mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2660 lines
80 KiB
2660 lines
80 KiB
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#if defined(V8_TARGET_ARCH_X64)
|
|
|
|
#include "bootstrapper.h"
|
|
#include "codegen-inl.h"
|
|
#include "assembler-x64.h"
|
|
#include "macro-assembler-x64.h"
|
|
#include "serialize.h"
|
|
#include "debug.h"
|
|
#include "heap.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
MacroAssembler::MacroAssembler(void* buffer, int size)
|
|
: Assembler(buffer, size),
|
|
generating_stub_(false),
|
|
allow_stub_calls_(true),
|
|
code_object_(Heap::undefined_value()) {
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
|
|
movq(destination, Operand(kRootRegister, index << kPointerSizeLog2));
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
|
|
movq(Operand(kRootRegister, index << kPointerSizeLog2), source);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
|
|
push(Operand(kRootRegister, index << kPointerSizeLog2));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
|
|
cmpq(with, Operand(kRootRegister, index << kPointerSizeLog2));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(const Operand& with,
|
|
Heap::RootListIndex index) {
|
|
ASSERT(!with.AddressUsesRegister(kScratchRegister));
|
|
LoadRoot(kScratchRegister, index);
|
|
cmpq(with, kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteHelper(Register object,
|
|
Register addr,
|
|
Register scratch) {
|
|
if (FLAG_debug_code) {
|
|
// Check that the object is not in new space.
|
|
NearLabel not_in_new_space;
|
|
InNewSpace(object, scratch, not_equal, ¬_in_new_space);
|
|
Abort("new-space object passed to RecordWriteHelper");
|
|
bind(¬_in_new_space);
|
|
}
|
|
|
|
// Compute the page start address from the heap object pointer, and reuse
|
|
// the 'object' register for it.
|
|
and_(object, Immediate(~Page::kPageAlignmentMask));
|
|
|
|
// Compute number of region covering addr. See Page::GetRegionNumberForAddress
|
|
// method for more details.
|
|
shrl(addr, Immediate(Page::kRegionSizeLog2));
|
|
andl(addr, Immediate(Page::kPageAlignmentMask >> Page::kRegionSizeLog2));
|
|
|
|
// Set dirty mark for region.
|
|
bts(Operand(object, Page::kDirtyFlagOffset), addr);
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWrite(Register object,
|
|
int offset,
|
|
Register value,
|
|
Register index) {
|
|
// The compiled code assumes that record write doesn't change the
|
|
// context register, so we check that none of the clobbered
|
|
// registers are rsi.
|
|
ASSERT(!object.is(rsi) && !value.is(rsi) && !index.is(rsi));
|
|
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis and stores into young gen.
|
|
Label done;
|
|
JumpIfSmi(value, &done);
|
|
|
|
RecordWriteNonSmi(object, offset, value, index);
|
|
bind(&done);
|
|
|
|
// Clobber all input registers when running with the debug-code flag
|
|
// turned on to provoke errors. This clobbering repeats the
|
|
// clobbering done inside RecordWriteNonSmi but it's necessary to
|
|
// avoid having the fast case for smis leave the registers
|
|
// unchanged.
|
|
if (FLAG_debug_code) {
|
|
movq(object, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWrite(Register object,
|
|
Register address,
|
|
Register value) {
|
|
// The compiled code assumes that record write doesn't change the
|
|
// context register, so we check that none of the clobbered
|
|
// registers are rsi.
|
|
ASSERT(!object.is(rsi) && !value.is(rsi) && !address.is(rsi));
|
|
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis and stores into young gen.
|
|
Label done;
|
|
JumpIfSmi(value, &done);
|
|
|
|
InNewSpace(object, value, equal, &done);
|
|
|
|
RecordWriteHelper(object, address, value);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber all input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (FLAG_debug_code) {
|
|
movq(object, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
movq(address, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteNonSmi(Register object,
|
|
int offset,
|
|
Register scratch,
|
|
Register index) {
|
|
Label done;
|
|
|
|
if (FLAG_debug_code) {
|
|
NearLabel okay;
|
|
JumpIfNotSmi(object, &okay);
|
|
Abort("MacroAssembler::RecordWriteNonSmi cannot deal with smis");
|
|
bind(&okay);
|
|
|
|
if (offset == 0) {
|
|
// index must be int32.
