mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
734 lines
26 KiB
734 lines
26 KiB
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_IA32_CODEGEN_IA32_H_
|
|
#define V8_IA32_CODEGEN_IA32_H_
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Forward declarations
|
|
class DeferredCode;
|
|
class RegisterAllocator;
|
|
class RegisterFile;
|
|
|
|
enum InitState { CONST_INIT, NOT_CONST_INIT };
|
|
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Reference support
|
|
|
|
// A reference is a C++ stack-allocated object that keeps an ECMA
|
|
// reference on the execution stack while in scope. For variables
|
|
// the reference is empty, indicating that it isn't necessary to
|
|
// store state on the stack for keeping track of references to those.
|
|
// For properties, we keep either one (named) or two (indexed) values
|
|
// on the execution stack to represent the reference.
|
|
|
|
class Reference BASE_EMBEDDED {
|
|
public:
|
|
// The values of the types is important, see size().
|
|
enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
|
|
Reference(CodeGenerator* cgen, Expression* expression);
|
|
~Reference();
|
|
|
|
Expression* expression() const { return expression_; }
|
|
Type type() const { return type_; }
|
|
void set_type(Type value) {
|
|
ASSERT(type_ == ILLEGAL);
|
|
type_ = value;
|
|
}
|
|
|
|
// The size the reference takes up on the stack.
|
|
int size() const { return (type_ == ILLEGAL) ? 0 : type_; }
|
|
|
|
bool is_illegal() const { return type_ == ILLEGAL; }
|
|
bool is_slot() const { return type_ == SLOT; }
|
|
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
|
|
|
|
// Return the name. Only valid for named property references.
|
|
Handle<String> GetName();
|
|
|
|
// Generate code to push the value of the reference on top of the
|
|
// expression stack. The reference is expected to be already on top of
|
|
// the expression stack, and it is left in place with its value above it.
|
|
void GetValue(TypeofState typeof_state);
|
|
|
|
// Like GetValue except that the slot is expected to be written to before
|
|
// being read from again. Thae value of the reference may be invalidated,
|
|
// causing subsequent attempts to read it to fail.
|
|
void TakeValue(TypeofState typeof_state);
|
|
|
|
// Generate code to store the value on top of the expression stack in the
|
|
// reference. The reference is expected to be immediately below the value
|
|
// on the expression stack. The stored value is left in place (with the
|
|
// reference intact below it) to support chained assignments.
|
|
void SetValue(InitState init_state);
|
|
|
|
private:
|
|
CodeGenerator* cgen_;
|
|
Expression* expression_;
|
|
Type type_;
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Control destinations.
|
|
|
|
// A control destination encapsulates a pair of jump targets and a
|
|
// flag indicating which one is the preferred fall-through. The
|
|
// preferred fall-through must be unbound, the other may be already
|
|
// bound (ie, a backward target).
|
|
//
|
|
// The true and false targets may be jumped to unconditionally or
|
|
// control may split conditionally. Unconditional jumping and
|
|
// splitting should be emitted in tail position (as the last thing
|
|
// when compiling an expression) because they can cause either label
|
|
// to be bound or the non-fall through to be jumped to leaving an
|
|
// invalid virtual frame.
|
|
//
|
|
// The labels in the control destination can be extracted and
|
|
// manipulated normally without affecting the state of the
|
|
// destination.
|
|
|
|
class ControlDestination BASE_EMBEDDED {
|
|
public:
|
|
ControlDestination(JumpTarget* true_target,
|
|
JumpTarget* false_target,
|
|
bool true_is_fall_through)
|
|
: true_target_(true_target),
|
|
false_target_(false_target),
|
|
true_is_fall_through_(true_is_fall_through),
|
|
is_used_(false) {
|
|
ASSERT(true_is_fall_through ? !true_target->is_bound()
|
|
: !false_target->is_bound());
|
|
}
|
|
|
|
// Accessors for the jump targets. Directly jumping or branching to
|
|
// or binding the targets will not update the destination's state.
