mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
310 lines
13 KiB
310 lines
13 KiB
// Copyright 2009 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Flags: --allow-natives-syntax
|
|
|
|
// Test fast div and mod.
|
|
|
|
function divmod(div_func, mod_func, x, y) {
|
|
var div_answer = (div_func)(x);
|
|
assertEquals(x / y, div_answer, x + "/" + y);
|
|
var mod_answer = (mod_func)(x);
|
|
assertEquals(x % y, mod_answer, x + "%" + y);
|
|
var minus_div_answer = (div_func)(-x);
|
|
assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y);
|
|
var minus_mod_answer = (mod_func)(-x);
|
|
assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y);
|
|
}
|
|
|
|
|
|
function run_tests_for(divisor) {
|
|
print("(function(left) { return left / " + divisor + "; })");
|
|
var div_func = this.eval("(function(left) { return left / " + divisor + "; })");
|
|
var mod_func = this.eval("(function(left) { return left % " + divisor + "; })");
|
|
var exp;
|
|
// Strange number test.
|
|
divmod(div_func, mod_func, 0, divisor);
|
|
divmod(div_func, mod_func, 1 / 0, divisor);
|
|
// Floating point number test.
|
|
for (exp = -1024; exp <= 1024; exp += 8) {
|
|
divmod(div_func, mod_func, Math.pow(2, exp), divisor);
|
|
divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor);
|
|
divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor);
|
|
}
|
|
// Integer number test.
|
|
for (exp = 0; exp <= 32; exp++) {
|
|
divmod(div_func, mod_func, 1 << exp, divisor);
|
|
divmod(div_func, mod_func, (1 << exp) + 1, divisor);
|
|
divmod(div_func, mod_func, (1 << exp) - 1, divisor);
|
|
}
|
|
divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor);
|
|
divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor);
|
|
}
|
|
|
|
|
|
var divisors = [
|
|
0,
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
5,
|
|
6,
|
|
7,
|
|
8,
|
|
9,
|
|
10,
|
|
0x1000000,
|
|
0x40000000,
|
|
12,
|
|
60,
|
|
100,
|
|
1000 * 60 * 60 * 24];
|
|
|
|
for (var i = 0; i < divisors.length; i++) {
|
|
run_tests_for(divisors[i]);
|
|
}
|
|
|
|
// Test extreme corner cases of modulo.
|
|
|
|
// Computes the modulo by slow but lossless operations.
|
|
function compute_mod(dividend, divisor) {
|
|
// Return NaN if either operand is NaN, if divisor is 0 or
|
|
// dividend is an infinity. Return dividend if divisor is an infinity.
|
|
if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; }
|
|
var sign = 1;
|
|
if (dividend < 0) { dividend = -dividend; sign = -1; }
|
|
if (dividend == Infinity) { return NaN; }
|
|
if (divisor < 0) { divisor = -divisor; }
|
|
if (divisor == Infinity) { return sign * dividend; }
|
|
function rec_mod(a, b) {
|
|
// Subtracts maximal possible multiplum of b from a.
|
|
if (a >= b) {
|
|
a = rec_mod(a, 2 * b);
|
|
if (a >= b) { a -= b; }
|
|
}
|
|
return a;
|
|
}
|
|
return sign * rec_mod(dividend, divisor);
|
|
}
|
|
|
|
(function () {
|
|
var large_non_smi = 1234567891234.12245;
|
|
var small_non_smi = 43.2367243;
|
|
var repeating_decimal = 0.3;
|
|
var finite_decimal = 0.5;
|
|
var smi = 43;
|
|
var power_of_two = 64;
|
|
var min_normal = Number.MIN_VALUE * Math.pow(2, 52);
|
|
var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1);
|
|
|
|
// All combinations of NaN, Infinity, normal, denormal and zero.
|
|
var example_numbers = [
|
|
NaN,
|
|
0,
|
|
|
|
// Due to a bug in fmod(), modulos involving denormals
|
|
// return the wrong result for glibc <= 2.16.
