mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
686 lines
18 KiB
686 lines
18 KiB
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Platform specific code for MacOS goes here. For the POSIX comaptible parts
|
|
// the implementation is in platform-posix.cc.
|
|
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <mach/mach_init.h>
|
|
#include <mach-o/dyld.h>
|
|
#include <mach-o/getsect.h>
|
|
|
|
#include <AvailabilityMacros.h>
|
|
|
|
#include <pthread.h>
|
|
#include <semaphore.h>
|
|
#include <signal.h>
|
|
#include <libkern/OSAtomic.h>
|
|
#include <mach/mach.h>
|
|
#include <mach/semaphore.h>
|
|
#include <mach/task.h>
|
|
#include <mach/vm_statistics.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/types.h>
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#undef MAP_TYPE
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform.h"
|
|
|
|
// Manually define these here as weak imports, rather than including execinfo.h.
|
|
// This lets us launch on 10.4 which does not have these calls.
|
|
extern "C" {
|
|
extern int backtrace(void**, int) __attribute__((weak_import));
|
|
extern char** backtrace_symbols(void* const*, int)
|
|
__attribute__((weak_import));
|
|
extern void backtrace_symbols_fd(void* const*, int, int)
|
|
__attribute__((weak_import));
|
|
}
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// 0 is never a valid thread id on MacOSX since a ptread_t is
|
|
// a pointer.
|
|
static const pthread_t kNoThread = (pthread_t) 0;
|
|
|
|
|
|
double ceiling(double x) {
|
|
// Correct Mac OS X Leopard 'ceil' behavior.
|
|
if (-1.0 < x && x < 0.0) {
|
|
return -0.0;
|
|
} else {
|
|
return ceil(x);
|
|
}
|
|
}
|
|
|
|
|
|
void OS::Setup() {
|
|
// Seed the random number generator.
|
|
// Convert the current time to a 64-bit integer first, before converting it
|
|
// to an unsigned. Going directly will cause an overflow and the seed to be
|
|
// set to all ones. The seed will be identical for different instances that
|
|
// call this setup code within the same millisecond.
|
|
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
|
|
srandom(static_cast<unsigned int>(seed));
|
|
}
|
|
|
|
|
|
// We keep the lowest and highest addresses mapped as a quick way of
|
|
// determining that pointers are outside the heap (used mostly in assertions
|
|
// and verification). The estimate is conservative, ie, not all addresses in
|
|
// 'allocated' space are actually allocated to our heap. The range is
|
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
|
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
|
|
|
|
|
|
static void UpdateAllocatedSpaceLimits(void* address, int size) {
|
|
lowest_ever_allocated = Min(lowest_ever_allocated, address);
|
|
highest_ever_allocated =
|
|
Max(highest_ever_allocated,
|
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
|
|
}
|
|
|
|
|
|
bool OS::IsOutsideAllocatedSpace(void* address) {
|
|
return address < lowest_ever_allocated || address >= highest_ever_allocated;
|
|
}
|
|
|
|
|
|
size_t OS::AllocateAlignment() {
|
|
return getpagesize();
|
|
}
|
|
|
|
|
|
// Constants used for mmap.
|
|
// kMmapFd is used to pass vm_alloc flags to tag the region with the user
|
|
// defined tag 255 This helps identify V8-allocated regions in memory analysis
|
|
// tools like vmmap(1).
|
|
static const int kMmapFd = VM_MAKE_TAG(255);
|
|
static const off_t kMmapFdOffset = 0;
|
|
|
|
|
|
void* OS::Allocate(const size_t requested,
|
|
size_t* allocated,
|
|
bool is_executable) {
|
|
const size_t msize = RoundUp(requested, getpagesize());
|
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
|
void* mbase = mmap(NULL, msize, prot,
|
|
MAP_PRIVATE | MAP_ANON,
|
|
kMmapFd, kMmapFdOffset);
|
|
if (mbase == MAP_FAILED) {
|
|
LOG(StringEvent("OS::Allocate", "mmap failed"));
|
|
return NULL;
|
|
}
|
|
*allocated = msize;
|
|
UpdateAllocatedSpaceLimits(mbase, msize);
|
|
return mbase;
|
|
}
|
|
|
|
|
|
void OS::Free(void* address, const size_t size) {
|
|
// TODO(1240712): munmap has a return value which is ignored here.