|
|
JumpTarget* true_target() const { return true_target_; }
|
|
JumpTarget* false_target() const { return false_target_; }
|
|
|
|
// True if the the destination has been jumped to unconditionally or
|
|
// control has been split to both targets. This predicate does not
|
|
// test whether the targets have been extracted and manipulated as
|
|
// raw jump targets.
|
|
bool is_used() const { return is_used_; }
|
|
|
|
// True if the destination is used and the true target (respectively
|
|
// false target) was the fall through. If the target is backward,
|
|
// "fall through" included jumping unconditionally to it.
|
|
bool true_was_fall_through() const {
|
|
return is_used_ && true_is_fall_through_;
|
|
}
|
|
|
|
bool false_was_fall_through() const {
|
|
return is_used_ && !true_is_fall_through_;
|
|
}
|
|
|
|
// Emit a branch to one of the true or false targets, and bind the
|
|
// other target. Because this binds the fall-through target, it
|
|
// should be emitted in tail position (as the last thing when
|
|
// compiling an expression).
|
|
void Split(Condition cc) {
|
|
ASSERT(!is_used_);
|
|
if (true_is_fall_through_) {
|
|
false_target_->Branch(NegateCondition(cc));
|
|
true_target_->Bind();
|
|
} else {
|
|
true_target_->Branch(cc);
|
|
false_target_->Bind();
|
|
}
|
|
is_used_ = true;
|
|
}
|
|
|
|
// Emit an unconditional jump in tail position, to the true target
|
|
// (if the argument is true) or the false target. The "jump" will
|
|
// actually bind the jump target if it is forward, jump to it if it
|
|
// is backward.
|
|
void Goto(bool where) {
|
|
ASSERT(!is_used_);
|
|
JumpTarget* target = where ? true_target_ : false_target_;
|
|
if (target->is_bound()) {
|
|
target->Jump();
|
|
} else {
|
|
target->Bind();
|
|
}
|
|
is_used_ = true;
|
|
true_is_fall_through_ = where;
|
|
}
|
|
|
|
// Mark this jump target as used as if Goto had been called, but
|
|
// without generating a jump or binding a label (the control effect
|
|
// should have already happened). This is used when the left
|
|
// subexpression of the short-circuit boolean operators are
|
|
// compiled.
|
|
void Use(bool where) {
|
|
ASSERT(!is_used_);
|
|
ASSERT((where ? true_target_ : false_target_)->is_bound());
|
|
is_used_ = true;
|
|
true_is_fall_through_ = where;
|
|
}
|
|
|
|
// Swap the true and false targets but keep the same actual label as
|
|
// the fall through. This is used when compiling negated
|
|
// expressions, where we want to swap the targets but preserve the
|
|
// state.
|
|
void Invert() {
|
|
JumpTarget* temp_target = true_target_;
|
|
true_target_ = false_target_;
|
|
false_target_ = temp_target;
|
|
|
|
true_is_fall_through_ = !true_is_fall_through_;
|
|
}
|
|
|
|
private:
|
|
// True and false jump targets.
|
|
JumpTarget* true_target_;
|
|
JumpTarget* false_target_;
|
|
|
|
// Before using the destination: true if the true target is the
|
|
// preferred fall through, false if the false target is. After
|
|
// using the destination: true if the true target was actually used
|
|
// as the fall through, false if the false target was.
|
|
bool true_is_fall_through_;
|
|
|
|
// True if the Split or Goto functions have been called.
|
|
bool is_used_;
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Code generation state
|
|
|
|
// The state is passed down the AST by the code generator (and back up, in
|
|
// the form of the state of the jump target pair). It is threaded through
|
|
// the call stack. Constructing a state implicitly pushes it on the owning
|
|
// code generator's stack of states, and destroying one implicitly pops it.
|
|
//
|
|
// The code generator state is only used for expressions, so statements have
|
|
// the initial state.