|
|
// Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048
|
|
|
|
Number.MIN_VALUE,
|
|
3 * Number.MIN_VALUE,
|
|
max_denormal,
|
|
|
|
min_normal,
|
|
repeating_decimal,
|
|
finite_decimal,
|
|
smi,
|
|
power_of_two,
|
|
small_non_smi,
|
|
large_non_smi,
|
|
Number.MAX_VALUE,
|
|
Infinity
|
|
];
|
|
|
|
function doTest(a, b) {
|
|
var exp = compute_mod(a, b);
|
|
var act = a % b;
|
|
assertEquals(exp, act, a + " % " + b);
|
|
}
|
|
|
|
for (var i = 0; i < example_numbers.length; i++) {
|
|
for (var j = 0; j < example_numbers.length; j++) {
|
|
var a = example_numbers[i];
|
|
var b = example_numbers[j];
|
|
doTest(a,b);
|
|
doTest(-a,b);
|
|
doTest(a,-b);
|
|
doTest(-a,-b);
|
|
}
|
|
}
|
|
})();
|
|
|
|
|
|
(function () {
|
|
// Edge cases
|
|
var zero = 0;
|
|
var minsmi32 = -0x40000000;
|
|
var minsmi64 = -0x80000000;
|
|
var somenum = 3532;
|
|
assertEquals(-0, zero / -1, "0 / -1");
|
|
assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32");
|
|
assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64");
|
|
assertEquals(somenum, somenum % -0x40000000, "%minsmi-32");
|
|
assertEquals(somenum, somenum % -0x80000000, "%minsmi-64");
|
|
})();
|
|
|
|
|
|
// Side-effect-free expressions containing bit operations use
|
|
// an optimized compiler with int32 values. Ensure that modulus
|
|
// produces negative zeros correctly.
|
|
function negative_zero_modulus_test() {
|
|
var x = 4;
|
|
var y = -4;
|
|
x = x + x - x;
|
|
y = y + y - y;
|
|
var z = (y | y | y | y) % x;
|
|
assertEquals(-1 / 0, 1 / z);
|
|
z = (x | x | x | x) % x;
|
|
assertEquals(1 / 0, 1 / z);
|
|
z = (y | y | y | y) % y;
|
|
assertEquals(-1 / 0, 1 / z);
|
|
z = (x | x | x | x) % y;
|
|
assertEquals(1 / 0, 1 / z);
|
|
}
|
|
|
|
negative_zero_modulus_test();
|
|
|
|
|
|
function lithium_integer_mod() {
|
|
var left_operands = [
|
|
0,
|
|
305419896, // 0x12345678
|
|
];
|
|
|
|
// Test the standard lithium code for modulo opeartions.
|
|
var mod_func;
|
|
for (var i = 0; i < left_operands.length; i++) {
|
|
for (var j = 0; j < divisors.length; j++) {
|
|
mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })");
|
|
assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]);
|
|
assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]);
|
|
}
|
|
}
|
|
|
|
var results_powers_of_two = [
|
|
// 0
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
// 305419896 == 0x12345678
|
|
[0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896],
|
|
];
|
|
|
|
// Test the lithium code for modulo operations with a variable power of two
|
|
// right hand side operand.
|
|
for (var i = 0; i < left_operands.length; i++) {
|
|
for (var j = 0; j < 31; j++) {
|
|
assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j));
|
|
assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j));
|
|
assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j));
|
|
assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j));
|
|
}
|
|
}
|
|
|
|
// Test the lithium code for modulo operations with a constant power of two
|
|
// right hand side operand.
|
|
for (var i = 0; i < left_operands.length; i++) {
|
|
// With positive left hand side operand.
|
|
assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0));
|
|
assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1));
|
|
assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2));
|
|
assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3));
|
|
assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4));
|
|
assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5));
|
|
assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6));
|
|
assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7));
|
|
assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8));
|
|
assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9));
|
|
assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10));
|
|
assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11));
|
|
assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12));
|
|
assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13));
|
|
assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14));
|
|
assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15));
|
|
assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16));
|
|
assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17));
|
|
assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18));
|
|
assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19));
|
|
assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20));
|
|
assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21));
|
|
assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22));
|
|
assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23));
|
|
assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24));
|
|
assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25));
|
|
assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26));
|
|
assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27));
|
|
assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28));
|
|
assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29));
|
|
assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30));
|
|
// With negative left hand side operand.
|
|
assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0));
|
|
assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1));
|
|
assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2));
|
|
assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3));
|
|
assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4));
|
|
assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5));
|
|
assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6));
|
|
assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7));
|
|
assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8));
|
|
assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9));
|
|
assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10));
|
|
assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11));
|
|
assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12));
|
|
assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13));
|
|
assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14));
|
|
assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15));
|
|
assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16));
|
|
assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17));
|
|
assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18));
|
|
assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19));
|
|
assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20));
|
|
assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21));
|
|
assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22));
|
|
assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23));
|
|
assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24));
|
|
assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25));
|
|
assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26));
|
|
assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27));
|
|
assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28));
|
|
assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29));
|
|
assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30));
|
|
}
|
|
|
|
}
|
|
|
|
lithium_integer_mod();
|
|
%OptimizeFunctionOnNextCall(lithium_integer_mod)
|
|
lithium_integer_mod();
|
|
|