valid), on_invalid, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfUIntValidSmiValue(Register src,
|
|
Label* on_valid,
|
|
Label::Distance near_jump) {
|
|
Condition is_valid = CheckUInteger32ValidSmiValue(src);
|
|
j(is_valid, on_valid, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
|
|
Label* on_invalid,
|
|
Label::Distance near_jump) {
|
|
Condition is_valid = CheckUInteger32ValidSmiValue(src);
|
|
j(NegateCondition(is_valid), on_invalid, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfSmi(Register src,
|
|
Label* on_smi,
|
|
Label::Distance near_jump) {
|
|
Condition smi = CheckSmi(src);
|
|
j(smi, on_smi, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotSmi(Register src,
|
|
Label* on_not_smi,
|
|
Label::Distance near_jump) {
|
|
Condition smi = CheckSmi(src);
|
|
j(NegateCondition(smi), on_not_smi, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpUnlessNonNegativeSmi(
|
|
Register src, Label* on_not_smi_or_negative,
|
|
Label::Distance near_jump) {
|
|
Condition non_negative_smi = CheckNonNegativeSmi(src);
|
|
j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
|
|
Smi* constant,
|
|
Label* on_equals,
|
|
Label::Distance near_jump) {
|
|
SmiCompare(src, constant);
|
|
j(equal, on_equals, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotBothSmi(Register src1,
|
|
Register src2,
|
|
Label* on_not_both_smi,
|
|
Label::Distance near_jump) {
|
|
Condition both_smi = CheckBothSmi(src1, src2);
|
|
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
|
|
Register src2,
|
|
Label* on_not_both_smi,
|
|
Label::Distance near_jump) {
|
|
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
|
|
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
|
|
if (constant->value() == 0) {
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
return;
|
|
} else if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
addp(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
addp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
|
|
if (constant->value() != 0) {
|
|
if (SmiValuesAre32Bits()) {
|
|
addl(Operand(dst, kSmiShift / kBitsPerByte),
|
|
Immediate(constant->value()));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
addp(dst, Immediate(constant));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant,
|
|
SmiOperationConstraints constraints,
|
|
Label* bailout_label,
|
|
Label::Distance near_jump) {
|
|
if (constant->value() == 0) {
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
} else if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
LoadSmiConstant(kScratchRegister, constant);
|
|
addp(dst, kScratchRegister);
|
|
if (constraints & SmiOperationConstraint::kBailoutOnNoOverflow) {
|
|
j(no_overflow, bailout_label, near_jump);
|
|
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
|
|
subp(dst, kScratchRegister);
|
|
} else if (constraints & SmiOperationConstraint::kBailoutOnOverflow) {
|
|
if (constraints & SmiOperationConstraint::kPreserveSourceRegister) {
|
|
Label done;
|
|
j(no_overflow, &done, Label::kNear);
|
|
subp(dst, kScratchRegister);
|
|
jmp(bailout_label, near_jump);
|
|
bind(&done);
|
|
} else {
|
|
// Bailout if overflow without reserving src.
|
|
j(overflow, bailout_label, near_jump);
|
|
}
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
|
|
DCHECK(constraints & SmiOperationConstraint::kBailoutOnOverflow);
|
|
LoadSmiConstant(dst, constant);
|
|
addp(dst, src);
|
|
j(overflow, bailout_label, near_jump);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
|
|
if (constant->value() == 0) {
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
} else if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
subp(dst, constant_reg);
|
|
} else {
|
|
if (constant->value() == Smi::kMinValue) {
|
|
LoadSmiConstant(dst, constant);
|
|
// Adding and subtracting the min-value gives the same result, it only
|
|
// differs on the overflow bit, which we don't check here.
|
|
addp(dst, src);
|
|
} else {
|
|
// Subtract by adding the negation.
|
|
LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
|
|
addp(dst, src);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant,
|
|
SmiOperationConstraints constraints,
|
|
Label* bailout_label,
|
|
Label::Distance near_jump) {
|
|
if (constant->value() == 0) {
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
} else if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
LoadSmiConstant(kScratchRegister, constant);
|
|
subp(dst, kScratchRegister);
|
|
if (constraints & SmiOperationConstraint::kBailoutOnNoOverflow) {
|
|
j(no_overflow, bailout_label, near_jump);
|
|
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
|
|
addp(dst, kScratchRegister);
|
|
} else if (constraints & SmiOperationConstraint::kBailoutOnOverflow) {
|
|
if (constraints & SmiOperationConstraint::kPreserveSourceRegister) {
|
|
Label done;
|
|
j(no_overflow, &done, Label::kNear);
|
|
addp(dst, kScratchRegister);
|
|
jmp(bailout_label, near_jump);
|
|
bind(&done);
|
|
} else {
|
|
// Bailout if overflow without reserving src.
|
|
j(overflow, bailout_label, near_jump);
|
|
}
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
|
|
DCHECK(constraints & SmiOperationConstraint::kBailoutOnOverflow);
|
|
if (constant->value() == Smi::kMinValue) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
movp(dst, src);
|
|
LoadSmiConstant(kScratchRegister, constant);
|
|
subp(dst, kScratchRegister);
|
|
j(overflow, bailout_label, near_jump);
|
|
} else {
|
|
// Subtract by adding the negation.
|
|
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
|
|
addp(dst, src);
|
|
j(overflow, bailout_label, near_jump);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiNeg(Register dst,
|
|
Register src,
|
|
Label* on_smi_result,
|
|
Label::Distance near_jump) {
|
|
if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
movp(kScratchRegister, src);
|
|
negp(dst); // Low 32 bits are retained as zero by negation.
|
|
// Test if result is zero or Smi::kMinValue.
|
|
cmpp(dst, kScratchRegister);
|
|
j(not_equal, on_smi_result, near_jump);
|
|
movp(src, kScratchRegister);
|
|
} else {
|
|
movp(dst, src);
|
|
negp(dst);
|
|
cmpp(dst, src);
|
|
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
|
|
j(not_equal, on_smi_result, near_jump);
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void SmiAddHelper(MacroAssembler* masm,
|
|
Register dst,
|
|
Register src1,
|
|
T src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
if (dst.is(src1)) {
|
|
Label done;
|
|
masm->addp(dst, src2);
|
|
masm->j(no_overflow, &done, Label::kNear);
|
|
// Restore src1.
|
|
masm->subp(dst, src2);
|
|
masm->jmp(on_not_smi_result, near_jump);
|
|
masm->bind(&done);
|
|
} else {
|
|
masm->movp(dst, src1);
|
|
masm->addp(dst, src2);
|
|
masm->j(overflow, on_not_smi_result, near_jump);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAdd(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK_NOT_NULL(on_not_smi_result);
|
|
DCHECK(!dst.is(src2));
|
|
SmiAddHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAdd(Register dst,
|
|
Register src1,
|
|
const Operand& src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK_NOT_NULL(on_not_smi_result);
|
|
DCHECK(!src2.AddressUsesRegister(dst));
|
|
SmiAddHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAdd(Register dst,
|
|
Register src1,
|
|
Register src2) {
|
|
// No overflow checking. Use only when it's known that
|
|
// overflowing is impossible.
|
|
if (!dst.is(src1)) {
|
|
if (emit_debug_code()) {
|
|
movp(kScratchRegister, src1);
|
|
addp(kScratchRegister, src2);
|
|
Check(no_overflow, kSmiAdditionOverflow);
|
|
}
|
|
leap(dst, Operand(src1, src2, times_1, 0));
|
|
} else {
|
|
addp(dst, src2);
|
|
Assert(no_overflow, kSmiAdditionOverflow);
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void SmiSubHelper(MacroAssembler* masm,
|
|
Register dst,
|
|
Register src1,
|
|
T src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
if (dst.is(src1)) {
|
|
Label done;
|
|
masm->subp(dst, src2);
|
|
masm->j(no_overflow, &done, Label::kNear);
|
|
// Restore src1.
|
|
masm->addp(dst, src2);
|
|
masm->jmp(on_not_smi_result, near_jump);
|
|
masm->bind(&done);
|
|
} else {
|
|
masm->movp(dst, src1);
|
|
masm->subp(dst, src2);
|
|
masm->j(overflow, on_not_smi_result, near_jump);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSub(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK_NOT_NULL(on_not_smi_result);
|
|
DCHECK(!dst.is(src2));
|
|
SmiSubHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSub(Register dst,
|
|
Register src1,
|
|
const Operand& src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK_NOT_NULL(on_not_smi_result);
|
|
DCHECK(!src2.AddressUsesRegister(dst));
|
|
SmiSubHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void SmiSubNoOverflowHelper(MacroAssembler* masm,
|
|
Register dst,
|
|
Register src1,
|
|
T src2) {
|
|
// No overflow checking. Use only when it's known that
|
|
// overflowing is impossible (e.g., subtracting two positive smis).
|
|
if (!dst.is(src1)) {
|
|
masm->movp(dst, src1);
|
|
}
|
|
masm->subp(dst, src2);
|
|
masm->Assert(no_overflow, kSmiSubtractionOverflow);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
|
|
DCHECK(!dst.is(src2));
|
|
SmiSubNoOverflowHelper<Register>(this, dst, src1, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSub(Register dst,
|
|
Register src1,
|
|
const Operand& src2) {
|
|
SmiSubNoOverflowHelper<Operand>(this, dst, src1, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiMul(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK(!dst.is(src2));
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
|
|
if (dst.is(src1)) {
|
|
Label failure, zero_correct_result;
|
|
movp(kScratchRegister, src1); // Create backup for later testing.
|
|
SmiToInteger64(dst, src1);
|
|
imulp(dst, src2);
|
|
j(overflow, &failure, Label::kNear);
|
|
|
|
// Check for negative zero result. If product is zero, and one
|
|
// argument is negative, go to slow case.
|
|
Label correct_result;
|
|
testp(dst, dst);
|
|
j(not_zero, &correct_result, Label::kNear);
|
|
|
|
movp(dst, kScratchRegister);
|
|
xorp(dst, src2);
|
|
// Result was positive zero.
|
|
j(positive, &zero_correct_result, Label::kNear);
|
|
|
|
bind(&failure); // Reused failure exit, restores src1.
|
|
movp(src1, kScratchRegister);
|
|
jmp(on_not_smi_result, near_jump);
|
|
|
|
bind(&zero_correct_result);
|
|
Set(dst, 0);
|
|
|
|
bind(&correct_result);
|
|
} else {
|
|
SmiToInteger64(dst, src1);
|
|
imulp(dst, src2);
|
|
j(overflow, on_not_smi_result, near_jump);
|
|
// Check for negative zero result. If product is zero, and one
|
|
// argument is negative, go to slow case.
|
|
Label correct_result;
|
|
testp(dst, dst);
|
|
j(not_zero, &correct_result, Label::kNear);
|
|
// One of src1 and src2 is zero, the check whether the other is
|
|
// negative.
|
|
movp(kScratchRegister, src1);
|
|
xorp(kScratchRegister, src2);
|
|
j(negative, on_not_smi_result, near_jump);
|
|
bind(&correct_result);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiDiv(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src2.is(rax));
|
|
DCHECK(!src2.is(rdx));
|
|
DCHECK(!src1.is(rdx));
|
|
|
|
// Check for 0 divisor (result is +/-Infinity).
|
|
testp(src2, src2);
|
|
j(zero, on_not_smi_result, near_jump);
|
|
|
|
if (src1.is(rax)) {
|
|
movp(kScratchRegister, src1);
|
|
}
|
|
SmiToInteger32(rax, src1);
|
|
// We need to rule out dividing Smi::kMinValue by -1, since that would
|
|
// overflow in idiv and raise an exception.
|
|
// We combine this with negative zero test (negative zero only happens
|
|
// when dividing zero by a negative number).
|
|
|
|
// We overshoot a little and go to slow case if we divide min-value
|
|
// by any negative value, not just -1.
|
|
Label safe_div;
|
|
testl(rax, Immediate(~Smi::kMinValue));
|
|
j(not_zero, &safe_div, Label::kNear);
|
|
testp(src2, src2);
|
|
if (src1.is(rax)) {
|
|
j(positive, &safe_div, Label::kNear);
|
|
movp(src1, kScratchRegister);
|
|
jmp(on_not_smi_result, near_jump);
|
|
} else {
|
|
j(negative, on_not_smi_result, near_jump);
|
|
}
|
|
bind(&safe_div);
|
|
|
|
SmiToInteger32(src2, src2);
|
|
// Sign extend src1 into edx:eax.
|
|
cdq();
|
|
idivl(src2);
|
|
Integer32ToSmi(src2, src2);
|
|
// Check that the remainder is zero.
|
|
testl(rdx, rdx);
|
|
if (src1.is(rax)) {
|
|
Label smi_result;
|
|
j(zero, &smi_result, Label::kNear);
|
|
movp(src1, kScratchRegister);
|
|
jmp(on_not_smi_result, near_jump);
|
|
bind(&smi_result);
|
|
} else {
|
|
j(not_zero, on_not_smi_result, near_jump);
|
|
}
|
|
if (!dst.is(src1) && src1.is(rax)) {
|
|
movp(src1, kScratchRegister);
|
|
}
|
|
Integer32ToSmi(dst, rax);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiMod(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
DCHECK(!src2.is(rax));
|
|
DCHECK(!src2.is(rdx));
|
|
DCHECK(!src1.is(rdx));
|
|
DCHECK(!src1.is(src2));
|
|
|
|
testp(src2, src2);
|
|
j(zero, on_not_smi_result, near_jump);
|
|
|
|
if (src1.is(rax)) {
|
|
movp(kScratchRegister, src1);
|
|
}
|
|
SmiToInteger32(rax, src1);
|
|
SmiToInteger32(src2, src2);
|
|
|
|
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
|
|
Label safe_div;
|
|
cmpl(rax, Immediate(Smi::kMinValue));
|
|
j(not_equal, &safe_div, Label::kNear);
|
|
cmpl(src2, Immediate(-1));
|
|
j(not_equal, &safe_div, Label::kNear);
|
|
// Retag inputs and go slow case.