|
|
|
|
class CodeGenState BASE_EMBEDDED {
|
|
public:
|
|
// Create an initial code generator state. Destroying the initial state
|
|
// leaves the code generator with a NULL state.
|
|
explicit CodeGenState(CodeGenerator* owner);
|
|
|
|
// Create a code generator state based on a code generator's current
|
|
// state. The new state may or may not be inside a typeof, and has its
|
|
// own control destination.
|
|
CodeGenState(CodeGenerator* owner,
|
|
TypeofState typeof_state,
|
|
ControlDestination* destination);
|
|
|
|
// Destroy a code generator state and restore the owning code generator's
|
|
// previous state.
|
|
~CodeGenState();
|
|
|
|
// Accessors for the state.
|
|
TypeofState typeof_state() const { return typeof_state_; }
|
|
ControlDestination* destination() const { return destination_; }
|
|
|
|
private:
|
|
// The owning code generator.
|
|
CodeGenerator* owner_;
|
|
|
|
// A flag indicating whether we are compiling the immediate subexpression
|
|
// of a typeof expression.
|
|
TypeofState typeof_state_;
|
|
|
|
// A control destination in case the expression has a control-flow
|
|
// effect.
|
|
ControlDestination* destination_;
|
|
|
|
// The previous state of the owning code generator, restored when
|
|
// this state is destroyed.
|
|
CodeGenState* previous_;
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Arguments allocation mode
|
|
|
|
enum ArgumentsAllocationMode {
|
|
NO_ARGUMENTS_ALLOCATION,
|
|
EAGER_ARGUMENTS_ALLOCATION,
|
|
LAZY_ARGUMENTS_ALLOCATION
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// CodeGenerator
|
|
|
|
class CodeGenerator: public AstVisitor {
|
|
public:
|
|
// Takes a function literal, generates code for it. This function should only
|
|
// be called by compiler.cc.
|
|
static Handle<Code> MakeCode(FunctionLiteral* fun,
|
|
Handle<Script> script,
|
|
bool is_eval);
|
|
|
|
// Printing of AST, etc. as requested by flags.
|
|
static void MakeCodePrologue(FunctionLiteral* fun);
|
|
|
|
// Allocate and install the code.
|
|
static Handle<Code> MakeCodeEpilogue(FunctionLiteral* fun,
|
|
MacroAssembler* masm,
|
|
Code::Flags flags,
|
|
Handle<Script> script);
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
static bool ShouldGenerateLog(Expression* type);
|
|
#endif
|
|
|
|
static void SetFunctionInfo(Handle<JSFunction> fun,
|
|
FunctionLiteral* lit,
|
|
bool is_toplevel,
|
|
Handle<Script> script);
|
|
|
|
static void RecordPositions(MacroAssembler* masm, int pos);
|
|
|
|
// Accessors
|
|
MacroAssembler* masm() { return masm_; }
|
|
|
|
VirtualFrame* frame() const { return frame_; }
|
|
|
|
bool has_valid_frame() const { return frame_ != NULL; }
|
|
|
|
// Set the virtual frame to be new_frame, with non-frame register
|
|
// reference counts given by non_frame_registers. The non-frame
|
|
// register reference counts of the old frame are returned in
|
|
// non_frame_registers.
|
|
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
|
|
|
|
void DeleteFrame();
|
|
|
|
RegisterAllocator* allocator() const { return allocator_; }
|
|
|
|
CodeGenState* state() { return state_; }
|
|
void set_state(CodeGenState* state) { state_ = state; }
|
|
|
|
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
|
|
|
|
bool in_spilled_code() const { return in_spilled_code_; }
|
|
void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
|
|
|
|
private:
|
|
// Construction/Destruction
|
|
CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
|
|
virtual ~CodeGenerator() { delete masm_; }
|
|
|
|
// Accessors
|
|
Scope* scope() const { return scope_; }
|
|
bool is_eval() { return is_eval_; }
|
|
|
|
// Generating deferred code.
