17 KiB
HTTP
To use the HTTP server and client one must require('http')
.
The HTTP interfaces in Node are designed to support many features of the protocol which have been traditionally difficult to use. In particular, large, possibly chunk-encoded, messages. The interface is careful to never buffer entire requests or responses--the user is able to stream data.
HTTP message headers are represented by an object like this:
{ 'content-length': '123',
'content-type': 'text/plain',
'connection': 'keep-alive',
'accept': '*/*' }
Keys are lowercased. Values are not modified.
In order to support the full spectrum of possible HTTP applications, Node's HTTP API is very low-level. It deals with stream handling and message parsing only. It parses a message into headers and body but it does not parse the actual headers or the body.
HTTPS is supported if OpenSSL is available on the underlying platform.
http.Server
This is an EventEmitter
with the following events:
Event: 'request'
function (request, response) { }
request
is an instance of http.ServerRequest
and response
is
an instance of http.ServerResponse
Event: 'connection'
function (stream) { }
When a new TCP stream is established. stream
is an object of type
net.Stream
. Usually users will not want to access this event. The
stream
can also be accessed at request.connection
.
Event: 'close'
function (errno) { }
Emitted when the server closes.
Event: 'request'
function (request, response) {}
Emitted each time there is request. Note that there may be multiple requests per connection (in the case of keep-alive connections).
Event: 'checkContinue'
function (request, response) {}
Emitted each time a request with an http Expect: 100-continue is received. If this event isn't listened for, the server will automatically respond with a 100 Continue as appropriate.
Handling this event involves calling response.writeContinue
if the client
should continue to send the request body, or generating an appropriate HTTP
response (e.g., 400 Bad Request) if the client should not continue to send the
request body.
Note that when this event is emitted and handled, the request
event will
not be emitted.
Event: 'upgrade'
function (request, socket, head)
Emitted each time a client requests a http upgrade. If this event isn't listened for, then clients requesting an upgrade will have their connections closed.
request
is the arguments for the http request, as it is in the request event.socket
is the network socket between the server and client.head
is an instance of Buffer, the first packet of the upgraded stream, this may be empty.
After this event is emitted, the request's socket will not have a data
event listener, meaning you will need to bind to it in order to handle data
sent to the server on that socket.
Event: 'clientError'
function (exception) {}
If a client connection emits an 'error' event - it will forwarded here.
http.createServer(requestListener)
Returns a new web server object.
The requestListener
is a function which is automatically
added to the 'request'
event.
server.listen(port, [hostname], [callback])
Begin accepting connections on the specified port and hostname. If the
hostname is omitted, the server will accept connections directed to any
IPv4 address (INADDR_ANY
).
To listen to a unix socket, supply a filename instead of port and hostname.
This function is asynchronous. The last parameter callback
will be called
when the server has been bound to the port.
server.listen(path, [callback])
Start a UNIX socket server listening for connections on the given path
.
This function is asynchronous. The last parameter callback
will be called
when the server has been bound.
server.setSecure(credentials)
Enables HTTPS support for the server, with the crypto module credentials specifying the private key and certificate of the server, and optionally the CA certificates for use in client authentication.
If the credentials hold one or more CA certificates, then the server will request for the client to submit a client certificate as part of the HTTPS connection handshake. The validity and content of this can be accessed via verifyPeer() and getPeerCertificate() from the server's request.connection.
server.close()
Stops the server from accepting new connections.
http.ServerRequest
This object is created internally by a HTTP server--not by
the user--and passed as the first argument to a 'request'
listener.
This is an EventEmitter
with the following events:
Event: 'data'
function (chunk) { }
Emitted when a piece of the message body is received.
Example: A chunk of the body is given as the single
argument. The transfer-encoding has been decoded. The
body chunk is a string. The body encoding is set with
request.setBodyEncoding()
.
Event: 'end'
function () { }
Emitted exactly once for each message. No arguments. After emitted no other events will be emitted on the request.
request.method
The request method as a string. Read only. Example:
'GET'
, 'DELETE'
.
request.url
Request URL string. This contains only the URL that is present in the actual HTTP request. If the request is:
GET /status?name=ryan HTTP/1.1\r\n
Accept: text/plain\r\n
\r\n
Then request.url
will be:
'/status?name=ryan'
If you would like to parse the URL into its parts, you can use
require('url').parse(request.url)
. Example:
node> require('url').parse('/status?name=ryan')
{ href: '/status?name=ryan',
search: '?name=ryan',
query: 'name=ryan',
pathname: '/status' }
If you would like to extract the params from the query string,
you can use the require('querystring').parse
function, or pass
true
as the second argument to require('url').parse
. Example:
node> require('url').parse('/status?name=ryan', true)
{ href: '/status?name=ryan',
search: '?name=ryan',
query: { name: 'ryan' },
pathname: '/status' }
request.headers
Read only.
request.trailers
Read only; HTTP trailers (if present). Only populated after the 'end' event.
request.httpVersion
The HTTP protocol version as a string. Read only. Examples:
'1.1'
, '1.0'
.