|
|
Integer32ToSmi(src2, src2);
|
|
if (src1.is(rax)) {
|
|
movp(src1, kScratchRegister);
|
|
}
|
|
jmp(on_not_smi_result, near_jump);
|
|
bind(&safe_div);
|
|
|
|
// Sign extend eax into edx:eax.
|
|
cdq();
|
|
idivl(src2);
|
|
// Restore smi tags on inputs.
|
|
Integer32ToSmi(src2, src2);
|
|
if (src1.is(rax)) {
|
|
movp(src1, kScratchRegister);
|
|
}
|
|
// Check for a negative zero result. If the result is zero, and the
|
|
// dividend is negative, go slow to return a floating point negative zero.
|
|
Label smi_result;
|
|
testl(rdx, rdx);
|
|
j(not_zero, &smi_result, Label::kNear);
|
|
testp(src1, src1);
|
|
j(negative, on_not_smi_result, near_jump);
|
|
bind(&smi_result);
|
|
Integer32ToSmi(dst, rdx);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiNot(Register dst, Register src) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src.is(kScratchRegister));
|
|
if (SmiValuesAre32Bits()) {
|
|
// Set tag and padding bits before negating, so that they are zero
|
|
// afterwards.
|
|
movl(kScratchRegister, Immediate(~0));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
movl(kScratchRegister, Immediate(1));
|
|
}
|
|
if (dst.is(src)) {
|
|
xorp(dst, kScratchRegister);
|
|
} else {
|
|
leap(dst, Operand(src, kScratchRegister, times_1, 0));
|
|
}
|
|
notp(dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
|
|
DCHECK(!dst.is(src2));
|
|
if (!dst.is(src1)) {
|
|
movp(dst, src1);
|
|
}
|
|
andp(dst, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
|
|
if (constant->value() == 0) {
|
|
Set(dst, 0);
|
|
} else if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
andp(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
andp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
|
|
if (!dst.is(src1)) {
|
|
DCHECK(!src1.is(src2));
|
|
movp(dst, src1);
|
|
}
|
|
orp(dst, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
|
|
if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
orp(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
orp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
|
|
if (!dst.is(src1)) {
|
|
DCHECK(!src1.is(src2));
|
|
movp(dst, src1);
|
|
}
|
|
xorp(dst, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
|
|
if (dst.is(src)) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
xorp(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
xorp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
|
|
Register src,
|
|
int shift_value) {
|
|
DCHECK(is_uint5(shift_value));
|
|
if (shift_value > 0) {
|
|
if (dst.is(src)) {
|
|
sarp(dst, Immediate(shift_value + kSmiShift));
|
|
shlp(dst, Immediate(kSmiShift));
|
|
} else {
|
|
UNIMPLEMENTED(); // Not used.
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftLeftConstant(Register dst,
|
|
Register src,
|
|
int shift_value,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
if (SmiValuesAre32Bits()) {
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
if (shift_value > 0) {
|
|
// Shift amount specified by lower 5 bits, not six as the shl opcode.
|
|
shlq(dst, Immediate(shift_value & 0x1f));
|
|
}
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
if (dst.is(src)) {
|
|
UNIMPLEMENTED(); // Not used.
|
|
} else {
|
|
SmiToInteger32(dst, src);
|
|
shll(dst, Immediate(shift_value));
|
|
JumpIfNotValidSmiValue(dst, on_not_smi_result, near_jump);
|
|
Integer32ToSmi(dst, dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftLogicalRightConstant(
|
|
Register dst, Register src, int shift_value,
|
|
Label* on_not_smi_result, Label::Distance near_jump) {
|
|
// Logic right shift interprets its result as an *unsigned* number.
|
|
if (dst.is(src)) {
|
|
UNIMPLEMENTED(); // Not used.
|
|
} else {
|
|
if (shift_value == 0) {
|
|
testp(src, src);
|
|
j(negative, on_not_smi_result, near_jump);
|
|
}
|
|
if (SmiValuesAre32Bits()) {
|
|
movp(dst, src);
|
|
shrp(dst, Immediate(shift_value + kSmiShift));
|
|
shlp(dst, Immediate(kSmiShift));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
SmiToInteger32(dst, src);
|
|
shrp(dst, Immediate(shift_value));
|
|
JumpIfUIntNotValidSmiValue(dst, on_not_smi_result, near_jump);
|
|
Integer32ToSmi(dst, dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftLeft(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
if (SmiValuesAre32Bits()) {
|
|
DCHECK(!dst.is(rcx));
|
|
if (!dst.is(src1)) {
|
|
movp(dst, src1);
|
|
}
|
|
// Untag shift amount.
|
|
SmiToInteger32(rcx, src2);
|
|
// Shift amount specified by lower 5 bits, not six as the shl opcode.
|
|
andp(rcx, Immediate(0x1f));
|
|
shlq_cl(dst);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
DCHECK(!dst.is(src2));
|
|
DCHECK(!dst.is(rcx));
|
|
|
|
if (src1.is(rcx) || src2.is(rcx)) {
|
|
movq(kScratchRegister, rcx);
|
|
}
|
|
if (dst.is(src1)) {
|
|
UNIMPLEMENTED(); // Not used.
|
|
} else {
|
|
Label valid_result;
|
|
SmiToInteger32(dst, src1);
|
|
SmiToInteger32(rcx, src2);
|
|
shll_cl(dst);
|
|
JumpIfValidSmiValue(dst, &valid_result, Label::kNear);
|
|
// As src1 or src2 could not be dst, we do not need to restore them for
|
|
// clobbering dst.
|
|
if (src1.is(rcx) || src2.is(rcx)) {
|
|
if (src1.is(rcx)) {
|
|
movq(src1, kScratchRegister);
|
|
} else {
|
|
movq(src2, kScratchRegister);
|
|
}
|
|
}
|
|
jmp(on_not_smi_result, near_jump);
|
|
bind(&valid_result);
|
|
Integer32ToSmi(dst, dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftLogicalRight(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smi_result,
|
|
Label::Distance near_jump) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
DCHECK(!dst.is(src2));
|
|
DCHECK(!dst.is(rcx));
|
|
if (src1.is(rcx) || src2.is(rcx)) {
|
|
movq(kScratchRegister, rcx);
|
|
}
|
|
if (dst.is(src1)) {
|
|
UNIMPLEMENTED(); // Not used.
|
|
} else {
|
|
Label valid_result;
|
|
SmiToInteger32(dst, src1);
|
|
SmiToInteger32(rcx, src2);
|
|
shrl_cl(dst);
|
|
JumpIfUIntValidSmiValue(dst, &valid_result, Label::kNear);
|
|
// As src1 or src2 could not be dst, we do not need to restore them for
|
|
// clobbering dst.
|
|
if (src1.is(rcx) || src2.is(rcx)) {
|
|
if (src1.is(rcx)) {
|
|
movq(src1, kScratchRegister);
|
|
} else {
|
|
movq(src2, kScratchRegister);
|
|
}
|
|
}
|
|
jmp(on_not_smi_result, near_jump);
|
|
bind(&valid_result);
|
|
Integer32ToSmi(dst, dst);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftArithmeticRight(Register dst,
|
|
Register src1,
|
|
Register src2) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
DCHECK(!dst.is(rcx));
|
|
|
|
SmiToInteger32(rcx, src2);
|
|
if (!dst.is(src1)) {
|
|
movp(dst, src1);
|
|
}
|
|
SmiToInteger32(dst, dst);
|
|
sarl_cl(dst);
|
|
Integer32ToSmi(dst, dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SelectNonSmi(Register dst,
|
|
Register src1,
|
|
Register src2,
|
|
Label* on_not_smis,
|
|
Label::Distance near_jump) {
|
|
DCHECK(!dst.is(kScratchRegister));
|
|
DCHECK(!src1.is(kScratchRegister));
|
|
DCHECK(!src2.is(kScratchRegister));
|
|
DCHECK(!dst.is(src1));
|
|
DCHECK(!dst.is(src2));
|
|
// Both operands must not be smis.
|
|
#ifdef DEBUG
|
|
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
|
|
Check(not_both_smis, kBothRegistersWereSmisInSelectNonSmi);
|
|
#endif
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
|
|
movl(kScratchRegister, Immediate(kSmiTagMask));
|
|
andp(kScratchRegister, src1);
|
|
testl(kScratchRegister, src2);
|
|
// If non-zero then both are smis.
|
|
j(not_zero, on_not_smis, near_jump);
|
|
|
|
// Exactly one operand is a smi.
|
|
DCHECK_EQ(1, static_cast<int>(kSmiTagMask));
|
|
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
|
|
subp(kScratchRegister, Immediate(1));
|
|
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
|
|
movp(dst, src1);
|
|
xorp(dst, src2);
|
|
andp(dst, kScratchRegister);
|
|
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
|
|
xorp(dst, src1);
|
|
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
|
|
}
|
|
|
|
|
|
SmiIndex MacroAssembler::SmiToIndex(Register dst,
|
|
Register src,
|
|
int shift) {
|
|
if (SmiValuesAre32Bits()) {
|
|
DCHECK(is_uint6(shift));
|
|
// There is a possible optimization if shift is in the range 60-63, but that
|
|
// will (and must) never happen.
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
if (shift < kSmiShift) {
|
|
sarp(dst, Immediate(kSmiShift - shift));
|
|
} else {
|
|
shlp(dst, Immediate(shift - kSmiShift));
|
|
}
|
|
return SmiIndex(dst, times_1);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
// We have to sign extend the index register to 64-bit as the SMI might
|
|
// be negative.
|
|
movsxlq(dst, dst);
|
|
if (shift == times_1) {
|
|
sarq(dst, Immediate(kSmiShift));
|
|
return SmiIndex(dst, times_1);
|
|
}
|
|
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
|
|
}
|
|
}
|
|
|
|
|
|
SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
|
|
Register src,
|
|
int shift) {
|
|
if (SmiValuesAre32Bits()) {
|
|
// Register src holds a positive smi.
|
|
DCHECK(is_uint6(shift));
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
negp(dst);
|
|
if (shift < kSmiShift) {
|
|
sarp(dst, Immediate(kSmiShift - shift));
|
|
} else {
|
|
shlp(dst, Immediate(shift - kSmiShift));
|
|
}
|
|
return SmiIndex(dst, times_1);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
negq(dst);
|
|
if (shift == times_1) {
|
|
sarq(dst, Immediate(kSmiShift));
|
|
return SmiIndex(dst, times_1);
|
|
}
|
|
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
|
|
if (SmiValuesAre32Bits()) {
|
|
DCHECK_EQ(0, kSmiShift % kBitsPerByte);
|
|
addl(dst, Operand(src, kSmiShift / kBitsPerByte));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
SmiToInteger32(kScratchRegister, src);
|
|
addl(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(Smi* source) {
|
|
intptr_t smi = reinterpret_cast<intptr_t>(source);
|
|
if (is_int32(smi)) {
|
|
Push(Immediate(static_cast<int32_t>(smi)));
|
|
} else {
|
|
Register constant = GetSmiConstant(source);
|
|
Push(constant);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
|
|
DCHECK(!src.is(scratch));
|
|
movp(scratch, src);
|
|
// High bits.
|
|
shrp(src, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
|
|
shlp(src, Immediate(kSmiShift));
|
|
Push(src);
|
|
// Low bits.
|
|
shlp(scratch, Immediate(kSmiShift));
|
|
Push(scratch);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
|
|
DCHECK(!dst.is(scratch));
|
|
Pop(scratch);
|
|
// Low bits.
|
|
shrp(scratch, Immediate(kSmiShift));
|
|
Pop(dst);
|
|
shrp(dst, Immediate(kSmiShift));
|
|
// High bits.
|
|
shlp(dst, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
|
|
orp(dst, scratch);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Test(const Operand& src, Smi* source) {
|
|
if (SmiValuesAre32Bits()) {
|
|
testl(Operand(src, kIntSize), Immediate(source->value()));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
testl(src, Immediate(source));
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
void MacroAssembler::JumpIfNotString(Register object,
|
|
Register object_map,
|
|
Label* not_string,
|
|
Label::Distance near_jump) {
|
|
Condition is_smi = CheckSmi(object);
|
|
j(is_smi, not_string, near_jump);
|
|
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
|
|
j(above_equal, not_string, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(
|
|
Register first_object, Register second_object, Register scratch1,
|
|
Register scratch2, Label* on_fail, Label::Distance near_jump) {
|
|
// Check that both objects are not smis.
|
|
Condition either_smi = CheckEitherSmi(first_object, second_object);
|
|
j(either_smi, on_fail, near_jump);
|
|
|
|
// Load instance type for both strings.
|
|
movp(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
|
|
movp(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
|
|
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
|
|
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
|
|
|
|
// Check that both are flat one-byte strings.
|
|
DCHECK(kNotStringTag != 0);
|
|
const int kFlatOneByteStringMask =
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
const int kFlatOneByteStringTag =
|
|
kStringTag | kOneByteStringTag | kSeqStringTag;
|
|
|
|
andl(scratch1, Immediate(kFlatOneByteStringMask));
|
|
andl(scratch2, Immediate(kFlatOneByteStringMask));
|
|
// Interleave the bits to check both scratch1 and scratch2 in one test.
|
|
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
|
|
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
|
cmpl(scratch1,
|
|
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
|
|
j(not_equal, on_fail, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
|
|
Register instance_type, Register scratch, Label* failure,
|
|
Label::Distance near_jump) {
|
|
if (!scratch.is(instance_type)) {
|
|
movl(scratch, instance_type);
|
|
}
|
|
|
|
const int kFlatOneByteStringMask =
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
|
|
andl(scratch, Immediate(kFlatOneByteStringMask));
|
|
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kOneByteStringTag));
|
|
j(not_equal, failure, near_jump);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
|
|
Register first_object_instance_type, Register second_object_instance_type,
|
|
Register scratch1, Register scratch2, Label* on_fail,
|
|
Label::Distance near_jump) {
|
|
// Load instance type for both strings.
|
|
movp(scratch1, first_object_instance_type);
|
|
movp(scratch2, second_object_instance_type);
|
|
|
|
// Check that both are flat one-byte strings.