|
|
void ProcessDeferred();
|
|
|
|
// State
|
|
TypeofState typeof_state() const { return state_->typeof_state(); }
|
|
ControlDestination* destination() const { return state_->destination(); }
|
|
|
|
// Track loop nesting level.
|
|
int loop_nesting() const { return loop_nesting_; }
|
|
void IncrementLoopNesting() { loop_nesting_++; }
|
|
void DecrementLoopNesting() { loop_nesting_--; }
|
|
|
|
// Node visitors.
|
|
void VisitStatements(ZoneList<Statement*>* statements);
|
|
|
|
#define DEF_VISIT(type) \
|
|
void Visit##type(type* node);
|
|
AST_NODE_LIST(DEF_VISIT)
|
|
#undef DEF_VISIT
|
|
|
|
// Visit a statement and then spill the virtual frame if control flow can
|
|
// reach the end of the statement (ie, it does not exit via break,
|
|
// continue, return, or throw). This function is used temporarily while
|
|
// the code generator is being transformed.
|
|
void VisitAndSpill(Statement* statement);
|
|
|
|
// Visit a list of statements and then spill the virtual frame if control
|
|
// flow can reach the end of the list.
|
|
void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
|
|
|
|
// Main code generation function
|
|
void GenCode(FunctionLiteral* fun);
|
|
|
|
// Generate the return sequence code. Should be called no more than
|
|
// once per compiled function, immediately after binding the return
|
|
// target (which can not be done more than once).
|
|
void GenerateReturnSequence(Result* return_value);
|
|
|
|
// Returns the arguments allocation mode.
|
|
ArgumentsAllocationMode ArgumentsMode() const;
|
|
|
|
// Store the arguments object and allocate it if necessary.
|
|
Result StoreArgumentsObject(bool initial);
|
|
|
|
// The following are used by class Reference.
|
|
void LoadReference(Reference* ref);
|
|
void UnloadReference(Reference* ref);
|
|
|
|
static Operand ContextOperand(Register context, int index) {
|
|
return Operand(context, Context::SlotOffset(index));
|
|
}
|
|
|
|
Operand SlotOperand(Slot* slot, Register tmp);
|
|
|
|
Operand ContextSlotOperandCheckExtensions(Slot* slot,
|
|
Result tmp,
|
|
JumpTarget* slow);
|
|
|
|
// Expressions
|
|
static Operand GlobalObject() {
|
|
return ContextOperand(esi, Context::GLOBAL_INDEX);
|
|
}
|
|
|
|
void LoadCondition(Expression* x,
|
|
TypeofState typeof_state,
|
|
ControlDestination* destination,
|
|
bool force_control);
|
|
void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
|
|
void LoadGlobal();
|
|
void LoadGlobalReceiver();
|
|
|
|
// Generate code to push the value of an expression on top of the frame
|
|
// and then spill the frame fully to memory. This function is used
|
|
// temporarily while the code generator is being transformed.
|
|
void LoadAndSpill(Expression* expression,
|
|
TypeofState typeof_state = NOT_INSIDE_TYPEOF);
|
|
|
|
// Read a value from a slot and leave it on top of the expression stack.
|
|
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
|
|
void LoadFromSlotCheckForArguments(Slot* slot, TypeofState typeof_state);
|
|
Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
|
|
TypeofState typeof_state,
|
|
JumpTarget* slow);
|
|
|
|
// Store the value on top of the expression stack into a slot, leaving the
|
|
// value in place.
|
|
void StoreToSlot(Slot* slot, InitState init_state);
|
|
|
|
// Special code for typeof expressions: Unfortunately, we must
|
|
// be careful when loading the expression in 'typeof'
|
|
// expressions. We are not allowed to throw reference errors for
|
|
// non-existing properties of the global object, so we must make it
|
|
// look like an explicit property access, instead of an access
|
|
// through the context chain.
|
|
void LoadTypeofExpression(Expression* x);
|
|
|
|
// Translate the value on top of the frame into control flow to the
|
|
// control destination.