|
|
int result = munmap(address, size);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_HEAP_PROTECTION
|
|
|
|
void OS::Protect(void* address, size_t size) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
|
|
void OS::Unprotect(void* address, size_t size, bool is_executable) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
void OS::Sleep(int milliseconds) {
|
|
usleep(1000 * milliseconds);
|
|
}
|
|
|
|
|
|
void OS::Abort() {
|
|
// Redirect to std abort to signal abnormal program termination
|
|
abort();
|
|
}
|
|
|
|
|
|
void OS::DebugBreak() {
|
|
asm("int $3");
|
|
}
|
|
|
|
|
|
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
|
|
public:
|
|
PosixMemoryMappedFile(FILE* file, void* memory, int size)
|
|
: file_(file), memory_(memory), size_(size) { }
|
|
virtual ~PosixMemoryMappedFile();
|
|
virtual void* memory() { return memory_; }
|
|
private:
|
|
FILE* file_;
|
|
void* memory_;
|
|
int size_;
|
|
};
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
|
void* initial) {
|
|
FILE* file = fopen(name, "w+");
|
|
if (file == NULL) return NULL;
|
|
int result = fwrite(initial, size, 1, file);
|
|
if (result < 1) {
|
|
fclose(file);
|
|
return NULL;
|
|
}
|
|
void* memory =
|
|
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
|
|
return new PosixMemoryMappedFile(file, memory, size);
|
|
}
|
|
|
|
|
|
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
|
|
if (memory_) munmap(memory_, size_);
|
|
fclose(file_);
|
|
}
|
|
|
|
|
|
void OS::LogSharedLibraryAddresses() {
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
unsigned int images_count = _dyld_image_count();
|
|
for (unsigned int i = 0; i < images_count; ++i) {
|
|
const mach_header* header = _dyld_get_image_header(i);
|
|
if (header == NULL) continue;
|
|
#if V8_HOST_ARCH_X64
|
|
uint64_t size;
|
|
char* code_ptr = getsectdatafromheader_64(
|
|
reinterpret_cast<const mach_header_64*>(header),
|
|
SEG_TEXT,
|
|
SECT_TEXT,
|
|
&size);
|
|
#else
|
|
unsigned int size;
|
|
char* code_ptr = getsectdatafromheader(header, SEG_TEXT, SECT_TEXT, &size);
|
|
#endif
|
|
if (code_ptr == NULL) continue;
|
|
const uintptr_t slide = _dyld_get_image_vmaddr_slide(i);
|
|
const uintptr_t start = reinterpret_cast<uintptr_t>(code_ptr) + slide;
|
|
LOG(SharedLibraryEvent(_dyld_get_image_name(i), start, start + size));
|
|
}
|
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
|
}
|
|
|
|
|
|
void OS::SignalCodeMovingGC() {
|
|
}
|
|
|
|
|
|
uint64_t OS::CpuFeaturesImpliedByPlatform() {
|
|
// MacOSX requires all these to install so we can assume they are present.
|
|
// These constants are defined by the CPUid instructions.
|
|
const uint64_t one = 1;
|
|
return (one << SSE2) | (one << CMOV) | (one << RDTSC) | (one << CPUID);
|
|
}
|
|
|
|
|
|
int OS::ActivationFrameAlignment() {
|
|
// OS X activation frames must be 16 byte-aligned; see "Mac OS X ABI
|
|
// Function Call Guide".
|
|
return 16;
|
|
}
|
|
|
|
|
|
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
|
|
OSMemoryBarrier();
|
|
*ptr = value;
|
|
}
|
|
|
|
|
|
const char* OS::LocalTimezone(double time) {
|
|
if (isnan(time)) return "";
|
|
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
|
|
struct tm* t = localtime(&tv);
|
|
if (NULL == t) return "";
|
|
return t->tm_zone;
|
|
}
|
|
|
|
|
|
double OS::LocalTimeOffset() {
|
|
time_t tv = time(NULL);
|
|
struct tm* t = localtime(&tv);
|
|
// tm_gmtoff includes any daylight savings offset, so subtract it.
|
|
return static_cast<double>(t->tm_gmtoff * msPerSecond -
|
|
(t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
|
|
}
|
|
|
|
|
|
int OS::StackWalk(Vector<StackFrame> frames) {
|
|
// If weak link to execinfo lib has failed, ie because we are on 10.4, abort.