|
|
Register tmp = index.is(rax) ? rbx : rax;
|
|
push(tmp);
|
|
movl(tmp, index);
|
|
cmpq(tmp, index);
|
|
Check(equal, "Index register for RecordWrite must be untagged int32.");
|
|
pop(tmp);
|
|
}
|
|
}
|
|
|
|
// Test that the object address is not in the new space. We cannot
|
|
// update page dirty marks for new space pages.
|
|
InNewSpace(object, scratch, equal, &done);
|
|
|
|
// The offset is relative to a tagged or untagged HeapObject pointer,
|
|
// so either offset or offset + kHeapObjectTag must be a
|
|
// multiple of kPointerSize.
|
|
ASSERT(IsAligned(offset, kPointerSize) ||
|
|
IsAligned(offset + kHeapObjectTag, kPointerSize));
|
|
|
|
Register dst = index;
|
|
if (offset != 0) {
|
|
lea(dst, Operand(object, offset));
|
|
} else {
|
|
// array access: calculate the destination address in the same manner as
|
|
// KeyedStoreIC::GenerateGeneric.
|
|
lea(dst, FieldOperand(object,
|
|
index,
|
|
times_pointer_size,
|
|
FixedArray::kHeaderSize));
|
|
}
|
|
RecordWriteHelper(object, dst, scratch);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber all input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (FLAG_debug_code) {
|
|
movq(object, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
movq(scratch, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::Assert(Condition cc, const char* msg) {
|
|
if (FLAG_debug_code) Check(cc, msg);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertFastElements(Register elements) {
|
|
if (FLAG_debug_code) {
|
|
NearLabel ok;
|
|
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Heap::kFixedArrayMapRootIndex);
|
|
j(equal, &ok);
|
|
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Heap::kFixedCOWArrayMapRootIndex);
|
|
j(equal, &ok);
|
|
Abort("JSObject with fast elements map has slow elements");
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Check(Condition cc, const char* msg) {
|
|
NearLabel L;
|
|
j(cc, &L);
|
|
Abort(msg);
|
|
// will not return here
|
|
bind(&L);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckStackAlignment() {
|
|
int frame_alignment = OS::ActivationFrameAlignment();
|
|
int frame_alignment_mask = frame_alignment - 1;
|
|
if (frame_alignment > kPointerSize) {
|
|
ASSERT(IsPowerOf2(frame_alignment));
|
|
NearLabel alignment_as_expected;
|
|
testq(rsp, Immediate(frame_alignment_mask));
|
|
j(zero, &alignment_as_expected);
|
|
// Abort if stack is not aligned.
|
|
int3();
|
|
bind(&alignment_as_expected);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::NegativeZeroTest(Register result,
|
|
Register op,
|
|
Label* then_label) {
|
|
NearLabel ok;
|
|
testl(result, result);
|
|
j(not_zero, &ok);
|
|
testl(op, op);
|
|
j(sign, then_label);
|
|
bind(&ok);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Abort(const char* msg) {
|
|
// We want to pass the msg string like a smi to avoid GC
|
|
// problems, however msg is not guaranteed to be aligned
|
|
// properly. Instead, we pass an aligned pointer that is
|
|
// a proper v8 smi, but also pass the alignment difference
|
|
// from the real pointer as a smi.
|
|
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
|
|
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
|
|
// Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag.
|
|
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
|
|
#ifdef DEBUG
|
|
if (msg != NULL) {
|
|
RecordComment("Abort message: ");
|
|
RecordComment(msg);
|
|
}
|
|
#endif
|
|
// Disable stub call restrictions to always allow calls to abort.