|
|
void ToBoolean(ControlDestination* destination);
|
|
|
|
void GenericBinaryOperation(
|
|
Token::Value op,
|
|
SmiAnalysis* type,
|
|
OverwriteMode overwrite_mode);
|
|
|
|
// If possible, combine two constant smi values using op to produce
|
|
// a smi result, and push it on the virtual frame, all at compile time.
|
|
// Returns true if it succeeds. Otherwise it has no effect.
|
|
bool FoldConstantSmis(Token::Value op, int left, int right);
|
|
|
|
// Emit code to perform a binary operation on a constant
|
|
// smi and a likely smi. Consumes the Result *operand.
|
|
void ConstantSmiBinaryOperation(Token::Value op,
|
|
Result* operand,
|
|
Handle<Object> constant_operand,
|
|
SmiAnalysis* type,
|
|
bool reversed,
|
|
OverwriteMode overwrite_mode);
|
|
|
|
// Emit code to perform a binary operation on two likely smis.
|
|
// The code to handle smi arguments is produced inline.
|
|
// Consumes the Results *left and *right.
|
|
void LikelySmiBinaryOperation(Token::Value op,
|
|
Result* left,
|
|
Result* right,
|
|
OverwriteMode overwrite_mode);
|
|
|
|
void Comparison(Condition cc,
|
|
bool strict,
|
|
ControlDestination* destination);
|
|
|
|
// To prevent long attacker-controlled byte sequences, integer constants
|
|
// from the JavaScript source are loaded in two parts if they are larger
|
|
// than 16 bits.
|
|
static const int kMaxSmiInlinedBits = 16;
|
|
bool IsUnsafeSmi(Handle<Object> value);
|
|
// Load an integer constant x into a register target using
|
|
// at most 16 bits of user-controlled data per assembly operation.
|
|
void LoadUnsafeSmi(Register target, Handle<Object> value);
|
|
|
|
void CallWithArguments(ZoneList<Expression*>* arguments, int position);
|
|
|
|
// Use an optimized version of Function.prototype.apply that avoid
|
|
// allocating the arguments object and just copies the arguments
|
|
// from the stack.
|
|
void CallApplyLazy(Property* apply,
|
|
Expression* receiver,
|
|
VariableProxy* arguments,
|
|
int position);
|
|
|
|
void CheckStack();
|
|
|
|
struct InlineRuntimeLUT {
|
|
void (CodeGenerator::*method)(ZoneList<Expression*>*);
|
|
const char* name;
|
|
};
|
|
|
|
static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
|
|
bool CheckForInlineRuntimeCall(CallRuntime* node);
|
|
static bool PatchInlineRuntimeEntry(Handle<String> name,
|
|
const InlineRuntimeLUT& new_entry,
|
|
InlineRuntimeLUT* old_entry);
|
|
|
|
static Handle<Code> ComputeLazyCompile(int argc);
|
|
Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
|
|
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
|
|
|
|
static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
|
|
|
|
// Declare global variables and functions in the given array of
|
|
// name/value pairs.
|
|
void DeclareGlobals(Handle<FixedArray> pairs);
|
|
|
|
// Instantiate the function boilerplate.
|
|
void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
|
|
|
|
// Support for type checks.
|
|
void GenerateIsSmi(ZoneList<Expression*>* args);
|
|
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
|
|
void GenerateIsArray(ZoneList<Expression*>* args);
|
|
|
|
// Support for construct call checks.
|
|
void GenerateIsConstructCall(ZoneList<Expression*>* args);
|
|
|
|
// Support for arguments.length and arguments[?].
|
|
void GenerateArgumentsLength(ZoneList<Expression*>* args);
|
|
void GenerateArgumentsAccess(ZoneList<Expression*>* args);
|
|
|
|
// Support for accessing the class and value fields of an object.