Also request.httpVersionMajor
is the first integer and
request.httpVersionMinor
is the second.
request.setEncoding(encoding=null)
Set the encoding for the request body. Either 'utf8'
or 'binary'
. Defaults
to null
, which means that the 'data'
event will emit a Buffer
object..
request.pause()
Pauses request from emitting events. Useful to throttle back an upload.
request.resume()
Resumes a paused request.
request.connection
The net.Stream
object associated with the connection.
With HTTPS support, use request.connection.verifyPeer() and request.connection.getPeerCertificate() to obtain the client's authentication details.
http.ServerResponse
This object is created internally by a HTTP server--not by the user. It is
passed as the second parameter to the 'request'
event. It is a Writable Stream
.
response.writeContinue()
Sends a HTTP/1.1 100 Continue message to the client, indicating that
the request body should be sent. See the the checkContinue
event on
Server
.
response.writeHead(statusCode, [reasonPhrase], [headers])
Sends a response header to the request. The status code is a 3-digit HTTP
status code, like 404
. The last argument, headers
, are the response headers.
Optionally one can give a human-readable reasonPhrase
as the second
argument.
Example:
var body = 'hello world';
response.writeHead(200, {
'Content-Length': body.length,
'Content-Type': 'text/plain' });
This method must only be called once on a message and it must
be called before response.end()
is called.
response.write(chunk, encoding='utf8')
This method must be called after writeHead
was
called. It sends a chunk of the response body. This method may
be called multiple times to provide successive parts of the body.
chunk
can be a string or a buffer. If chunk
is a string,
the second parameter specifies how to encode it into a byte stream.
By default the encoding
is 'utf8'
.
Note: This is the raw HTTP body and has nothing to do with higher-level multi-part body encodings that may be used.
The first time response.write()
is called, it will send the buffered
header information and the first body to the client. The second time
response.write()
is called, Node assumes you're going to be streaming
data, and sends that separately. That is, the response is buffered up to the
first chunk of body.
response.addTrailers(headers)
This method adds HTTP trailing headers (a header but at the end of the message) to the response.
Trailers will only be emitted if chunked encoding is used for the response; if it is not (e.g., if the request was HTTP/1.0), they will be silently discarded.
Note that HTTP requires the Trailer
header to be sent if you intend to
emit trailers, with a list of the header fields in its value. E.g.,
response.writeHead(200, { 'Content-Type': 'text/plain',
'Trailer': 'TraceInfo' });
response.write(fileData);
response.addTrailers({'Content-MD5': "7895bf4b8828b55ceaf47747b4bca667"});
response.end();
response.end([data], [encoding])
This method signals to the server that all of the response headers and body
has been sent; that server should consider this message complete.
The method, response.end()
, MUST be called on each
response.
If data
is specified, it is equivalent to calling response.write(data, encoding)
followed by response.end()
.
http.Client
An HTTP client is constructed with a server address as its argument, the returned handle is then used to issue one or more requests. Depending on the server connected to, the client might pipeline the requests or reestablish the stream after each stream. Currently the implementation does not pipeline requests.
Example of connecting to google.com
:
var http = require('http');
var google = http.createClient(80, 'www.google.com');
var request = google.request('GET', '/',
{'host': 'www.google.com'});
request.end();
request.on('response', function (response) {
console.log('STATUS: ' + response.statusCode);
console.log('HEADERS: ' + JSON.stringify(response.headers));
response.setEncoding('utf8');
response.on('data', function (chunk) {
console.log('BODY: ' + chunk);
});
});
There are a few special headers that should be noted.
-
The 'Host' header is not added by Node, and is usually required by website.
-
Sending a 'Connection: keep-alive' will notify Node that the connection to the server should be persisted until the next request.
-
Sending a 'Content-length' header will disable the default chunked encoding.
-
Sending an 'Expect' header will immediately send the request headers. Usually, when sending 'Expect: 100-continue', you should both set a timeout and listen for the
continue
event. See RFC2616 Section 8.2.3 for more information.
Event: 'upgrade'
function (request, socket, head)
Emitted each time a server responds to a request with an upgrade. If this event isn't being listened for, clients receiving an upgrade header will have their connections closed.
See the description of the upgrade
event for http.Server
for further details.