|
|
AllowStubCallsScope allow_scope(this, true);
|
|
|
|
push(rax);
|
|
movq(kScratchRegister, p0, RelocInfo::NONE);
|
|
push(kScratchRegister);
|
|
movq(kScratchRegister,
|
|
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))),
|
|
RelocInfo::NONE);
|
|
push(kScratchRegister);
|
|
CallRuntime(Runtime::kAbort, 2);
|
|
// will not return here
|
|
int3();
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallStub(CodeStub* stub) {
|
|
ASSERT(allow_stub_calls()); // calls are not allowed in some stubs
|
|
Call(stub->GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub) {
|
|
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
|
|
MaybeObject* result = stub->TryGetCode();
|
|
if (!result->IsFailure()) {
|
|
call(Handle<Code>(Code::cast(result->ToObjectUnchecked())),
|
|
RelocInfo::CODE_TARGET);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallStub(CodeStub* stub) {
|
|
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
|
|
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub) {
|
|
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
|
|
MaybeObject* result = stub->TryGetCode();
|
|
if (!result->IsFailure()) {
|
|
jmp(Handle<Code>(Code::cast(result->ToObjectUnchecked())),
|
|
RelocInfo::CODE_TARGET);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void MacroAssembler::StubReturn(int argc) {
|
|
ASSERT(argc >= 1 && generating_stub());
|
|
ret((argc - 1) * kPointerSize);
|
|
}
|
|
|
|
|
|
void MacroAssembler::IllegalOperation(int num_arguments) {
|
|
if (num_arguments > 0) {
|
|
addq(rsp, Immediate(num_arguments * kPointerSize));
|
|
}
|
|
LoadRoot(rax, Heap::kUndefinedValueRootIndex);
|
|
}
|
|
|
|
|
|
void MacroAssembler::IndexFromHash(Register hash, Register index) {
|
|
// The assert checks that the constants for the maximum number of digits
|
|
// for an array index cached in the hash field and the number of bits
|
|
// reserved for it does not conflict.
|
|
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
|
|
(1 << String::kArrayIndexValueBits));
|
|
// We want the smi-tagged index in key. Even if we subsequently go to
|
|
// the slow case, converting the key to a smi is always valid.
|
|
// key: string key
|
|
// hash: key's hash field, including its array index value.
|
|
and_(hash, Immediate(String::kArrayIndexValueMask));
|
|
shr(hash, Immediate(String::kHashShift));
|
|
// Here we actually clobber the key which will be used if calling into
|
|
// runtime later. However as the new key is the numeric value of a string key
|
|
// there is no difference in using either key.
|
|
Integer32ToSmi(index, hash);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
|
|
CallRuntime(Runtime::FunctionForId(id), num_arguments);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
|
|
Runtime::Function* function = Runtime::FunctionForId(id);
|
|
Set(rax, function->nargs);
|
|
movq(rbx, ExternalReference(function));
|
|
CEntryStub ces(1);
|
|
ces.SaveDoubles();
|
|
CallStub(&ces);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryCallRuntime(Runtime::FunctionId id,
|
|
int num_arguments) {
|
|
return TryCallRuntime(Runtime::FunctionForId(id), num_arguments);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
|
|
// If the expected number of arguments of the runtime function is
|
|
// constant, we check that the actual number of arguments match the
|
|
// expectation.
|
|
if (f->nargs >= 0 && f->nargs != num_arguments) {
|
|
IllegalOperation(num_arguments);
|
|
return;
|
|
}
|
|
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Set(rax, num_arguments);
|
|
movq(rbx, ExternalReference(f));
|
|
CEntryStub ces(f->result_size);
|
|
CallStub(&ces);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryCallRuntime(Runtime::Function* f,
|
|
int num_arguments) {
|
|
if (f->nargs >= 0 && f->nargs != num_arguments) {
|
|
IllegalOperation(num_arguments);
|
|
// Since we did not call the stub, there was no allocation failure.
|
|
// Return some non-failure object.
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Set(rax, num_arguments);
|
|
movq(rbx, ExternalReference(f));
|
|
CEntryStub ces(f->result_size);
|
|
return TryCallStub(&ces);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
|
|
int num_arguments) {
|
|
Set(rax, num_arguments);
|
|
movq(rbx, ext);
|
|
|
|
CEntryStub stub(1);
|
|
CallStub(&stub);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
|
|
int num_arguments,
|
|
int result_size) {
|
|
// ----------- S t a t e -------------
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : argument num_arguments - 1
|
|
// ...
|
|
// -- rsp[8 * num_arguments] : argument 0 (receiver)
|
|
// -----------------------------------
|
|
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Set(rax, num_arguments);
|
|
JumpToExternalReference(ext, result_size);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryTailCallExternalReference(
|
|
const ExternalReference& ext, int num_arguments, int result_size) {
|
|
// ----------- S t a t e -------------
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : argument num_arguments - 1
|
|
// ...