|
|
DCHECK(kNotStringTag != 0);
|
|
const int kFlatOneByteStringMask =
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
const int kFlatOneByteStringTag =
|
|
kStringTag | kOneByteStringTag | kSeqStringTag;
|
|
|
|
andl(scratch1, Immediate(kFlatOneByteStringMask));
|
|
andl(scratch2, Immediate(kFlatOneByteStringMask));
|
|
// Interleave the bits to check both scratch1 and scratch2 in one test.
|
|
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
|
|
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
|
cmpl(scratch1,
|
|
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
|
|
j(not_equal, on_fail, near_jump);
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void JumpIfNotUniqueNameHelper(MacroAssembler* masm,
|
|
T operand_or_register,
|
|
Label* not_unique_name,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
|
|
Label succeed;
|
|
masm->testb(operand_or_register,
|
|
Immediate(kIsNotStringMask | kIsNotInternalizedMask));
|
|
masm->j(zero, &succeed, Label::kNear);
|
|
masm->cmpb(operand_or_register, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
|
|
masm->j(not_equal, not_unique_name, distance);
|
|
|
|
masm->bind(&succeed);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
|
|
Label* not_unique_name,
|
|
Label::Distance distance) {
|
|
JumpIfNotUniqueNameHelper<Operand>(this, operand, not_unique_name, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
|
|
Label* not_unique_name,
|
|
Label::Distance distance) {
|
|
JumpIfNotUniqueNameHelper<Register>(this, reg, not_unique_name, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(Register dst, Register src) {
|
|
if (!dst.is(src)) {
|
|
movp(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(Register dst, Handle<Object> source) {
|
|
AllowDeferredHandleDereference smi_check;
|
|
if (source->IsSmi()) {
|
|
Move(dst, Smi::cast(*source));
|
|
} else {
|
|
MoveHeapObject(dst, source);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
|
|
AllowDeferredHandleDereference smi_check;
|
|
if (source->IsSmi()) {
|
|
Move(dst, Smi::cast(*source));
|
|
} else {
|
|
MoveHeapObject(kScratchRegister, source);
|
|
movp(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(XMMRegister dst, uint32_t src) {
|
|
if (src == 0) {
|
|
Xorpd(dst, dst);
|
|
} else {
|
|
unsigned pop = base::bits::CountPopulation32(src);
|
|
DCHECK_NE(0u, pop);
|
|
if (pop == 32) {
|
|
Pcmpeqd(dst, dst);
|
|
} else {
|
|
movl(kScratchRegister, Immediate(src));
|
|
Movq(dst, kScratchRegister);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(XMMRegister dst, uint64_t src) {
|
|
if (src == 0) {
|
|
Xorpd(dst, dst);
|
|
} else {
|
|
unsigned nlz = base::bits::CountLeadingZeros64(src);
|
|
unsigned ntz = base::bits::CountTrailingZeros64(src);
|
|
unsigned pop = base::bits::CountPopulation64(src);
|
|
DCHECK_NE(0u, pop);
|
|
if (pop == 64) {
|
|
Pcmpeqd(dst, dst);
|
|
} else if (pop + ntz == 64) {
|
|
Pcmpeqd(dst, dst);
|
|
Psllq(dst, ntz);
|
|
} else if (pop + nlz == 64) {
|
|
Pcmpeqd(dst, dst);
|
|
Psrlq(dst, nlz);
|
|
} else {
|
|
uint32_t lower = static_cast<uint32_t>(src);
|
|
uint32_t upper = static_cast<uint32_t>(src >> 32);
|
|
if (upper == 0) {
|
|
Move(dst, lower);
|
|
} else {
|
|
movq(kScratchRegister, src);
|
|
Movq(dst, kScratchRegister);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movaps(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovaps(dst, src);
|
|
} else {
|
|
movaps(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movapd(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovapd(dst, src);
|
|
} else {
|
|
movapd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movsd(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovsd(dst, dst, src);
|
|
} else {
|
|
movsd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movsd(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovsd(dst, src);
|
|
} else {
|
|
movsd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movsd(const Operand& dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovsd(dst, src);
|
|
} else {
|
|
movsd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movss(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovss(dst, dst, src);
|
|
} else {
|
|
movss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movss(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovss(dst, src);
|
|
} else {
|
|
movss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movss(const Operand& dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovss(dst, src);
|
|
} else {
|
|
movss(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movd(XMMRegister dst, Register src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovd(dst, src);
|
|
} else {
|
|
movd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movd(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovd(dst, src);
|
|
} else {
|
|
movd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movd(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovd(dst, src);
|
|
} else {
|
|
movd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movq(XMMRegister dst, Register src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovq(dst, src);
|
|
} else {
|
|
movq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movq(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovq(dst, src);
|
|
} else {
|
|
movq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Movmskpd(Register dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vmovmskpd(dst, src);
|
|
} else {
|
|
movmskpd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Roundss(XMMRegister dst, XMMRegister src,
|
|
RoundingMode mode) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vroundss(dst, dst, src, mode);
|
|
} else {
|
|
roundss(dst, src, mode);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Roundsd(XMMRegister dst, XMMRegister src,
|
|
RoundingMode mode) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vroundsd(dst, dst, src, mode);
|
|
} else {
|
|
roundsd(dst, src, mode);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Sqrtsd(XMMRegister dst, XMMRegister src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vsqrtsd(dst, dst, src);
|
|
} else {
|
|
sqrtsd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Sqrtsd(XMMRegister dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vsqrtsd(dst, dst, src);
|
|
} else {
|
|
sqrtsd(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ucomiss(XMMRegister src1, XMMRegister src2) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vucomiss(src1, src2);
|
|
} else {
|
|
ucomiss(src1, src2);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ucomiss(XMMRegister src1, const Operand& src2) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vucomiss(src1, src2);
|
|
} else {
|
|
ucomiss(src1, src2);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ucomisd(XMMRegister src1, XMMRegister src2) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vucomisd(src1, src2);
|
|
} else {
|
|
ucomisd(src1, src2);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ucomisd(XMMRegister src1, const Operand& src2) {
|
|
if (CpuFeatures::IsSupported(AVX)) {
|
|
CpuFeatureScope scope(this, AVX);
|
|
vucomisd(src1, src2);
|
|
} else {
|
|
ucomisd(src1, src2);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
|
|
AllowDeferredHandleDereference smi_check;
|
|
if (source->IsSmi()) {
|
|
Cmp(dst, Smi::cast(*source));
|
|
} else {
|
|
MoveHeapObject(kScratchRegister, source);
|
|
cmpp(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
|
|
AllowDeferredHandleDereference smi_check;
|
|
if (source->IsSmi()) {
|
|
Cmp(dst, Smi::cast(*source));
|
|
} else {
|
|
MoveHeapObject(kScratchRegister, source);
|
|
cmpp(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(Handle<Object> source) {
|
|
AllowDeferredHandleDereference smi_check;
|
|
if (source->IsSmi()) {
|
|
Push(Smi::cast(*source));
|
|
} else {
|
|
MoveHeapObject(kScratchRegister, source);
|
|
Push(kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::MoveHeapObject(Register result,
|
|
Handle<Object> object) {
|
|
AllowDeferredHandleDereference using_raw_address;
|
|
DCHECK(object->IsHeapObject());
|
|
if (isolate()->heap()->InNewSpace(*object)) {
|
|
Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
|
Move(result, cell, RelocInfo::CELL);
|
|
movp(result, Operand(result, 0));
|
|
} else {
|
|
Move(result, object, RelocInfo::EMBEDDED_OBJECT);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadGlobalCell(Register dst, Handle<Cell> cell) {
|
|
if (dst.is(rax)) {
|
|
AllowDeferredHandleDereference embedding_raw_address;
|
|
load_rax(cell.location(), RelocInfo::CELL);
|
|
} else {
|
|
Move(dst, cell, RelocInfo::CELL);
|
|
movp(dst, Operand(dst, 0));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
|
|
Register scratch) {
|
|
Move(scratch, cell, RelocInfo::EMBEDDED_OBJECT);
|
|
cmpp(value, FieldOperand(scratch, WeakCell::kValueOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
|
|
Move(value, cell, RelocInfo::EMBEDDED_OBJECT);
|
|
movp(value, FieldOperand(value, WeakCell::kValueOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
|
|
Label* miss) {
|
|
GetWeakValue(value, cell);
|
|
JumpIfSmi(value, miss);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Drop(int stack_elements) {
|
|
if (stack_elements > 0) {
|
|
addp(rsp, Immediate(stack_elements * kPointerSize));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DropUnderReturnAddress(int stack_elements,
|
|
Register scratch) {
|
|
DCHECK(stack_elements > 0);
|
|
if (kPointerSize == kInt64Size && stack_elements == 1) {
|
|
popq(MemOperand(rsp, 0));
|
|
return;
|
|
}
|
|
|
|
PopReturnAddressTo(scratch);
|
|
Drop(stack_elements);
|
|
PushReturnAddressFrom(scratch);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(Register src) {
|
|
if (kPointerSize == kInt64Size) {
|
|
pushq(src);
|
|
} else {
|
|
// x32 uses 64-bit push for rbp in the prologue.
|
|
DCHECK(src.code() != rbp.code());
|
|
leal(rsp, Operand(rsp, -4));
|
|
movp(Operand(rsp, 0), src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(const Operand& src) {
|
|
if (kPointerSize == kInt64Size) {
|
|
pushq(src);
|
|
} else {
|
|
movp(kScratchRegister, src);
|
|
leal(rsp, Operand(rsp, -4));
|
|
movp(Operand(rsp, 0), kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushQuad(const Operand& src) {
|
|
if (kPointerSize == kInt64Size) {
|
|
pushq(src);
|
|
} else {
|
|
movp(kScratchRegister, src);
|
|
pushq(kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(Immediate value) {
|
|
if (kPointerSize == kInt64Size) {
|
|
pushq(value);
|
|
} else {
|
|
leal(rsp, Operand(rsp, -4));
|
|
movp(Operand(rsp, 0), value);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushImm32(int32_t imm32) {
|
|
if (kPointerSize == kInt64Size) {
|
|
pushq_imm32(imm32);
|
|
} else {
|
|
leal(rsp, Operand(rsp, -4));
|
|
movp(Operand(rsp, 0), Immediate(imm32));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pop(Register dst) {
|
|
if (kPointerSize == kInt64Size) {
|
|
popq(dst);
|
|
} else {
|
|
// x32 uses 64-bit pop for rbp in the epilogue.
|
|
DCHECK(dst.code() != rbp.code());
|
|
movp(dst, Operand(rsp, 0));
|
|
leal(rsp, Operand(rsp, 4));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pop(const Operand& dst) {
|
|
if (kPointerSize == kInt64Size) {
|
|
popq(dst);
|
|
} else {
|
|
Register scratch = dst.AddressUsesRegister(kScratchRegister)
|
|
? kRootRegister : kScratchRegister;
|
|
movp(scratch, Operand(rsp, 0));
|
|
movp(dst, scratch);
|
|
leal(rsp, Operand(rsp, 4));
|
|
if (scratch.is(kRootRegister)) {
|
|
// Restore kRootRegister.
|
|
InitializeRootRegister();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PopQuad(const Operand& dst) {
|
|
if (kPointerSize == kInt64Size) {
|
|
popq(dst);
|
|
} else {
|
|
popq(kScratchRegister);
|
|
movp(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadSharedFunctionInfoSpecialField(Register dst,
|
|
Register base,
|
|
int offset) {
|
|
DCHECK(offset > SharedFunctionInfo::kLengthOffset &&
|
|
offset <= SharedFunctionInfo::kSize &&
|
|
(((offset - SharedFunctionInfo::kLengthOffset) / kIntSize) % 2 == 1));
|
|
if (kPointerSize == kInt64Size) {
|
|
movsxlq(dst, FieldOperand(base, offset));
|
|
} else {
|
|
movp(dst, FieldOperand(base, offset));
|
|
SmiToInteger32(dst, dst);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::TestBitSharedFunctionInfoSpecialField(Register base,
|
|
int offset,
|
|
int bits) {
|
|
DCHECK(offset > SharedFunctionInfo::kLengthOffset &&
|
|
offset <= SharedFunctionInfo::kSize &&
|
|
(((offset - SharedFunctionInfo::kLengthOffset) / kIntSize) % 2 == 1));
|
|
if (kPointerSize == kInt32Size) {
|
|
// On x32, this field is represented by SMI.
|
|
bits += kSmiShift;
|
|
}
|
|
int byte_offset = bits / kBitsPerByte;
|
|
int bit_in_byte = bits & (kBitsPerByte - 1);
|
|
testb(FieldOperand(base, offset + byte_offset), Immediate(1 << bit_in_byte));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(ExternalReference ext) {
|
|
LoadAddress(kScratchRegister, ext);
|
|
jmp(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(const Operand& op) {
|
|
if (kPointerSize == kInt64Size) {
|
|
jmp(op);
|
|
} else {
|
|
movp(kScratchRegister, op);
|
|
jmp(kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
|
|
Move(kScratchRegister, destination, rmode);
|
|
jmp(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
|
|
// TODO(X64): Inline this
|
|
jmp(code_object, rmode);
|
|
}
|
|
|
|
|
|
int MacroAssembler::CallSize(ExternalReference ext) {
|
|
// Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes).