|
|
if (backtrace == NULL)
|
|
return 0;
|
|
|
|
int frames_size = frames.length();
|
|
ScopedVector<void*> addresses(frames_size);
|
|
|
|
int frames_count = backtrace(addresses.start(), frames_size);
|
|
|
|
char** symbols = backtrace_symbols(addresses.start(), frames_count);
|
|
if (symbols == NULL) {
|
|
return kStackWalkError;
|
|
}
|
|
|
|
for (int i = 0; i < frames_count; i++) {
|
|
frames[i].address = addresses[i];
|
|
// Format a text representation of the frame based on the information
|
|
// available.
|
|
SNPrintF(MutableCStrVector(frames[i].text,
|
|
kStackWalkMaxTextLen),
|
|
"%s",
|
|
symbols[i]);
|
|
// Make sure line termination is in place.
|
|
frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
|
|
}
|
|
|
|
free(symbols);
|
|
|
|
return frames_count;
|
|
}
|
|
|
|
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size) {
|
|
address_ = mmap(NULL, size, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
|
|
kMmapFd, kMmapFdOffset);
|
|
size_ = size;
|
|
}
|
|
|
|
|
|
VirtualMemory::~VirtualMemory() {
|
|
if (IsReserved()) {
|
|
if (0 == munmap(address(), size())) address_ = MAP_FAILED;
|
|
}
|
|
}
|
|
|
|
|
|
bool VirtualMemory::IsReserved() {
|
|
return address_ != MAP_FAILED;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
|
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
|
if (MAP_FAILED == mmap(address, size, prot,
|
|
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
|
|
kMmapFd, kMmapFdOffset)) {
|
|
return false;
|
|
}
|
|
|
|
UpdateAllocatedSpaceLimits(address, size);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Uncommit(void* address, size_t size) {
|
|
return mmap(address, size, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
|
|
kMmapFd, kMmapFdOffset) != MAP_FAILED;
|
|
}
|
|
|
|
|
|
class ThreadHandle::PlatformData : public Malloced {
|
|
public:
|
|
explicit PlatformData(ThreadHandle::Kind kind) {
|
|
Initialize(kind);
|
|
}
|
|
|
|
void Initialize(ThreadHandle::Kind kind) {
|
|
switch (kind) {
|
|
case ThreadHandle::SELF: thread_ = pthread_self(); break;
|
|
case ThreadHandle::INVALID: thread_ = kNoThread; break;
|
|
}
|
|
}
|
|
pthread_t thread_; // Thread handle for pthread.
|
|
};
|
|
|
|
|
|
|
|
ThreadHandle::ThreadHandle(Kind kind) {
|
|
data_ = new PlatformData(kind);
|
|
}
|
|
|
|
|
|
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
|
|
data_->Initialize(kind);
|
|
}
|
|
|
|
|
|
ThreadHandle::~ThreadHandle() {
|
|
delete data_;
|
|
}
|
|
|
|
|
|
bool ThreadHandle::IsSelf() const {
|
|
return pthread_equal(data_->thread_, pthread_self());
|
|
}
|
|
|
|
|
|
bool ThreadHandle::IsValid() const {
|
|
return data_->thread_ != kNoThread;
|
|
}
|
|
|
|
|
|
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
|
|
}
|
|
|
|
|
|
Thread::~Thread() {
|
|
}
|
|
|
|
|
|
static void* ThreadEntry(void* arg) {
|
|
Thread* thread = reinterpret_cast<Thread*>(arg);
|
|
// This is also initialized by the first argument to pthread_create() but we
|
|
// don't know which thread will run first (the original thread or the new
|
|
// one) so we initialize it here too.