|
|
void GenerateClassOf(ZoneList<Expression*>* args);
|
|
void GenerateValueOf(ZoneList<Expression*>* args);
|
|
void GenerateSetValueOf(ZoneList<Expression*>* args);
|
|
|
|
// Fast support for charCodeAt(n).
|
|
void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
|
|
|
|
// Fast support for object equality testing.
|
|
void GenerateObjectEquals(ZoneList<Expression*>* args);
|
|
|
|
void GenerateLog(ZoneList<Expression*>* args);
|
|
|
|
void GenerateGetFramePointer(ZoneList<Expression*>* args);
|
|
|
|
// Fast support for Math.random().
|
|
void GenerateRandomPositiveSmi(ZoneList<Expression*>* args);
|
|
|
|
// Fast support for Math.sin and Math.cos.
|
|
enum MathOp { SIN, COS };
|
|
void GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args);
|
|
inline void GenerateMathSin(ZoneList<Expression*>* args);
|
|
inline void GenerateMathCos(ZoneList<Expression*>* args);
|
|
|
|
// Simple condition analysis.
|
|
enum ConditionAnalysis {
|
|
ALWAYS_TRUE,
|
|
ALWAYS_FALSE,
|
|
DONT_KNOW
|
|
};
|
|
ConditionAnalysis AnalyzeCondition(Expression* cond);
|
|
|
|
// Methods used to indicate which source code is generated for. Source
|
|
// positions are collected by the assembler and emitted with the relocation
|
|
// information.
|
|
void CodeForFunctionPosition(FunctionLiteral* fun);
|
|
void CodeForReturnPosition(FunctionLiteral* fun);
|
|
void CodeForStatementPosition(Statement* stmt);
|
|
void CodeForSourcePosition(int pos);
|
|
|
|
#ifdef DEBUG
|
|
// True if the registers are valid for entry to a block. There should
|
|
// be no frame-external references to (non-reserved) registers.
|
|
bool HasValidEntryRegisters();
|
|
#endif
|
|
|
|
bool is_eval_; // Tells whether code is generated for eval.
|
|
Handle<Script> script_;
|
|
ZoneList<DeferredCode*> deferred_;
|
|
|
|
// Assembler
|
|
MacroAssembler* masm_; // to generate code
|
|
|
|
// Code generation state
|
|
Scope* scope_;
|
|
VirtualFrame* frame_;
|
|
RegisterAllocator* allocator_;
|
|
CodeGenState* state_;
|
|
int loop_nesting_;
|
|
|
|
// Jump targets.
|
|
// The target of the return from the function.
|
|
BreakTarget function_return_;
|
|
|
|
// True if the function return is shadowed (ie, jumping to the target
|
|
// function_return_ does not jump to the true function return, but rather
|
|
// to some unlinking code).
|
|
bool function_return_is_shadowed_;
|
|
|
|
// True when we are in code that expects the virtual frame to be fully
|
|
// spilled. Some virtual frame function are disabled in DEBUG builds when
|
|
// called from spilled code, because they do not leave the virtual frame
|
|
// in a spilled state.
|
|
bool in_spilled_code_;
|
|
|
|
static InlineRuntimeLUT kInlineRuntimeLUT[];
|
|
|
|
friend class VirtualFrame;
|
|
friend class JumpTarget;
|
|
friend class Reference;
|
|
friend class Result;
|
|
friend class FastCodeGenerator;
|
|
friend class CodeGenSelector;
|
|
|
|
friend class CodeGeneratorPatcher; // Used in test-log-stack-tracer.cc
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
|
|
};
|
|
|
|
|
|
class ToBooleanStub: public CodeStub {
|
|
public:
|
|
ToBooleanStub() { }
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
private:
|
|
Major MajorKey() { return ToBoolean; }
|
|
int MinorKey() { return 0; }
|
|
};
|
|
|
|
|
|
// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
|
|
enum GenericBinaryFlags {
|
|
NO_GENERIC_BINARY_FLAGS = 0,
|
|
NO_SMI_CODE_IN_STUB = 1 << 0 // Omit smi code in stub.