|
|
return LoadAddressSize(ext) +
|
|
Assembler::kCallScratchRegisterInstructionLength;
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(ExternalReference ext) {
|
|
#ifdef DEBUG
|
|
int end_position = pc_offset() + CallSize(ext);
|
|
#endif
|
|
LoadAddress(kScratchRegister, ext);
|
|
call(kScratchRegister);
|
|
#ifdef DEBUG
|
|
CHECK_EQ(end_position, pc_offset());
|
|
#endif
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(const Operand& op) {
|
|
if (kPointerSize == kInt64Size && !CpuFeatures::IsSupported(ATOM)) {
|
|
call(op);
|
|
} else {
|
|
movp(kScratchRegister, op);
|
|
call(kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
|
|
#ifdef DEBUG
|
|
int end_position = pc_offset() + CallSize(destination);
|
|
#endif
|
|
Move(kScratchRegister, destination, rmode);
|
|
call(kScratchRegister);
|
|
#ifdef DEBUG
|
|
CHECK_EQ(pc_offset(), end_position);
|
|
#endif
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(Handle<Code> code_object,
|
|
RelocInfo::Mode rmode,
|
|
TypeFeedbackId ast_id) {
|
|
#ifdef DEBUG
|
|
int end_position = pc_offset() + CallSize(code_object);
|
|
#endif
|
|
DCHECK(RelocInfo::IsCodeTarget(rmode) ||
|
|
rmode == RelocInfo::CODE_AGE_SEQUENCE);
|
|
call(code_object, rmode, ast_id);
|
|
#ifdef DEBUG
|
|
CHECK_EQ(end_position, pc_offset());
|
|
#endif
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) {
|
|
if (imm8 == 0) {
|
|
Movd(dst, src);
|
|
return;
|
|
}
|
|
DCHECK_EQ(1, imm8);
|
|
if (CpuFeatures::IsSupported(SSE4_1)) {
|
|
CpuFeatureScope sse_scope(this, SSE4_1);
|
|
pextrd(dst, src, imm8);
|
|
return;
|
|
}
|
|
movq(dst, src);
|
|
shrq(dst, Immediate(32));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
|
|
if (CpuFeatures::IsSupported(SSE4_1)) {
|
|
CpuFeatureScope sse_scope(this, SSE4_1);
|
|
pinsrd(dst, src, imm8);
|
|
return;
|
|
}
|
|
Movd(xmm0, src);
|
|
if (imm8 == 1) {
|
|
punpckldq(dst, xmm0);
|
|
} else {
|
|
DCHECK_EQ(0, imm8);
|
|
Movss(dst, xmm0);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8) {
|
|
DCHECK(imm8 == 0 || imm8 == 1);
|
|
if (CpuFeatures::IsSupported(SSE4_1)) {
|
|
CpuFeatureScope sse_scope(this, SSE4_1);
|
|
pinsrd(dst, src, imm8);
|
|
return;
|
|
}
|
|
Movd(xmm0, src);
|
|
if (imm8 == 1) {
|
|
punpckldq(dst, xmm0);
|
|
} else {
|
|
DCHECK_EQ(0, imm8);
|
|
Movss(dst, xmm0);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Lzcntl(Register dst, Register src) {
|
|
if (CpuFeatures::IsSupported(LZCNT)) {
|
|
CpuFeatureScope scope(this, LZCNT);
|
|
lzcntl(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsrl(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
Set(dst, 63); // 63^31 == 32
|
|
bind(¬_zero_src);
|
|
xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x
|
|
}
|
|
|
|
|
|
void MacroAssembler::Lzcntl(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(LZCNT)) {
|
|
CpuFeatureScope scope(this, LZCNT);
|
|
lzcntl(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsrl(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
Set(dst, 63); // 63^31 == 32
|
|
bind(¬_zero_src);
|
|
xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x
|
|
}
|
|
|
|
|
|
void MacroAssembler::Lzcntq(Register dst, Register src) {
|
|
if (CpuFeatures::IsSupported(LZCNT)) {
|
|
CpuFeatureScope scope(this, LZCNT);
|
|
lzcntq(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsrq(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
Set(dst, 127); // 127^63 == 64
|
|
bind(¬_zero_src);
|
|
xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x
|
|
}
|
|
|
|
|
|
void MacroAssembler::Lzcntq(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(LZCNT)) {
|
|
CpuFeatureScope scope(this, LZCNT);
|
|
lzcntq(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsrq(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
Set(dst, 127); // 127^63 == 64
|
|
bind(¬_zero_src);
|
|
xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x
|
|
}
|
|
|
|
|
|
void MacroAssembler::Tzcntq(Register dst, Register src) {
|
|
if (CpuFeatures::IsSupported(BMI1)) {
|
|
CpuFeatureScope scope(this, BMI1);
|
|
tzcntq(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsfq(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
// Define the result of tzcnt(0) separately, because bsf(0) is undefined.
|
|
Set(dst, 64);
|
|
bind(¬_zero_src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Tzcntq(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(BMI1)) {
|
|
CpuFeatureScope scope(this, BMI1);
|
|
tzcntq(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsfq(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
// Define the result of tzcnt(0) separately, because bsf(0) is undefined.
|
|
Set(dst, 64);
|
|
bind(¬_zero_src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Tzcntl(Register dst, Register src) {
|
|
if (CpuFeatures::IsSupported(BMI1)) {
|
|
CpuFeatureScope scope(this, BMI1);
|
|
tzcntl(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsfl(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
Set(dst, 32); // The result of tzcnt is 32 if src = 0.
|
|
bind(¬_zero_src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Tzcntl(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(BMI1)) {
|
|
CpuFeatureScope scope(this, BMI1);
|
|
tzcntl(dst, src);
|
|
return;
|
|
}
|
|
Label not_zero_src;
|
|
bsfl(dst, src);
|
|
j(not_zero, ¬_zero_src, Label::kNear);
|
|
Set(dst, 32); // The result of tzcnt is 32 if src = 0.
|
|
bind(¬_zero_src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Popcntl(Register dst, Register src) {
|
|
if (CpuFeatures::IsSupported(POPCNT)) {
|
|
CpuFeatureScope scope(this, POPCNT);
|
|
popcntl(dst, src);
|
|
return;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void MacroAssembler::Popcntl(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(POPCNT)) {
|
|
CpuFeatureScope scope(this, POPCNT);
|
|
popcntl(dst, src);
|
|
return;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void MacroAssembler::Popcntq(Register dst, Register src) {
|
|
if (CpuFeatures::IsSupported(POPCNT)) {
|
|
CpuFeatureScope scope(this, POPCNT);
|
|
popcntq(dst, src);
|
|
return;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void MacroAssembler::Popcntq(Register dst, const Operand& src) {
|
|
if (CpuFeatures::IsSupported(POPCNT)) {
|
|
CpuFeatureScope scope(this, POPCNT);
|
|
popcntq(dst, src);
|
|
return;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pushad() {
|
|
Push(rax);
|
|
Push(rcx);
|
|
Push(rdx);
|
|
Push(rbx);
|
|
// Not pushing rsp or rbp.
|
|
Push(rsi);
|
|
Push(rdi);
|
|
Push(r8);
|
|
Push(r9);
|
|
// r10 is kScratchRegister.
|
|
Push(r11);
|
|
Push(r12);
|
|
// r13 is kRootRegister.
|
|
Push(r14);
|
|
Push(r15);
|
|
STATIC_ASSERT(12 == kNumSafepointSavedRegisters);
|
|
// Use lea for symmetry with Popad.
|
|
int sp_delta =
|
|
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
|
|
leap(rsp, Operand(rsp, -sp_delta));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Popad() {
|
|
// Popad must not change the flags, so use lea instead of addq.
|
|
int sp_delta =
|
|
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
|
|
leap(rsp, Operand(rsp, sp_delta));
|
|
Pop(r15);
|
|
Pop(r14);
|
|
Pop(r12);
|
|
Pop(r11);
|
|
Pop(r9);
|
|
Pop(r8);
|
|
Pop(rdi);
|
|
Pop(rsi);
|
|
Pop(rbx);
|
|
Pop(rdx);
|
|
Pop(rcx);
|
|
Pop(rax);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Dropad() {
|
|
addp(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
|
|
}
|
|
|
|
|
|
// Order general registers are pushed by Pushad:
|
|
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
|
|
const int
|
|
MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
|
|
0,
|
|
1,
|
|
2,
|
|
3,
|
|
-1,
|
|
-1,
|
|
4,
|
|
5,
|
|
6,
|
|
7,
|
|
-1,
|
|
8,
|
|
9,
|
|
-1,
|
|
10,
|
|
11
|
|
};
|
|
|
|
|
|
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst,
|
|
const Immediate& imm) {
|
|
movp(SafepointRegisterSlot(dst), imm);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
|
|
movp(SafepointRegisterSlot(dst), src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
|
|
movp(dst, SafepointRegisterSlot(src));
|
|
}
|
|
|
|
|
|
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
|
|
return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushStackHandler() {
|
|
// Adjust this code if not the case.
|
|
STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
// Link the current handler as the next handler.
|
|
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
|
|
Push(ExternalOperand(handler_address));
|
|
|
|
// Set this new handler as the current one.
|
|
movp(ExternalOperand(handler_address), rsp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PopStackHandler() {
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
|
|
Pop(ExternalOperand(handler_address));
|
|
addp(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ret() {
|
|
ret(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
|
|
if (is_uint16(bytes_dropped)) {
|
|
ret(bytes_dropped);
|
|
} else {
|
|
PopReturnAddressTo(scratch);
|
|
addp(rsp, Immediate(bytes_dropped));
|
|
PushReturnAddressFrom(scratch);
|
|
ret(0);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::FCmp() {
|
|
fucomip();
|
|
fstp(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpObjectType(Register heap_object,
|
|
InstanceType type,
|
|
Register map) {
|
|
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
CmpInstanceType(map, type);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
|
|
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
|
|
Immediate(static_cast<int8_t>(type)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckFastElements(Register map,
|
|
Label* fail,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(FAST_ELEMENTS == 2);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
|
|
j(above, fail, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckFastObjectElements(Register map,
|
|
Label* fail,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(FAST_ELEMENTS == 2);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
|
|
j(below_equal, fail, distance);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
|
|
j(above, fail, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckFastSmiElements(Register map,
|
|
Label* fail,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
|
|
j(above, fail, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreNumberToDoubleElements(
|
|
Register maybe_number,
|
|
Register elements,
|
|
Register index,
|
|
XMMRegister xmm_scratch,
|
|
Label* fail,
|
|
int elements_offset) {
|
|
Label smi_value, done;
|
|
|
|
JumpIfSmi(maybe_number, &smi_value, Label::kNear);
|
|
|
|
CheckMap(maybe_number,
|
|
isolate()->factory()->heap_number_map(),
|
|
fail,
|
|
DONT_DO_SMI_CHECK);
|
|
|
|
// Double value, turn potential sNaN into qNaN.
|
|
Move(xmm_scratch, 1.0);
|
|
mulsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset));
|
|
jmp(&done, Label::kNear);
|
|
|
|
bind(&smi_value);
|
|
// Value is a smi. convert to a double and store.
|
|
// Preserve original value.
|
|
SmiToInteger32(kScratchRegister, maybe_number);
|
|
Cvtlsi2sd(xmm_scratch, kScratchRegister);
|
|
bind(&done);
|
|
Movsd(FieldOperand(elements, index, times_8,
|
|
FixedDoubleArray::kHeaderSize - elements_offset),
|
|
xmm_scratch);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
|
|
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckMap(Register obj,
|
|
Handle<Map> map,
|
|
Label* fail,
|
|
SmiCheckType smi_check_type) {
|
|
if (smi_check_type == DO_SMI_CHECK) {
|
|
JumpIfSmi(obj, fail);
|
|
}
|
|
|
|
CompareMap(obj, map);
|
|
j(not_equal, fail);
|
|
}
|
|
|
|
|
|
void MacroAssembler::ClampUint8(Register reg) {
|
|
Label done;
|
|
testl(reg, Immediate(0xFFFFFF00));
|
|
j(zero, &done, Label::kNear);
|
|
setcc(negative, reg); // 1 if negative, 0 if positive.
|
|
decb(reg); // 0 if negative, 255 if positive.
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
|
|
XMMRegister temp_xmm_reg,
|
|
Register result_reg) {
|
|
Label done;
|
|
Label conv_failure;
|
|
Xorpd(temp_xmm_reg, temp_xmm_reg);
|
|
Cvtsd2si(result_reg, input_reg);
|
|
testl(result_reg, Immediate(0xFFFFFF00));
|
|
j(zero, &done, Label::kNear);
|
|
cmpl(result_reg, Immediate(1));
|
|
j(overflow, &conv_failure, Label::kNear);
|
|
movl(result_reg, Immediate(0));
|
|
setcc(sign, result_reg);
|
|
subl(result_reg, Immediate(1));
|
|
andl(result_reg, Immediate(255));
|
|
jmp(&done, Label::kNear);
|
|
bind(&conv_failure);
|
|
Set(result_reg, 0);
|
|
Ucomisd(input_reg, temp_xmm_reg);
|
|
j(below, &done, Label::kNear);
|
|
Set(result_reg, 255);
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadUint32(XMMRegister dst,
|
|
Register src) {
|
|
if (FLAG_debug_code) {
|
|
cmpq(src, Immediate(0xffffffff));
|
|
Assert(below_equal, kInputGPRIsExpectedToHaveUpper32Cleared);
|
|
}
|
|
Cvtqsi2sd(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SlowTruncateToI(Register result_reg,
|
|
Register input_reg,
|
|
int offset) {
|
|
DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
|
|
call(stub.GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
|
|
Register input_reg) {
|
|
Label done;
|
|
Movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
|
|
Cvttsd2siq(result_reg, xmm0);
|
|
cmpq(result_reg, Immediate(1));
|
|
j(no_overflow, &done, Label::kNear);
|
|
|
|
// Slow case.
|
|
if (input_reg.is(result_reg)) {
|
|
subp(rsp, Immediate(kDoubleSize));
|
|
Movsd(MemOperand(rsp, 0), xmm0);
|
|
SlowTruncateToI(result_reg, rsp, 0);
|
|
addp(rsp, Immediate(kDoubleSize));
|
|
} else {
|
|
SlowTruncateToI(result_reg, input_reg);
|
|
}
|
|
|
|
bind(&done);
|
|
// Keep our invariant that the upper 32 bits are zero.
|
|
movl(result_reg, result_reg);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TruncateDoubleToI(Register result_reg,
|
|
XMMRegister input_reg) {
|
|
Label done;
|
|
Cvttsd2siq(result_reg, input_reg);
|
|
cmpq(result_reg, Immediate(1));
|
|
j(no_overflow, &done, Label::kNear);
|
|
|
|
subp(rsp, Immediate(kDoubleSize));
|
|
Movsd(MemOperand(rsp, 0), input_reg);
|
|
SlowTruncateToI(result_reg, rsp, 0);
|
|
addp(rsp, Immediate(kDoubleSize));
|
|
|
|
bind(&done);
|
|
// Keep our invariant that the upper 32 bits are zero.