|
|
thread->thread_handle_data()->thread_ = pthread_self();
|
|
ASSERT(thread->IsValid());
|
|
thread->Run();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Thread::Start() {
|
|
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
|
|
}
|
|
|
|
|
|
void Thread::Join() {
|
|
pthread_join(thread_handle_data()->thread_, NULL);
|
|
}
|
|
|
|
|
|
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
|
|
pthread_key_t key;
|
|
int result = pthread_key_create(&key, NULL);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
return static_cast<LocalStorageKey>(key);
|
|
}
|
|
|
|
|
|
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
|
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
|
int result = pthread_key_delete(pthread_key);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
}
|
|
|
|
|
|
void* Thread::GetThreadLocal(LocalStorageKey key) {
|
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
|
return pthread_getspecific(pthread_key);
|
|
}
|
|
|
|
|
|
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
|
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
|
pthread_setspecific(pthread_key, value);
|
|
}
|
|
|
|
|
|
void Thread::YieldCPU() {
|
|
sched_yield();
|
|
}
|
|
|
|
|
|
class MacOSMutex : public Mutex {
|
|
public:
|
|
|
|
MacOSMutex() {
|
|
pthread_mutexattr_t attr;
|
|
pthread_mutexattr_init(&attr);
|
|
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
|
|
pthread_mutex_init(&mutex_, &attr);
|
|
}
|
|
|
|
~MacOSMutex() { pthread_mutex_destroy(&mutex_); }
|
|
|
|
int Lock() { return pthread_mutex_lock(&mutex_); }
|
|
|
|
int Unlock() { return pthread_mutex_unlock(&mutex_); }
|
|
|
|
private:
|
|
pthread_mutex_t mutex_;
|
|
};
|
|
|
|
|
|
Mutex* OS::CreateMutex() {
|
|
return new MacOSMutex();
|
|
}
|
|
|
|
|
|
class MacOSSemaphore : public Semaphore {
|
|
public:
|
|
explicit MacOSSemaphore(int count) {
|
|
semaphore_create(mach_task_self(), &semaphore_, SYNC_POLICY_FIFO, count);
|
|
}
|
|
|
|
~MacOSSemaphore() {
|
|
semaphore_destroy(mach_task_self(), semaphore_);
|
|
}
|
|
|
|
// The MacOS mach semaphore documentation claims it does not have spurious
|
|
// wakeups, the way pthreads semaphores do. So the code from the linux
|
|
// platform is not needed here.
|
|
void Wait() { semaphore_wait(semaphore_); }
|
|
|
|
bool Wait(int timeout);
|
|
|
|
void Signal() { semaphore_signal(semaphore_); }
|
|
|
|
private:
|
|
semaphore_t semaphore_;
|
|
};
|
|
|
|
|
|
bool MacOSSemaphore::Wait(int timeout) {
|
|
mach_timespec_t ts;
|
|
ts.tv_sec = timeout / 1000000;
|
|
ts.tv_nsec = (timeout % 1000000) * 1000;
|
|
return semaphore_timedwait(semaphore_, ts) != KERN_OPERATION_TIMED_OUT;
|
|
}
|
|
|
|
|
|
Semaphore* OS::CreateSemaphore(int count) {
|
|
return new MacOSSemaphore(count);
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
|
|
class Sampler::PlatformData : public Malloced {
|
|
public:
|
|
explicit PlatformData(Sampler* sampler)
|
|
: sampler_(sampler),
|
|
task_self_(mach_task_self()),
|
|
profiled_thread_(0),
|
|
sampler_thread_(0) {
|
|
}
|
|
|
|
Sampler* sampler_;
|
|
// Note: for profiled_thread_ Mach primitives are used instead of PThread's
|
|
// because the latter doesn't provide thread manipulation primitives required.
|
|
// For details, consult "Mac OS X Internals" book, Section 7.3.
|
|
mach_port_t task_self_;
|
|
thread_act_t profiled_thread_;
|
|
pthread_t sampler_thread_;
|
|
|
|
// Sampler thread handler.
|
|
void Runner() {
|
|
// Loop until the sampler is disengaged, keeping the specified
|
|
// sampling frequency.
|
|
for ( ; sampler_->IsActive(); OS::Sleep(sampler_->interval_)) {
|
|
TickSample sample_obj;
|
|
TickSample* sample = CpuProfiler::TickSampleEvent();
|
|
if (sample == NULL) sample = &sample_obj;
|
|
|
|
// If the sampler runs in sync with the JS thread, we try to
|
|
// suspend it. If we fail, we skip the current sample.
|
|
if (sampler_->IsSynchronous()) {
|
|
if (KERN_SUCCESS != thread_suspend(profiled_thread_)) continue;
|
|
}
|
|
|
|
// We always sample the VM state.
|
|
sample->state = VMState::current_state();
|
|
|
|
// If profiling, we record the pc and sp of the profiled thread.