|
|
};
|
|
|
|
|
|
class GenericBinaryOpStub: public CodeStub {
|
|
public:
|
|
GenericBinaryOpStub(Token::Value op,
|
|
OverwriteMode mode,
|
|
GenericBinaryFlags flags)
|
|
: op_(op),
|
|
mode_(mode),
|
|
flags_(flags),
|
|
args_in_registers_(false),
|
|
args_reversed_(false) {
|
|
use_sse3_ = CpuFeatures::IsSupported(CpuFeatures::SSE3);
|
|
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
|
|
}
|
|
|
|
// Generate code to call the stub with the supplied arguments. This will add
|
|
// code at the call site to prepare arguments either in registers or on the
|
|
// stack together with the actual call.
|
|
void GenerateCall(MacroAssembler* masm, Register left, Register right);
|
|
void GenerateCall(MacroAssembler* masm, Register left, Smi* right);
|
|
void GenerateCall(MacroAssembler* masm, Smi* left, Register right);
|
|
|
|
private:
|
|
Token::Value op_;
|
|
OverwriteMode mode_;
|
|
GenericBinaryFlags flags_;
|
|
bool args_in_registers_; // Arguments passed in registers not on the stack.
|
|
bool args_reversed_; // Left and right argument are swapped.
|
|
bool use_sse3_;
|
|
|
|
const char* GetName();
|
|
|
|
#ifdef DEBUG
|
|
void Print() {
|
|
PrintF("GenericBinaryOpStub (op %s), "
|
|
"(mode %d, flags %d, registers %d, reversed %d)\n",
|
|
Token::String(op_),
|
|
static_cast<int>(mode_),
|
|
static_cast<int>(flags_),
|
|
static_cast<int>(args_in_registers_),
|
|
static_cast<int>(args_reversed_));
|
|
}
|
|
#endif
|
|
|
|
// Minor key encoding in 16 bits FRASOOOOOOOOOOMM.
|
|
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
|
class OpBits: public BitField<Token::Value, 2, 10> {};
|
|
class SSE3Bits: public BitField<bool, 12, 1> {};
|
|
class ArgsInRegistersBits: public BitField<bool, 13, 1> {};
|
|
class ArgsReversedBits: public BitField<bool, 14, 1> {};
|
|
class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
|
|
|
|
Major MajorKey() { return GenericBinaryOp; }
|
|
int MinorKey() {
|
|
// Encode the parameters in a unique 16 bit value.
|
|
return OpBits::encode(op_)
|
|
| ModeBits::encode(mode_)
|
|
| FlagBits::encode(flags_)
|
|
| SSE3Bits::encode(use_sse3_)
|
|
| ArgsInRegistersBits::encode(args_in_registers_)
|
|
| ArgsReversedBits::encode(args_reversed_);
|
|
}
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
void GenerateSmiCode(MacroAssembler* masm, Label* slow);
|
|
void GenerateLoadArguments(MacroAssembler* masm);
|
|
void GenerateReturn(MacroAssembler* masm);
|
|
|
|
bool ArgsInRegistersSupported() {
|
|
return ((op_ == Token::ADD) || (op_ == Token::SUB)
|
|
|| (op_ == Token::MUL) || (op_ == Token::DIV))
|
|
&& flags_ != NO_SMI_CODE_IN_STUB;
|
|
}
|
|
bool IsOperationCommutative() {
|
|
return (op_ == Token::ADD) || (op_ == Token::MUL);
|
|
}
|
|
|
|
void SetArgsInRegisters() { args_in_registers_ = true; }
|
|
void SetArgsReversed() { args_reversed_ = true; }
|
|
bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; }
|
|
bool HasArgumentsInRegisters() { return args_in_registers_; }
|
|
bool HasArgumentsReversed() { return args_reversed_; }
|
|
};
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_IA32_CODEGEN_IA32_H_
|
|
|