|
|
movl(result_reg, result_reg);
|
|
}
|
|
|
|
|
|
void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg,
|
|
XMMRegister scratch,
|
|
MinusZeroMode minus_zero_mode,
|
|
Label* lost_precision, Label* is_nan,
|
|
Label* minus_zero, Label::Distance dst) {
|
|
Cvttsd2si(result_reg, input_reg);
|
|
Cvtlsi2sd(xmm0, result_reg);
|
|
Ucomisd(xmm0, input_reg);
|
|
j(not_equal, lost_precision, dst);
|
|
j(parity_even, is_nan, dst); // NaN.
|
|
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
|
|
Label done;
|
|
// The integer converted back is equal to the original. We
|
|
// only have to test if we got -0 as an input.
|
|
testl(result_reg, result_reg);
|
|
j(not_zero, &done, Label::kNear);
|
|
Movmskpd(result_reg, input_reg);
|
|
// Bit 0 contains the sign of the double in input_reg.
|
|
// If input was positive, we are ok and return 0, otherwise
|
|
// jump to minus_zero.
|
|
andl(result_reg, Immediate(1));
|
|
j(not_zero, minus_zero, dst);
|
|
bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadInstanceDescriptors(Register map,
|
|
Register descriptors) {
|
|
movp(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
|
|
movl(dst, FieldOperand(map, Map::kBitField3Offset));
|
|
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnumLength(Register dst, Register map) {
|
|
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
|
|
movl(dst, FieldOperand(map, Map::kBitField3Offset));
|
|
andl(dst, Immediate(Map::EnumLengthBits::kMask));
|
|
Integer32ToSmi(dst, dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadAccessor(Register dst, Register holder,
|
|
int accessor_index,
|
|
AccessorComponent accessor) {
|
|
movp(dst, FieldOperand(holder, HeapObject::kMapOffset));
|
|
LoadInstanceDescriptors(dst, dst);
|
|
movp(dst, FieldOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
|
|
int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
|
|
: AccessorPair::kSetterOffset;
|
|
movp(dst, FieldOperand(dst, offset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
|
|
Register scratch2, Handle<WeakCell> cell,
|
|
Handle<Code> success,
|
|
SmiCheckType smi_check_type) {
|
|
Label fail;
|
|
if (smi_check_type == DO_SMI_CHECK) {
|
|
JumpIfSmi(obj, &fail);
|
|
}
|
|
movq(scratch1, FieldOperand(obj, HeapObject::kMapOffset));
|
|
CmpWeakValue(scratch1, cell, scratch2);
|
|
j(equal, success, RelocInfo::CODE_TARGET);
|
|
bind(&fail);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertNumber(Register object) {
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
Condition is_smi = CheckSmi(object);
|
|
j(is_smi, &ok, Label::kNear);
|
|
Cmp(FieldOperand(object, HeapObject::kMapOffset),
|
|
isolate()->factory()->heap_number_map());
|
|
Check(equal, kOperandIsNotANumber);
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertNotSmi(Register object) {
|
|
if (emit_debug_code()) {
|
|
Condition is_smi = CheckSmi(object);
|
|
Check(NegateCondition(is_smi), kOperandIsASmi);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertSmi(Register object) {
|
|
if (emit_debug_code()) {
|
|
Condition is_smi = CheckSmi(object);
|
|
Check(is_smi, kOperandIsNotASmi);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertSmi(const Operand& object) {
|
|
if (emit_debug_code()) {
|
|
Condition is_smi = CheckSmi(object);
|
|
Check(is_smi, kOperandIsNotASmi);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertZeroExtended(Register int32_register) {
|
|
if (emit_debug_code()) {
|
|
DCHECK(!int32_register.is(kScratchRegister));
|
|
movq(kScratchRegister, V8_INT64_C(0x0000000100000000));
|
|
cmpq(kScratchRegister, int32_register);
|
|
Check(above_equal, k32BitValueInRegisterIsNotZeroExtended);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertString(Register object) {
|
|
if (emit_debug_code()) {
|
|
testb(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmiAndNotAString);
|
|
Push(object);
|
|
movp(object, FieldOperand(object, HeapObject::kMapOffset));
|
|
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
|
|
Pop(object);
|
|
Check(below, kOperandIsNotAString);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertName(Register object) {
|
|
if (emit_debug_code()) {
|
|
testb(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmiAndNotAName);
|
|
Push(object);
|
|
movp(object, FieldOperand(object, HeapObject::kMapOffset));
|
|
CmpInstanceType(object, LAST_NAME_TYPE);
|
|
Pop(object);
|
|
Check(below_equal, kOperandIsNotAName);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertFunction(Register object) {
|
|
if (emit_debug_code()) {
|
|
testb(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmiAndNotAFunction);
|
|
Push(object);
|
|
CmpObjectType(object, JS_FUNCTION_TYPE, object);
|
|
Pop(object);
|
|
Check(equal, kOperandIsNotAFunction);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertBoundFunction(Register object) {
|
|
if (emit_debug_code()) {
|
|
testb(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmiAndNotABoundFunction);
|
|
Push(object);
|
|
CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object);
|
|
Pop(object);
|
|
Check(equal, kOperandIsNotABoundFunction);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
|
|
if (emit_debug_code()) {
|
|
Label done_checking;
|
|
AssertNotSmi(object);
|
|
Cmp(object, isolate()->factory()->undefined_value());
|
|
j(equal, &done_checking);
|
|
Cmp(FieldOperand(object, 0), isolate()->factory()->allocation_site_map());
|
|
Assert(equal, kExpectedUndefinedOrCell);
|
|
bind(&done_checking);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertRootValue(Register src,
|
|
Heap::RootListIndex root_value_index,
|
|
BailoutReason reason) {
|
|
if (emit_debug_code()) {
|
|
DCHECK(!src.is(kScratchRegister));
|
|
LoadRoot(kScratchRegister, root_value_index);
|
|
cmpp(src, kScratchRegister);
|
|
Check(equal, reason);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
Condition MacroAssembler::IsObjectStringType(Register heap_object,
|
|
Register map,
|
|
Register instance_type) {
|
|
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
STATIC_ASSERT(kNotStringTag != 0);
|
|
testb(instance_type, Immediate(kIsNotStringMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::IsObjectNameType(Register heap_object,
|
|
Register map,
|
|
Register instance_type) {
|
|
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
cmpb(instance_type, Immediate(static_cast<uint8_t>(LAST_NAME_TYPE)));
|
|
return below_equal;
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetMapConstructor(Register result, Register map,
|
|
Register temp) {
|
|
Label done, loop;
|
|
movp(result, FieldOperand(map, Map::kConstructorOrBackPointerOffset));
|
|
bind(&loop);
|
|
JumpIfSmi(result, &done, Label::kNear);
|
|
CmpObjectType(result, MAP_TYPE, temp);
|
|
j(not_equal, &done, Label::kNear);
|
|
movp(result, FieldOperand(result, Map::kConstructorOrBackPointerOffset));
|
|
jmp(&loop);
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
|
|
Label* miss) {
|
|
// Get the prototype or initial map from the function.
|
|
movp(result,
|
|
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// If the prototype or initial map is the hole, don't return it and
|
|
// simply miss the cache instead. This will allow us to allocate a
|
|
// prototype object on-demand in the runtime system.
|
|
CompareRoot(result, Heap::kTheHoleValueRootIndex);
|
|
j(equal, miss);
|
|
|
|
// If the function does not have an initial map, we're done.
|
|
Label done;
|
|
CmpObjectType(result, MAP_TYPE, kScratchRegister);
|
|
j(not_equal, &done, Label::kNear);
|
|
|
|
// Get the prototype from the initial map.
|
|
movp(result, FieldOperand(result, Map::kPrototypeOffset));
|
|
|
|
// All done.
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Operand counter_operand = ExternalOperand(ExternalReference(counter));
|
|
movl(counter_operand, Immediate(value));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
|
|
DCHECK(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Operand counter_operand = ExternalOperand(ExternalReference(counter));
|
|
if (value == 1) {
|
|
incl(counter_operand);
|
|
} else {
|
|
addl(counter_operand, Immediate(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
|
|
DCHECK(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Operand counter_operand = ExternalOperand(ExternalReference(counter));
|
|
if (value == 1) {
|
|
decl(counter_operand);
|
|
} else {
|
|
subl(counter_operand, Immediate(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DebugBreak() {
|
|
Set(rax, 0); // No arguments.
|
|
LoadAddress(rbx,
|
|
ExternalReference(Runtime::kHandleDebuggerStatement, isolate()));
|
|
CEntryStub ces(isolate(), 1);
|
|
DCHECK(AllowThisStubCall(&ces));
|
|
Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Register function,
|
|
Register new_target,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
movp(rbx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
|
LoadSharedFunctionInfoSpecialField(
|
|
rbx, rbx, SharedFunctionInfo::kFormalParameterCountOffset);
|
|
|
|
ParameterCount expected(rbx);
|
|
InvokeFunction(function, new_target, expected, actual, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
Move(rdi, function);
|
|
InvokeFunction(rdi, no_reg, expected, actual, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Register function,
|
|
Register new_target,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
DCHECK(function.is(rdi));
|
|
movp(rsi, FieldOperand(function, JSFunction::kContextOffset));
|
|
InvokeFunctionCode(rdi, new_target, expected, actual, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
// You can't call a function without a valid frame.
|
|
DCHECK(flag == JUMP_FUNCTION || has_frame());
|
|
DCHECK(function.is(rdi));
|
|
DCHECK_IMPLIES(new_target.is_valid(), new_target.is(rdx));
|
|
|
|
if (call_wrapper.NeedsDebugStepCheck()) {
|
|
FloodFunctionIfStepping(function, new_target, expected, actual);
|
|
}
|
|
|
|
// Clear the new.target register if not given.
|
|
if (!new_target.is_valid()) {
|
|
LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
|
|
}
|
|
|
|
Label done;
|
|
bool definitely_mismatches = false;
|
|
InvokePrologue(expected,
|
|
actual,
|
|
&done,
|
|
&definitely_mismatches,
|
|
flag,
|
|
Label::kNear,
|
|
call_wrapper);
|
|
if (!definitely_mismatches) {
|
|
// We call indirectly through the code field in the function to
|
|
// allow recompilation to take effect without changing any of the
|
|
// call sites.
|
|
Operand code = FieldOperand(function, JSFunction::kCodeEntryOffset);
|
|
if (flag == CALL_FUNCTION) {
|
|
call_wrapper.BeforeCall(CallSize(code));
|
|
call(code);
|
|
call_wrapper.AfterCall();
|
|
} else {
|
|
DCHECK(flag == JUMP_FUNCTION);
|
|
jmp(code);
|
|
}
|
|
bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
Label* done,
|
|
bool* definitely_mismatches,
|
|
InvokeFlag flag,
|
|
Label::Distance near_jump,
|
|
const CallWrapper& call_wrapper) {
|
|
bool definitely_matches = false;
|
|
*definitely_mismatches = false;
|
|
Label invoke;
|
|
if (expected.is_immediate()) {
|
|
DCHECK(actual.is_immediate());
|
|
Set(rax, actual.immediate());
|
|
if (expected.immediate() == actual.immediate()) {
|
|
definitely_matches = true;
|
|
} else {
|
|
if (expected.immediate() ==
|
|
SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
|
|
// Don't worry about adapting arguments for built-ins that
|
|
// don't want that done. Skip adaption code by making it look
|
|
// like we have a match between expected and actual number of
|
|
// arguments.
|
|
definitely_matches = true;
|
|
} else {
|
|
*definitely_mismatches = true;
|
|
Set(rbx, expected.immediate());
|
|
}
|
|
}
|
|
} else {
|
|
if (actual.is_immediate()) {
|
|
// Expected is in register, actual is immediate. This is the
|
|
// case when we invoke function values without going through the
|
|
// IC mechanism.
|
|
Set(rax, actual.immediate());
|
|
cmpp(expected.reg(), Immediate(actual.immediate()));
|
|
j(equal, &invoke, Label::kNear);
|
|
DCHECK(expected.reg().is(rbx));
|
|
} else if (!expected.reg().is(actual.reg())) {
|
|
// Both expected and actual are in (different) registers. This
|
|
// is the case when we invoke functions using call and apply.
|
|
cmpp(expected.reg(), actual.reg());
|
|
j(equal, &invoke, Label::kNear);
|
|
DCHECK(actual.reg().is(rax));
|
|
DCHECK(expected.reg().is(rbx));
|
|
} else {
|
|
Move(rax, actual.reg());
|
|
}
|
|
}
|
|
|
|
if (!definitely_matches) {
|
|
Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
|
if (flag == CALL_FUNCTION) {
|
|
call_wrapper.BeforeCall(CallSize(adaptor));
|
|
Call(adaptor, RelocInfo::CODE_TARGET);
|
|
call_wrapper.AfterCall();
|
|
if (!*definitely_mismatches) {
|
|
jmp(done, near_jump);
|
|
}
|
|
} else {
|
|
Jump(adaptor, RelocInfo::CODE_TARGET);
|
|
}
|
|
bind(&invoke);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual) {
|
|
Label skip_flooding;
|
|
ExternalReference step_in_enabled =
|
|
ExternalReference::debug_step_in_enabled_address(isolate());
|
|
Operand step_in_enabled_operand = ExternalOperand(step_in_enabled);
|
|
cmpb(step_in_enabled_operand, Immediate(0));
|
|
j(equal, &skip_flooding);
|
|
{
|
|
FrameScope frame(this,
|
|
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
|
|
if (expected.is_reg()) {
|
|
Integer32ToSmi(expected.reg(), expected.reg());
|
|
Push(expected.reg());
|
|
}
|
|
if (actual.is_reg()) {
|
|
Integer32ToSmi(actual.reg(), actual.reg());
|
|
Push(actual.reg());
|
|
}
|
|
if (new_target.is_valid()) {
|
|
Push(new_target);
|
|
}
|
|
Push(fun);
|
|
Push(fun);
|
|
CallRuntime(Runtime::kDebugPrepareStepInIfStepping, 1);
|
|
Pop(fun);
|
|
if (new_target.is_valid()) {
|
|
Pop(new_target);
|
|
}
|
|
if (actual.is_reg()) {
|
|
Pop(actual.reg());
|
|
SmiToInteger64(actual.reg(), actual.reg());
|
|
}
|
|
if (expected.is_reg()) {
|
|
Pop(expected.reg());
|
|
SmiToInteger64(expected.reg(), expected.reg());
|
|
}
|
|
}
|
|
bind(&skip_flooding);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StubPrologue() {
|
|
pushq(rbp); // Caller's frame pointer.
|
|
movp(rbp, rsp);
|
|
Push(rsi); // Callee's context.
|
|
Push(Smi::FromInt(StackFrame::STUB));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Prologue(bool code_pre_aging) {
|
|
PredictableCodeSizeScope predictible_code_size_scope(this,
|
|
kNoCodeAgeSequenceLength);
|
|
if (code_pre_aging) {
|
|
// Pre-age the code.
|
|
Call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
|
|
RelocInfo::CODE_AGE_SEQUENCE);
|
|
Nop(kNoCodeAgeSequenceLength - Assembler::kShortCallInstructionLength);
|
|
} else {
|
|
pushq(rbp); // Caller's frame pointer.
|
|
movp(rbp, rsp);
|
|
Push(rsi); // Callee's context.
|
|
Push(rdi); // Callee's JS function.