|
|
if (sampler_->IsProfiling()) {
|
|
#if V8_HOST_ARCH_X64
|
|
thread_state_flavor_t flavor = x86_THREAD_STATE64;
|
|
x86_thread_state64_t state;
|
|
mach_msg_type_number_t count = x86_THREAD_STATE64_COUNT;
|
|
#if __DARWIN_UNIX03
|
|
#define REGISTER_FIELD(name) __r ## name
|
|
#else
|
|
#define REGISTER_FIELD(name) r ## name
|
|
#endif // __DARWIN_UNIX03
|
|
#elif V8_HOST_ARCH_IA32
|
|
thread_state_flavor_t flavor = i386_THREAD_STATE;
|
|
i386_thread_state_t state;
|
|
mach_msg_type_number_t count = i386_THREAD_STATE_COUNT;
|
|
#if __DARWIN_UNIX03
|
|
#define REGISTER_FIELD(name) __e ## name
|
|
#else
|
|
#define REGISTER_FIELD(name) e ## name
|
|
#endif // __DARWIN_UNIX03
|
|
#else
|
|
#error Unsupported Mac OS X host architecture.
|
|
#endif // V8_HOST_ARCH
|
|
|
|
if (thread_get_state(profiled_thread_,
|
|
flavor,
|
|
reinterpret_cast<natural_t*>(&state),
|
|
&count) == KERN_SUCCESS) {
|
|
sample->pc = reinterpret_cast<Address>(state.REGISTER_FIELD(ip));
|
|
sample->sp = reinterpret_cast<Address>(state.REGISTER_FIELD(sp));
|
|
sample->fp = reinterpret_cast<Address>(state.REGISTER_FIELD(bp));
|
|
sampler_->SampleStack(sample);
|
|
}
|
|
}
|
|
|
|
// Invoke tick handler with program counter and stack pointer.
|
|
sampler_->Tick(sample);
|
|
|
|
// If the sampler runs in sync with the JS thread, we have to
|
|
// remember to resume it.
|
|
if (sampler_->IsSynchronous()) thread_resume(profiled_thread_);
|
|
}
|
|
}
|
|
};
|
|
|
|
#undef REGISTER_FIELD
|
|
|
|
|
|
// Entry point for sampler thread.
|
|
static void* SamplerEntry(void* arg) {
|
|
Sampler::PlatformData* data =
|
|
reinterpret_cast<Sampler::PlatformData*>(arg);
|
|
data->Runner();
|
|
return 0;
|
|
}
|
|
|
|
|
|
Sampler::Sampler(int interval, bool profiling)
|
|
: interval_(interval),
|
|
profiling_(profiling),
|
|
synchronous_(profiling),
|
|
active_(false) {
|
|
data_ = new PlatformData(this);
|
|
}
|
|
|
|
|
|
Sampler::~Sampler() {
|
|
delete data_;
|
|
}
|
|
|
|
|
|
void Sampler::Start() {
|
|
// If we are starting a synchronous sampler, we need to be able to
|
|
// access the calling thread.
|
|
if (IsSynchronous()) {
|
|
data_->profiled_thread_ = mach_thread_self();
|
|
}
|
|
|
|
// Create sampler thread with high priority.
|
|
// According to POSIX spec, when SCHED_FIFO policy is used, a thread
|
|
// runs until it exits or blocks.
|
|
pthread_attr_t sched_attr;
|
|
sched_param fifo_param;
|
|
pthread_attr_init(&sched_attr);
|
|
pthread_attr_setinheritsched(&sched_attr, PTHREAD_EXPLICIT_SCHED);
|
|
pthread_attr_setschedpolicy(&sched_attr, SCHED_FIFO);
|
|
fifo_param.sched_priority = sched_get_priority_max(SCHED_FIFO);
|
|
pthread_attr_setschedparam(&sched_attr, &fifo_param);
|
|
|
|
active_ = true;
|
|
pthread_create(&data_->sampler_thread_, &sched_attr, SamplerEntry, data_);
|
|
}
|
|
|
|
|
|
void Sampler::Stop() {
|
|
// Seting active to false triggers termination of the sampler
|
|
// thread.
|
|
active_ = false;
|
|
|
|
// Wait for sampler thread to terminate.
|
|
pthread_join(data_->sampler_thread_, NULL);
|
|
|
|
// Deallocate Mach port for thread.
|
|
if (IsSynchronous()) {
|
|
mach_port_deallocate(data_->task_self_, data_->profiled_thread_);
|
|
}
|
|
}
|
|
|
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
|
|
|
} } // namespace v8::internal
|
|
|