Event: 'continue'
function ()
Emitted when the server sends a '100 Continue' HTTP response, usually because the request contained 'Expect: 100-continue'. This is an instruction that the client should send the request body.
http.createClient(port, host='localhost', secure=false, [credentials])
Constructs a new HTTP client. port
and
host
refer to the server to be connected to. A
stream is not established until a request is issued.
secure
is an optional boolean flag to enable https support and credentials
is an optional credentials object from the crypto module, which may hold the client's private key, certificate, and a list of trusted CA certificates.
If the connection is secure, but no explicit CA certificates are passed in the credentials, then node.js will default to the publicly trusted list of CA certificates, as given in http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt
client.request(method='GET', path, [request_headers])
Issues a request; if necessary establishes stream. Returns a http.ClientRequest
instance.
method
is optional and defaults to 'GET' if omitted.
request_headers
is optional.
Additional request headers might be added internally
by Node. Returns a ClientRequest
object.
Do remember to include the Content-Length
header if you
plan on sending a body. If you plan on streaming the body, perhaps
set Transfer-Encoding: chunked
.
NOTE: the request is not complete. This method only sends the header of
the request. One needs to call request.end()
to finalize the request and
retrieve the response. (This sounds convoluted but it provides a chance for
the user to stream a body to the server with request.write()
.)
client.verifyPeer()
Returns true or false depending on the validity of the server's certificate in the context of the defined or default list of trusted CA certificates.
client.getPeerCertificate()
Returns a JSON structure detailing the server's certificate, containing a dictionary with keys for the certificate 'subject', 'issuer', 'valid_from' and 'valid_to'
http.ClientRequest
This object is created internally and returned from the request()
method
of a http.Client
. It represents an in-progress request whose header has
already been sent.
To get the response, add a listener for 'response'
to the request object.
'response'
will be emitted from the request object when the response
headers have been received. The 'response'
event is executed with one
argument which is an instance of http.ClientResponse
.
During the 'response'
event, one can add listeners to the
response object; particularly to listen for the 'data'
event. Note that
the 'response'
event is called before any part of the response body is received,
so there is no need to worry about racing to catch the first part of the
body. As long as a listener for 'data'
is added during the 'response'
event, the entire body will be caught.
// Good
request.on('response', function (response) {
response.on('data', function (chunk) {
console.log('BODY: ' + chunk);
});
});
// Bad - misses all or part of the body
request.on('response', function (response) {
setTimeout(function () {
response.on('data', function (chunk) {
console.log('BODY: ' + chunk);
});
}, 10);
});
This is a Writable Stream
.
This is an EventEmitter
with the following events:
Event 'response'
function (response) { }
Emitted when a response is received to this request. This event is emitted only once. The
response
argument will be an instance of http.ClientResponse
.
request.write(chunk, encoding='utf8')
Sends a chunk of the body. By calling this method
many times, the user can stream a request body to a
server--in that case it is suggested to use the
['Transfer-Encoding', 'chunked']
header line when
creating the request.
The chunk
argument should be an array of integers
or a string.
The encoding
argument is optional and only
applies when chunk
is a string.
request.end([data], [encoding])
Finishes sending the request. If any parts of the body are
unsent, it will flush them to the stream. If the request is
chunked, this will send the terminating '0\r\n\r\n'
.
If data
is specified, it is equivalent to calling request.write(data, encoding)
followed by request.end()
.
http.ClientResponse
This object is created when making a request with http.Client
. It is
passed to the 'response'
event of the request object.
The response implements the Readable Stream
interface.
Event: 'data'
function (chunk) {}
Emitted when a piece of the message body is received.
Example: A chunk of the body is given as the single
argument. The transfer-encoding has been decoded. The
body chunk a String. The body encoding is set with
`response.setBodyEncoding()`.
Event: 'end'
function () {}
Emitted exactly once for each message. No arguments. After emitted no other events will be emitted on the response.
response.statusCode
The 3-digit HTTP response status code. E.G. 404
.
response.httpVersion
The HTTP version of the connected-to server. Probably either
'1.1'
or '1.0'
.
Also response.httpVersionMajor
is the first integer and
response.httpVersionMinor
is the second.
response.headers
The response headers object.
response.trailers
The response trailers object. Only populated after the 'end' event.
response.setEncoding(encoding=null)
Set the encoding for the response body. Either 'utf8'
, 'ascii'
, or 'base64'
.
Defaults to null
, which means that the 'data'
event will emit a Buffer
object..
response.pause()
Pauses response from emitting events. Useful to throttle back a download.
response.resume()
Resumes a paused response.
response.client
A reference to the http.Client
that this response belongs to.