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
|
|
movp(vector, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
|
|
movp(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
|
|
movp(vector, FieldOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterFrame(StackFrame::Type type,
|
|
bool load_constant_pool_pointer_reg) {
|
|
// Out-of-line constant pool not implemented on x64.
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterFrame(StackFrame::Type type) {
|
|
pushq(rbp);
|
|
movp(rbp, rsp);
|
|
Push(rsi); // Context.
|
|
Push(Smi::FromInt(type));
|
|
Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
|
|
Push(kScratchRegister);
|
|
if (emit_debug_code()) {
|
|
Move(kScratchRegister,
|
|
isolate()->factory()->undefined_value(),
|
|
RelocInfo::EMBEDDED_OBJECT);
|
|
cmpp(Operand(rsp, 0), kScratchRegister);
|
|
Check(not_equal, kCodeObjectNotProperlyPatched);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
|
|
if (emit_debug_code()) {
|
|
Move(kScratchRegister, Smi::FromInt(type));
|
|
cmpp(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
|
|
Check(equal, kStackFrameTypesMustMatch);
|
|
}
|
|
movp(rsp, rbp);
|
|
popq(rbp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
|
|
// Set up the frame structure on the stack.
|
|
// All constants are relative to the frame pointer of the exit frame.
|
|
DCHECK(ExitFrameConstants::kCallerSPDisplacement ==
|
|
kFPOnStackSize + kPCOnStackSize);
|
|
DCHECK(ExitFrameConstants::kCallerPCOffset == kFPOnStackSize);
|
|
DCHECK(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
|
|
pushq(rbp);
|
|
movp(rbp, rsp);
|
|
|
|
// Reserve room for entry stack pointer and push the code object.
|
|
DCHECK(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
|
|
Push(Immediate(0)); // Saved entry sp, patched before call.
|
|
Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
|
|
Push(kScratchRegister); // Accessed from EditFrame::code_slot.
|
|
|
|
// Save the frame pointer and the context in top.
|
|
if (save_rax) {
|
|
movp(r14, rax); // Backup rax in callee-save register.
|
|
}
|
|
|
|
Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
|
|
Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi);
|
|
Store(ExternalReference(Isolate::kCFunctionAddress, isolate()), rbx);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
|
|
bool save_doubles) {
|
|
#ifdef _WIN64
|
|
const int kShadowSpace = 4;
|
|
arg_stack_space += kShadowSpace;
|
|
#endif
|
|
// Optionally save all XMM registers.
|
|
if (save_doubles) {
|
|
int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
|
|
arg_stack_space * kRegisterSize;
|
|
subp(rsp, Immediate(space));
|
|
int offset = -2 * kPointerSize;
|
|
const RegisterConfiguration* config =
|
|
RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT);
|
|
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
|
|
DoubleRegister reg =
|
|
DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
|
|
Movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
|
|
}
|
|
} else if (arg_stack_space > 0) {
|
|
subp(rsp, Immediate(arg_stack_space * kRegisterSize));
|
|
}
|
|
|
|
// Get the required frame alignment for the OS.
|
|
const int kFrameAlignment = base::OS::ActivationFrameAlignment();
|
|
if (kFrameAlignment > 0) {
|
|
DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
|
|
DCHECK(is_int8(kFrameAlignment));
|
|
andp(rsp, Immediate(-kFrameAlignment));
|
|
}
|
|
|
|
// Patch the saved entry sp.
|
|
movp(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
|
|
EnterExitFramePrologue(true);
|
|
|
|
// Set up argv in callee-saved register r15. It is reused in LeaveExitFrame,
|
|
// so it must be retained across the C-call.
|
|
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
leap(r15, Operand(rbp, r14, times_pointer_size, offset));
|
|
|
|
EnterExitFrameEpilogue(arg_stack_space, save_doubles);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
|
|
EnterExitFramePrologue(false);
|
|
EnterExitFrameEpilogue(arg_stack_space, false);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) {
|
|
// Registers:
|
|
// r15 : argv
|
|
if (save_doubles) {
|
|
int offset = -2 * kPointerSize;
|
|
const RegisterConfiguration* config =
|
|
RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT);
|
|
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
|
|
DoubleRegister reg =
|
|
DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
|
|
Movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
|
|
}
|
|
}
|
|
|
|
if (pop_arguments) {
|
|
// Get the return address from the stack and restore the frame pointer.
|
|
movp(rcx, Operand(rbp, kFPOnStackSize));
|
|
movp(rbp, Operand(rbp, 0 * kPointerSize));
|
|
|
|
// Drop everything up to and including the arguments and the receiver
|
|
// from the caller stack.
|
|
leap(rsp, Operand(r15, 1 * kPointerSize));
|
|
|
|
PushReturnAddressFrom(rcx);
|
|
} else {
|
|
// Otherwise just leave the exit frame.
|
|
leave();
|
|
}
|
|
|
|
LeaveExitFrameEpilogue(true);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
|
|
movp(rsp, rbp);
|
|
popq(rbp);
|
|
|
|
LeaveExitFrameEpilogue(restore_context);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
|
|
// Restore current context from top and clear it in debug mode.
|
|
ExternalReference context_address(Isolate::kContextAddress, isolate());
|
|
Operand context_operand = ExternalOperand(context_address);
|
|
if (restore_context) {
|
|
movp(rsi, context_operand);
|
|
}
|
|
#ifdef DEBUG
|
|
movp(context_operand, Immediate(0));
|
|
#endif
|
|
|
|
// Clear the top frame.
|
|
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
|
|
isolate());
|
|
Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address);
|
|
movp(c_entry_fp_operand, Immediate(0));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
|
|
Register scratch,
|
|
Label* miss) {
|
|
Label same_contexts;
|
|
|
|
DCHECK(!holder_reg.is(scratch));
|
|
DCHECK(!scratch.is(kScratchRegister));
|
|
// Load current lexical context from the stack frame.
|
|
movp(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
|
|
|
|
// When generating debug code, make sure the lexical context is set.
|
|
if (emit_debug_code()) {
|
|
cmpp(scratch, Immediate(0));
|
|
Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
|
|
}
|
|
// Load the native context of the current context.
|
|
movp(scratch, ContextOperand(scratch, Context::NATIVE_CONTEXT_INDEX));
|
|
|
|
// Check the context is a native context.
|
|
if (emit_debug_code()) {
|
|
Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
|
|
isolate()->factory()->native_context_map());
|
|
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
|
|
}
|
|
|
|
// Check if both contexts are the same.
|
|
cmpp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
|
|
j(equal, &same_contexts);
|
|
|
|
// Compare security tokens.
|
|
// Check that the security token in the calling global object is
|
|
// compatible with the security token in the receiving global
|
|
// object.
|
|
|
|
// Check the context is a native context.
|
|
if (emit_debug_code()) {
|
|
// Preserve original value of holder_reg.
|
|
Push(holder_reg);
|
|
movp(holder_reg,
|
|
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
|
|
CompareRoot(holder_reg, Heap::kNullValueRootIndex);
|
|
Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
|
|
|
|
// Read the first word and compare to native_context_map(),
|
|
movp(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
|
|
CompareRoot(holder_reg, Heap::kNativeContextMapRootIndex);
|
|
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
|
|
Pop(holder_reg);
|
|
}
|
|
|
|
movp(kScratchRegister,
|
|
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
|
|
int token_offset =
|
|
Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
|
|
movp(scratch, FieldOperand(scratch, token_offset));
|
|
cmpp(scratch, FieldOperand(kScratchRegister, token_offset));
|
|
j(not_equal, miss);
|
|
|
|
bind(&same_contexts);
|
|
}
|
|
|
|
|
|
// Compute the hash code from the untagged key. This must be kept in sync with
|
|
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
|
|
// code-stub-hydrogen.cc
|
|
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
|
|
// First of all we assign the hash seed to scratch.
|
|
LoadRoot(scratch, Heap::kHashSeedRootIndex);
|
|
SmiToInteger32(scratch, scratch);
|
|
|
|
// Xor original key with a seed.
|
|
xorl(r0, scratch);
|
|
|
|
// Compute the hash code from the untagged key. This must be kept in sync
|
|
// with ComputeIntegerHash in utils.h.
|
|
//
|
|
// hash = ~hash + (hash << 15);
|
|
movl(scratch, r0);
|
|
notl(r0);
|
|
shll(scratch, Immediate(15));
|
|
addl(r0, scratch);
|
|
// hash = hash ^ (hash >> 12);
|
|
movl(scratch, r0);
|
|
shrl(scratch, Immediate(12));
|
|
xorl(r0, scratch);
|
|
// hash = hash + (hash << 2);
|
|
leal(r0, Operand(r0, r0, times_4, 0));
|
|
// hash = hash ^ (hash >> 4);
|
|
movl(scratch, r0);
|
|
shrl(scratch, Immediate(4));
|
|
xorl(r0, scratch);
|
|
// hash = hash * 2057;
|
|
imull(r0, r0, Immediate(2057));
|
|
// hash = hash ^ (hash >> 16);
|
|
movl(scratch, r0);
|
|
shrl(scratch, Immediate(16));
|
|
xorl(r0, scratch);
|
|
andl(r0, Immediate(0x3fffffff));
|
|
}
|
|
|
|
|
|
|
|
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
|
|
Register elements,
|
|
Register key,
|
|
Register r0,
|
|
Register r1,
|
|
Register r2,
|
|
Register result) {
|
|
// Register use:
|
|
//
|
|
// elements - holds the slow-case elements of the receiver on entry.
|
|
// Unchanged unless 'result' is the same register.
|
|
//
|
|
// key - holds the smi key on entry.
|
|
// Unchanged unless 'result' is the same register.
|
|
//
|
|
// Scratch registers:
|
|
//
|
|
// r0 - holds the untagged key on entry and holds the hash once computed.
|
|
//
|
|
// r1 - used to hold the capacity mask of the dictionary
|
|
//
|
|
// r2 - used for the index into the dictionary.
|
|
//
|
|
// result - holds the result on exit if the load succeeded.
|
|
// Allowed to be the same as 'key' or 'result'.
|
|
// Unchanged on bailout so 'key' or 'result' can be used
|
|
// in further computation.
|
|
|
|
Label done;
|
|
|
|
GetNumberHash(r0, r1);
|
|
|
|
// Compute capacity mask.
|
|
SmiToInteger32(r1, FieldOperand(elements,
|
|
SeededNumberDictionary::kCapacityOffset));
|
|
decl(r1);
|
|
|
|
// Generate an unrolled loop that performs a few probes before giving up.
|
|
for (int i = 0; i < kNumberDictionaryProbes; i++) {
|
|
// Use r2 for index calculations and keep the hash intact in r0.
|
|
movp(r2, r0);
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
if (i > 0) {
|
|
addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
|
|
}
|
|
andp(r2, r1);
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
DCHECK(SeededNumberDictionary::kEntrySize == 3);
|
|
leap(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
|
|
|
|
// Check if the key matches.
|
|
cmpp(key, FieldOperand(elements,
|
|
r2,
|
|
times_pointer_size,
|
|
SeededNumberDictionary::kElementsStartOffset));
|
|
if (i != (kNumberDictionaryProbes - 1)) {
|
|
j(equal, &done);
|
|
} else {
|
|
j(not_equal, miss);
|
|
}
|
|
}
|
|
|
|
bind(&done);
|
|
// Check that the value is a field property.
|
|
const int kDetailsOffset =
|
|
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
|
|
DCHECK_EQ(DATA, 0);
|
|
Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
|
|
Smi::FromInt(PropertyDetails::TypeField::kMask));
|
|
j(not_zero, miss);
|
|
|
|
// Get the value at the masked, scaled index.
|
|
const int kValueOffset =
|
|
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
|
|
movp(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadAllocationTopHelper(Register result,
|
|
Register scratch,
|
|
AllocationFlags flags) {
|
|
ExternalReference allocation_top =
|
|
AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
|
|
|
// Just return if allocation top is already known.
|
|
if ((flags & RESULT_CONTAINS_TOP) != 0) {
|
|
// No use of scratch if allocation top is provided.
|
|
DCHECK(!scratch.is_valid());
|
|
#ifdef DEBUG
|
|
// Assert that result actually contains top on entry.
|
|
Operand top_operand = ExternalOperand(allocation_top);
|
|
cmpp(result, top_operand);
|
|
Check(equal, kUnexpectedAllocationTop);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// Move address of new object to result. Use scratch register if available,
|
|
// and keep address in scratch until call to UpdateAllocationTopHelper.
|
|
if (scratch.is_valid()) {
|
|
LoadAddress(scratch, allocation_top);
|
|
movp(result, Operand(scratch, 0));
|
|
} else {
|
|
Load(result, allocation_top);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::MakeSureDoubleAlignedHelper(Register result,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
if (kPointerSize == kDoubleSize) {
|
|
if (FLAG_debug_code) {
|
|
testl(result, Immediate(kDoubleAlignmentMask));
|
|
Check(zero, kAllocationIsNotDoubleAligned);
|
|
}
|
|
} else {
|
|
// Align the next allocation. Storing the filler map without checking top
|
|
// is safe in new-space because the limit of the heap is aligned there.
|
|
DCHECK(kPointerSize * 2 == kDoubleSize);
|
|
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
|
|
// Make sure scratch is not clobbered by this function as it might be
|
|
// used in UpdateAllocationTopHelper later.
|
|
DCHECK(!scratch.is(kScratchRegister));
|
|
Label aligned;
|
|
testl(result, Immediate(kDoubleAlignmentMask));
|
|
j(zero, &aligned, Label::kNear);
|
|
if ((flags & PRETENURE) != 0) {
|
|
ExternalReference allocation_limit =
|
|
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
|
cmpp(result, ExternalOperand(allocation_limit));
|
|
j(above_equal, gc_required);
|
|
}
|
|
LoadRoot(kScratchRegister, Heap::kOnePointerFillerMapRootIndex);
|
|
movp(Operand(result, 0), kScratchRegister);
|
|
addp(result, Immediate(kDoubleSize / 2));
|
|
bind(&aligned);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
|
|
Register scratch,
|
|
AllocationFlags flags) {
|
|
if (emit_debug_code()) {
|
|
testp(result_end, Immediate(kObjectAlignmentMask));
|
|
Check(zero, kUnalignedAllocationInNewSpace);
|
|
}
|
|
|
|
ExternalReference allocation_top =
|
|
AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
|
|
|
// Update new top.
|
|
if (scratch.is_valid()) {
|
|
// Scratch already contains address of allocation top.
|
|
movp(Operand(scratch, 0), result_end);
|
|
} else {
|
|
Store(allocation_top, result_end);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Allocate(int object_size,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
|
|
DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
|
|
if (!FLAG_inline_new) {
|
|
if (emit_debug_code()) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
movl(result, Immediate(0x7091));
|
|
if (result_end.is_valid()) {
|
|
movl(result_end, Immediate(0x7191));
|
|
}
|
|
if (scratch.is_valid()) {
|
|
movl(scratch, Immediate(0x7291));
|
|
}
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
DCHECK(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
if ((flags & DOUBLE_ALIGNMENT) != 0) {
|
|
MakeSureDoubleAlignedHelper(result, scratch, gc_required, flags);
|
|
}
|
|
|
|
// Calculate new top and bail out if new space is exhausted.
|
|
ExternalReference allocation_limit =
|
|
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
|
|
|
Register top_reg = result_end.is_valid() ? result_end : result;
|
|
|
|
if (!top_reg.is(result)) {
|
|
movp(top_reg, result);
|
|
}
|
|
addp(top_reg, Immediate(object_size));
|
|
j(carry, gc_required);
|
|
Operand limit_operand = ExternalOperand(allocation_limit);
|
|
cmpp(top_reg, limit_operand);
|
|
j(above, gc_required);
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(top_reg, scratch, flags);
|
|
|
|
bool tag_result = (flags & TAG_OBJECT) != 0;
|
|
if (top_reg.is(result)) {
|
|
if (tag_result) {
|
|
subp(result, Immediate(object_size - kHeapObjectTag));
|
|
} else {
|
|
subp(result, Immediate(object_size));
|
|
}
|
|
} else if (tag_result) {
|
|
// Tag the result if requested.
|
|
DCHECK(kHeapObjectTag == 1);
|
|
incp(result);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Allocate(int header_size,
|
|
ScaleFactor element_size,
|
|
Register element_count,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
DCHECK((flags & SIZE_IN_WORDS) == 0);
|
|
leap(result_end, Operand(element_count, element_size, header_size));
|
|
Allocate(result_end, result, result_end, scratch, gc_required, flags);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Allocate(Register object_size,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
DCHECK((flags & SIZE_IN_WORDS) == 0);
|
|
if (!FLAG_inline_new) {
|
|
if (emit_debug_code()) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
movl(result, Immediate(0x7091));
|
|
movl(result_end, Immediate(0x7191));
|
|
if (scratch.is_valid()) {
|
|
movl(scratch, Immediate(0x7291));
|
|
}
|
|
// object_size is left unchanged by this function.
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
DCHECK(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
if ((flags & DOUBLE_ALIGNMENT) != 0) {
|
|
MakeSureDoubleAlignedHelper(result, scratch, gc_required, flags);
|
|
}
|
|
|
|
// Calculate new top and bail out if new space is exhausted.
|
|
ExternalReference allocation_limit =
|
|
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
|
if (!object_size.is(result_end)) {
|
|
movp(result_end, object_size);
|
|
}
|
|
addp(result_end, result);
|
|
j(carry, gc_required);
|
|
Operand limit_operand = ExternalOperand(allocation_limit);
|
|
cmpp(result_end, limit_operand);
|
|
j(above, gc_required);
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(result_end, scratch, flags);
|
|
|
|
// Tag the result if requested.
|
|
if ((flags & TAG_OBJECT) != 0) {
|
|
addp(result, Immediate(kHeapObjectTag));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateHeapNumber(Register result,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
MutableMode mode) {
|
|
// Allocate heap number in new space.
|
|
Allocate(HeapNumber::kSize, result, scratch, no_reg, gc_required, TAG_OBJECT);
|
|
|
|
Heap::RootListIndex map_index = mode == MUTABLE
|
|
? Heap::kMutableHeapNumberMapRootIndex
|
|
: Heap::kHeapNumberMapRootIndex;
|
|
|
|
// Set the map.
|
|
LoadRoot(kScratchRegister, map_index);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required) {
|
|
// Calculate the number of bytes needed for the characters in the string while
|
|
// observing object alignment.
|
|
const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
|
|
kObjectAlignmentMask;
|
|
DCHECK(kShortSize == 2);
|
|
// scratch1 = length * 2 + kObjectAlignmentMask.
|
|
leap(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
|
|
kHeaderAlignment));
|
|
andp(scratch1, Immediate(~kObjectAlignmentMask));
|
|
if (kHeaderAlignment > 0) {
|
|
subp(scratch1, Immediate(kHeaderAlignment));
|
|
}
|
|
|
|
// Allocate two byte string in new space.
|
|
Allocate(SeqTwoByteString::kHeaderSize,
|
|
times_1,
|
|
scratch1,
|
|
result,
|
|
scratch2,
|
|
scratch3,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
Integer32ToSmi(scratch1, length);
|
|
movp(FieldOperand(result, String::kLengthOffset), scratch1);
|
|
movp(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateOneByteString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required) {
|
|
// Calculate the number of bytes needed for the characters in the string while
|
|
// observing object alignment.
|
|
const int kHeaderAlignment = SeqOneByteString::kHeaderSize &
|
|
kObjectAlignmentMask;
|
|
movl(scratch1, length);
|
|
DCHECK(kCharSize == 1);
|
|
addp(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
|
|
andp(scratch1, Immediate(~kObjectAlignmentMask));
|
|
if (kHeaderAlignment > 0) {
|
|
subp(scratch1, Immediate(kHeaderAlignment));
|
|
}
|
|
|
|
// Allocate one-byte string in new space.
|
|
Allocate(SeqOneByteString::kHeaderSize,
|
|
times_1,
|
|
scratch1,
|
|
result,
|
|
scratch2,
|
|
scratch3,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
LoadRoot(kScratchRegister, Heap::kOneByteStringMapRootIndex);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
Integer32ToSmi(scratch1, length);
|
|
movp(FieldOperand(result, String::kLengthOffset), scratch1);
|
|
movp(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteConsString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateOneByteConsString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
Allocate(ConsString::kSize,
|
|
result,
|
|
scratch1,
|
|
scratch2,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
LoadRoot(kScratchRegister, Heap::kConsOneByteStringMapRootIndex);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateOneByteSlicedString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
LoadRoot(kScratchRegister, Heap::kSlicedOneByteStringMapRootIndex);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateJSValue(Register result, Register constructor,
|
|
Register value, Register scratch,
|
|
Label* gc_required) {
|
|
DCHECK(!result.is(constructor));
|
|
DCHECK(!result.is(scratch));
|
|
DCHECK(!result.is(value));
|
|
|
|
// Allocate JSValue in new space.
|
|
Allocate(JSValue::kSize, result, scratch, no_reg, gc_required, TAG_OBJECT);
|
|
|
|
// Initialize the JSValue.
|
|
LoadGlobalFunctionInitialMap(constructor, scratch);
|
|
movp(FieldOperand(result, HeapObject::kMapOffset), scratch);
|
|
LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
|
|
movp(FieldOperand(result, JSObject::kPropertiesOffset), scratch);
|
|
movp(FieldOperand(result, JSObject::kElementsOffset), scratch);
|
|
movp(FieldOperand(result, JSValue::kValueOffset), value);
|
|
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
|
|
}
|
|
|
|
|
|
// Copy memory, byte-by-byte, from source to destination. Not optimized for
|
|
// long or aligned copies. The contents of scratch and length are destroyed.
|
|
// Destination is incremented by length, source, length and scratch are
|
|
// clobbered.
|
|
// A simpler loop is faster on small copies, but slower on large ones.
|
|
// The cld() instruction must have been emitted, to set the direction flag(),
|
|
// before calling this function.
|
|
void MacroAssembler::CopyBytes(Register destination,
|
|
Register source,
|
|
Register length,
|
|
int min_length,
|
|
Register scratch) {
|
|
DCHECK(min_length >= 0);
|
|
if (emit_debug_code()) {
|
|
cmpl(length, Immediate(min_length));
|
|
Assert(greater_equal, kInvalidMinLength);
|
|
}
|
|
Label short_loop, len8, len16, len24, done, short_string;
|
|
|
|
const int kLongStringLimit = 4 * kPointerSize;
|
|
if (min_length <= kLongStringLimit) {
|
|
cmpl(length, Immediate(kPointerSize));
|
|
j(below, &short_string, Label::kNear);
|
|
}
|
|
|
|
DCHECK(source.is(rsi));
|
|
DCHECK(destination.is(rdi));
|
|
DCHECK(length.is(rcx));
|
|
|
|
if (min_length <= kLongStringLimit) {
|
|
cmpl(length, Immediate(2 * kPointerSize));
|
|
j(below_equal, &len8, Label::kNear);
|
|
cmpl(length, Immediate(3 * kPointerSize));
|
|
j(below_equal, &len16, Label::kNear);
|
|
cmpl(length, Immediate(4 * kPointerSize));
|
|
j(below_equal, &len24, Label::kNear);
|
|
}
|
|
|
|
// Because source is 8-byte aligned in our uses of this function,
|
|
// we keep source aligned for the rep movs operation by copying the odd bytes
|
|
// at the end of the ranges.
|
|
movp(scratch, length);
|
|
shrl(length, Immediate(kPointerSizeLog2));
|
|
repmovsp();
|
|
// Move remaining bytes of length.
|
|
andl(scratch, Immediate(kPointerSize - 1));
|
|
movp(length, Operand(source, scratch, times_1, -kPointerSize));
|
|
movp(Operand(destination, scratch, times_1, -kPointerSize), length);
|
|
addp(destination, scratch);
|
|
|
|
if (min_length <= kLongStringLimit) {
|
|
jmp(&done, Label::kNear);
|
|
bind(&len24);
|
|
movp(scratch, Operand(source, 2 * kPointerSize));
|
|
movp(Operand(destination, 2 * kPointerSize), scratch);
|
|
bind(&len16);
|
|
movp(scratch, Operand(source, kPointerSize));
|
|
movp(Operand(destination, kPointerSize), scratch);
|
|
bind(&len8);
|
|
movp(scratch, Operand(source, 0));
|
|
movp(Operand(destination, 0), scratch);
|
|
// Move remaining bytes of length.
|
|
movp(scratch, Operand(source, length, times_1, -kPointerSize));
|
|
movp(Operand(destination, length, times_1, -kPointerSize), scratch);
|
|
addp(destination, length);
|
|
jmp(&done, Label::kNear);
|
|
|
|
bind(&short_string);
|
|
if (min_length == 0) {
|
|
testl(length, length);
|
|
j(zero, &done, Label::kNear);
|
|
}
|
|
|
|
bind(&short_loop);
|
|
movb(scratch, Operand(source, 0));
|
|
movb(Operand(destination, 0), scratch);
|
|
incp(source);
|
|
incp(destination);
|
|
decl(length);
|
|
j(not_zero, &short_loop);
|
|
}
|
|
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
|
|
Register end_address,
|
|
Register filler) {
|
|
Label loop, entry;
|
|
jmp(&entry);
|
|
bind(&loop);
|
|
movp(Operand(current_address, 0), filler);
|
|
addp(current_address, Immediate(kPointerSize));
|
|
bind(&entry);
|
|
cmpp(current_address, end_address);
|
|
j(below, &loop);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
|
|
if (context_chain_length > 0) {
|
|
// Move up the chain of contexts to the context containing the slot.
|
|
movp(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
|
for (int i = 1; i < context_chain_length; i++) {
|
|
movp(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
|
}
|
|
} else {
|
|
// Slot is in the current function context. Move it into the
|
|
// destination register in case we store into it (the write barrier
|
|
// cannot be allowed to destroy the context in rsi).
|
|
movp(dst, rsi);
|
|
}
|
|
|
|
// We should not have found a with context by walking the context
|
|
// chain (i.e., the static scope chain and runtime context chain do
|
|
// not agree). A variable occurring in such a scope should have
|
|
// slot type LOOKUP and not CONTEXT.
|
|
if (emit_debug_code()) {
|
|
CompareRoot(FieldOperand(dst, HeapObject::kMapOffset),
|
|
Heap::kWithContextMapRootIndex);
|
|
Check(not_equal, kVariableResolvedToWithContext);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadTransitionedArrayMapConditional(
|
|
ElementsKind expected_kind,
|
|
ElementsKind transitioned_kind,
|
|
Register map_in_out,
|
|
Register scratch,
|
|
Label* no_map_match) {
|
|
DCHECK(IsFastElementsKind(expected_kind));
|
|
DCHECK(IsFastElementsKind(transitioned_kind));
|
|
|
|
// Check that the function's map is the same as the expected cached map.
|
|
movp(scratch, NativeContextOperand());
|
|
cmpp(map_in_out,
|
|
ContextOperand(scratch, Context::ArrayMapIndex(expected_kind)));
|
|
j(not_equal, no_map_match);
|
|
|
|
// Use the transitioned cached map.
|
|
movp(map_in_out,
|
|
ContextOperand(scratch, Context::ArrayMapIndex(transitioned_kind)));
|
|
}
|
|
|
|
|
|
#ifdef _WIN64
|
|
static const int kRegisterPassedArguments = 4;
|
|
#else
|
|
static const int kRegisterPassedArguments = 6;
|
|
#endif
|
|
|
|
|
|
void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
|
|
movp(dst, NativeContextOperand());
|
|
movp(dst, ContextOperand(dst, index));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
|
|
Register map) {
|
|
// Load the initial map. The global functions all have initial maps.
|
|
movp(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
|
if (emit_debug_code()) {
|
|
Label ok, fail;
|
|
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
|
|
jmp(&ok);
|
|
bind(&fail);
|
|
Abort(kGlobalFunctionsMustHaveInitialMap);
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
|
|
// On Windows 64 stack slots are reserved by the caller for all arguments
|
|
// including the ones passed in registers, and space is always allocated for
|
|
// the four register arguments even if the function takes fewer than four
|
|
// arguments.
|
|
// On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
|
|
// and the caller does not reserve stack slots for them.
|
|
DCHECK(num_arguments >= 0);
|
|
#ifdef _WIN64
|
|
const int kMinimumStackSlots = kRegisterPassedArguments;
|
|
if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
|
|
return num_arguments;
|
|
#else
|
|
if (num_arguments < kRegisterPassedArguments) return 0;
|
|
return num_arguments - kRegisterPassedArguments;
|
|
#endif
|
|
}
|
|
|
|
|
|
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
|
|
Register index,
|
|
Register value,
|
|
uint32_t encoding_mask) {
|
|
Label is_object;
|
|
JumpIfNotSmi(string, &is_object);
|
|
Abort(kNonObject);
|
|
bind(&is_object);
|
|
|
|
Push(value);
|
|
movp(value, FieldOperand(string, HeapObject::kMapOffset));
|
|
movzxbp(value, FieldOperand(value, Map::kInstanceTypeOffset));
|
|
|
|
andb(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
|
|
cmpp(value, Immediate(encoding_mask));
|
|
Pop(value);
|
|
Check(equal, kUnexpectedStringType);
|
|
|
|
// The index is assumed to be untagged coming in, tag it to compare with the
|
|
// string length without using a temp register, it is restored at the end of
|
|
// this function.
|
|
Integer32ToSmi(index, index);
|
|
SmiCompare(index, FieldOperand(string, String::kLengthOffset));
|
|
Check(less, kIndexIsTooLarge);
|
|
|
|
SmiCompare(index, Smi::FromInt(0));
|
|
Check(greater_equal, kIndexIsNegative);
|
|
|
|
// Restore the index
|
|
SmiToInteger32(index, index);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PrepareCallCFunction(int num_arguments) {
|
|
int frame_alignment = base::OS::ActivationFrameAlignment();
|
|
DCHECK(frame_alignment != 0);
|
|
DCHECK(num_arguments >= 0);
|
|
|
|
// Make stack end at alignment and allocate space for arguments and old rsp.
|
|
movp(kScratchRegister, rsp);
|
|
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
|
|
int argument_slots_on_stack =
|
|
ArgumentStackSlotsForCFunctionCall(num_arguments);
|
|
subp(rsp, Immediate((argument_slots_on_stack + 1) * kRegisterSize));
|
|
andp(rsp, Immediate(-frame_alignment));
|
|
movp(Operand(rsp, argument_slots_on_stack * kRegisterSize), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallCFunction(ExternalReference function,
|
|
int num_arguments) {
|
|
LoadAddress(rax, function);
|
|
CallCFunction(rax, num_arguments);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallCFunction(Register function, int num_arguments) {
|
|
DCHECK(has_frame());
|
|
// Check stack alignment.
|
|
if (emit_debug_code()) {
|
|
CheckStackAlignment();
|
|
}
|
|
|
|
call(function);
|
|
DCHECK(base::OS::ActivationFrameAlignment() != 0);
|
|
DCHECK(num_arguments >= 0);
|
|
int argument_slots_on_stack =
|
|
ArgumentStackSlotsForCFunctionCall(num_arguments);
|
|
movp(rsp, Operand(rsp, argument_slots_on_stack * kRegisterSize));
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool AreAliased(Register reg1,
|
|
Register reg2,
|
|
Register reg3,
|
|
Register reg4,
|
|
Register reg5,
|
|
Register reg6,
|
|
Register reg7,
|
|
Register reg8) {
|
|
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
|
|
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
|
|
reg7.is_valid() + reg8.is_valid();
|
|
|
|
RegList regs = 0;
|
|
if (reg1.is_valid()) regs |= reg1.bit();
|
|
if (reg2.is_valid()) regs |= reg2.bit();
|
|
if (reg3.is_valid()) regs |= reg3.bit();
|
|
if (reg4.is_valid()) regs |= reg4.bit();
|
|
if (reg5.is_valid()) regs |= reg5.bit();
|
|
if (reg6.is_valid()) regs |= reg6.bit();
|
|
if (reg7.is_valid()) regs |= reg7.bit();
|
|
if (reg8.is_valid()) regs |= reg8.bit();
|
|
int n_of_non_aliasing_regs = NumRegs(regs);
|
|
|
|
return n_of_valid_regs != n_of_non_aliasing_regs;
|
|
}
|
|
#endif
|
|
|
|
|
|
CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size)
|
|
: address_(address),
|
|
size_(size),
|
|
masm_(isolate, address, size + Assembler::kGap, CodeObjectRequired::kNo) {
|
|
// Create a new macro assembler pointing to the address of the code to patch.
|
|
// The size is adjusted with kGap on order for the assembler to generate size
|
|
// bytes of instructions without failing with buffer size constraints.
|
|
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
|
|
}
|
|
|
|
|
|
CodePatcher::~CodePatcher() {
|
|
// Indicate that code has changed.
|
|
Assembler::FlushICache(masm_.isolate(), address_, size_);
|
|
|
|
// Check that the code was patched as expected.
|
|
DCHECK(masm_.pc_ == address_ + size_);
|
|
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckPageFlag(
|
|
Register object,
|
|
Register scratch,
|
|
int mask,
|
|
Condition cc,
|
|
Label* condition_met,
|
|
Label::Distance condition_met_distance) {
|
|
DCHECK(cc == zero || cc == not_zero);
|
|
if (scratch.is(object)) {
|
|
andp(scratch, Immediate(~Page::kPageAlignmentMask));
|
|
} else {
|
|
movp(scratch, Immediate(~Page::kPageAlignmentMask));
|
|
andp(scratch, object);
|
|
}
|
|
if (mask < (1 << kBitsPerByte)) {
|
|
testb(Operand(scratch, MemoryChunk::kFlagsOffset),
|
|
Immediate(static_cast<uint8_t>(mask)));
|
|
} else {
|
|
testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
|
|
}
|
|
j(cc, condition_met, condition_met_distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfBlack(Register object,
|
|
Register bitmap_scratch,
|
|
Register mask_scratch,
|
|
Label* on_black,
|
|
Label::Distance on_black_distance) {
|
|
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, rcx));
|
|
|
|
GetMarkBits(object, bitmap_scratch, mask_scratch);
|
|
|
|
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
|
|
// The mask_scratch register contains a 1 at the position of the first bit
|
|
// and a 1 at a position of the second bit. All other positions are zero.
|
|
movp(rcx, mask_scratch);
|
|
andp(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
|
cmpp(mask_scratch, rcx);
|
|
j(equal, on_black, on_black_distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetMarkBits(Register addr_reg,
|
|
Register bitmap_reg,
|
|
Register mask_reg) {
|
|
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx));
|
|
movp(bitmap_reg, addr_reg);
|
|
// Sign extended 32 bit immediate.
|
|
andp(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
|
|
movp(rcx, addr_reg);
|
|
int shift =
|
|
Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
|
|
shrl(rcx, Immediate(shift));
|
|
andp(rcx,
|
|
Immediate((Page::kPageAlignmentMask >> shift) &
|
|
~(Bitmap::kBytesPerCell - 1)));
|
|
|
|
addp(bitmap_reg, rcx);
|
|
movp(rcx, addr_reg);
|
|
shrl(rcx, Immediate(kPointerSizeLog2));
|
|
andp(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1));
|
|
movl(mask_reg, Immediate(3));
|
|
shlp_cl(mask_reg);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
|
|
Register mask_scratch, Label* value_is_white,
|
|
Label::Distance distance) {
|
|
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, rcx));
|
|
GetMarkBits(value, bitmap_scratch, mask_scratch);
|
|
|
|
// If the value is black or grey we don't need to do anything.
|
|
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
|
|
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
|
|
DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
|
|
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
|
|
|
|
// Since both black and grey have a 1 in the first position and white does
|
|
// not have a 1 there we only need to check one bit.
|
|
testp(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
|
|
j(zero, value_is_white, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
|
|
Label next, start;
|
|
Register empty_fixed_array_value = r8;
|
|
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
|
|
movp(rcx, rax);
|
|
|
|
// Check if the enum length field is properly initialized, indicating that
|
|
// there is an enum cache.
|
|
movp(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
|
|
|
|
EnumLength(rdx, rbx);
|
|
Cmp(rdx, Smi::FromInt(kInvalidEnumCacheSentinel));
|
|
j(equal, call_runtime);
|
|
|
|
jmp(&start);
|
|
|
|
bind(&next);
|
|
|
|
movp(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
|
|
|
|
// For all objects but the receiver, check that the cache is empty.
|
|
EnumLength(rdx, rbx);
|
|
Cmp(rdx, Smi::FromInt(0));
|
|
j(not_equal, call_runtime);
|
|
|
|
bind(&start);
|
|
|
|
// Check that there are no elements. Register rcx contains the current JS
|
|
// object we've reached through the prototype chain.
|
|
Label no_elements;
|
|
cmpp(empty_fixed_array_value,
|
|
FieldOperand(rcx, JSObject::kElementsOffset));
|
|
j(equal, &no_elements);
|
|
|
|
// Second chance, the object may be using the empty slow element dictionary.
|
|
LoadRoot(kScratchRegister, Heap::kEmptySlowElementDictionaryRootIndex);
|
|
cmpp(kScratchRegister, FieldOperand(rcx, JSObject::kElementsOffset));
|
|
j(not_equal, call_runtime);
|
|
|
|
bind(&no_elements);
|
|
movp(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
|
|
cmpp(rcx, null_value);
|
|
j(not_equal, &next);
|
|
}
|
|
|
|
void MacroAssembler::TestJSArrayForAllocationMemento(
|
|
Register receiver_reg,
|
|
Register scratch_reg,
|
|
Label* no_memento_found) {
|
|
ExternalReference new_space_start =
|
|
ExternalReference::new_space_start(isolate());
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address(isolate());
|
|
|
|
leap(scratch_reg, Operand(receiver_reg,
|
|
JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
|
|
Move(kScratchRegister, new_space_start);
|
|
cmpp(scratch_reg, kScratchRegister);
|
|
j(less, no_memento_found);
|
|
cmpp(scratch_reg, ExternalOperand(new_space_allocation_top));
|
|
j(greater, no_memento_found);
|
|
CompareRoot(MemOperand(scratch_reg, -AllocationMemento::kSize),
|
|
Heap::kAllocationMementoMapRootIndex);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
|
|
Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* found) {
|
|
DCHECK(!(scratch0.is(kScratchRegister) && scratch1.is(kScratchRegister)));
|
|
DCHECK(!scratch1.is(scratch0));
|
|
Register current = scratch0;
|
|
Label loop_again, end;
|
|
|
|
movp(current, object);
|
|
movp(current, FieldOperand(current, HeapObject::kMapOffset));
|
|
movp(current, FieldOperand(current, Map::kPrototypeOffset));
|
|
CompareRoot(current, Heap::kNullValueRootIndex);
|
|
j(equal, &end);
|
|
|
|
// Loop based on the map going up the prototype chain.
|
|
bind(&loop_again);
|
|
movp(current, FieldOperand(current, HeapObject::kMapOffset));
|
|
STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
|
|
STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
|
|
CmpInstanceType(current, JS_OBJECT_TYPE);
|
|
j(below, found);
|
|
movp(scratch1, FieldOperand(current, Map::kBitField2Offset));
|
|
DecodeField<Map::ElementsKindBits>(scratch1);
|
|
cmpp(scratch1, Immediate(DICTIONARY_ELEMENTS));
|
|
j(equal, found);
|
|
movp(current, FieldOperand(current, Map::kPrototypeOffset));
|
|
CompareRoot(current, Heap::kNullValueRootIndex);
|
|
j(not_equal, &loop_again);
|
|
|
|
bind(&end);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
|
|
DCHECK(!dividend.is(rax));
|
|
DCHECK(!dividend.is(rdx));
|
|
base::MagicNumbersForDivision<uint32_t> mag =
|
|
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
|
|
movl(rax, Immediate(mag.multiplier));
|
|
imull(dividend);
|
|
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
|
|
if (divisor > 0 && neg) addl(rdx, dividend);
|
|
if (divisor < 0 && !neg && mag.multiplier > 0) subl(rdx, dividend);
|
|
if (mag.shift > 0) sarl(rdx, Immediate(mag.shift));
|
|
movl(rax, dividend);
|
|
shrl(rax, Immediate(31));
|
|
addl(rdx, rax);
|
|
}
|
|
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_X64
|
|
|