|
|
// -- rsp[8 * num_arguments] : argument 0 (receiver)
|
|
// -----------------------------------
|
|
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Set(rax, num_arguments);
|
|
return TryJumpToExternalReference(ext, result_size);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
|
|
int num_arguments,
|
|
int result_size) {
|
|
TailCallExternalReference(ExternalReference(fid), num_arguments, result_size);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryTailCallRuntime(Runtime::FunctionId fid,
|
|
int num_arguments,
|
|
int result_size) {
|
|
return TryTailCallExternalReference(ExternalReference(fid),
|
|
num_arguments,
|
|
result_size);
|
|
}
|
|
|
|
|
|
static int Offset(ExternalReference ref0, ExternalReference ref1) {
|
|
int64_t offset = (ref0.address() - ref1.address());
|
|
// Check that fits into int.
|
|
ASSERT(static_cast<int>(offset) == offset);
|
|
return static_cast<int>(offset);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) {
|
|
#ifdef _WIN64
|
|
// We need to prepare a slot for result handle on stack and put
|
|
// a pointer to it into 1st arg register.
|
|
EnterApiExitFrame(arg_stack_space + 1);
|
|
|
|
// rcx must be used to pass the pointer to the return value slot.
|
|
lea(rcx, StackSpaceOperand(arg_stack_space));
|
|
#else
|
|
EnterApiExitFrame(arg_stack_space);
|
|
#endif
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(
|
|
ApiFunction* function, int stack_space) {
|
|
Label empty_result;
|
|
Label prologue;
|
|
Label promote_scheduled_exception;
|
|
Label delete_allocated_handles;
|
|
Label leave_exit_frame;
|
|
Label write_back;
|
|
|
|
ExternalReference next_address =
|
|
ExternalReference::handle_scope_next_address();
|
|
const int kNextOffset = 0;
|
|
const int kLimitOffset = Offset(
|
|
ExternalReference::handle_scope_limit_address(),
|
|
next_address);
|
|
const int kLevelOffset = Offset(
|
|
ExternalReference::handle_scope_level_address(),
|
|
next_address);
|
|
ExternalReference scheduled_exception_address =
|
|
ExternalReference::scheduled_exception_address();
|
|
|
|
// Allocate HandleScope in callee-save registers.
|
|
Register prev_next_address_reg = r14;
|
|
Register prev_limit_reg = rbx;
|
|
Register base_reg = r12;
|
|
movq(base_reg, next_address);
|
|
movq(prev_next_address_reg, Operand(base_reg, kNextOffset));
|
|
movq(prev_limit_reg, Operand(base_reg, kLimitOffset));
|
|
addl(Operand(base_reg, kLevelOffset), Immediate(1));
|
|
// Call the api function!
|
|
movq(rax,
|
|
reinterpret_cast<int64_t>(function->address()),
|
|
RelocInfo::RUNTIME_ENTRY);
|
|
call(rax);
|
|
|
|
#ifdef _WIN64
|
|
// rax keeps a pointer to v8::Handle, unpack it.
|
|
movq(rax, Operand(rax, 0));
|
|
#endif
|
|
// Check if the result handle holds 0.
|
|
testq(rax, rax);
|
|
j(zero, &empty_result);
|
|
// It was non-zero. Dereference to get the result value.
|
|
movq(rax, Operand(rax, 0));
|
|
bind(&prologue);
|
|
|
|
// No more valid handles (the result handle was the last one). Restore
|
|
// previous handle scope.
|
|
subl(Operand(base_reg, kLevelOffset), Immediate(1));
|
|
movq(Operand(base_reg, kNextOffset), prev_next_address_reg);
|
|
cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset));
|
|
j(not_equal, &delete_allocated_handles);
|
|
bind(&leave_exit_frame);
|
|
|
|
// Check if the function scheduled an exception.
|
|
movq(rsi, scheduled_exception_address);
|
|
Cmp(Operand(rsi, 0), Factory::the_hole_value());
|
|
j(not_equal, &promote_scheduled_exception);
|
|
|
|
LeaveApiExitFrame();
|
|
ret(stack_space * kPointerSize);
|
|
|
|
bind(&promote_scheduled_exception);
|
|
MaybeObject* result = TryTailCallRuntime(Runtime::kPromoteScheduledException,
|
|
0, 1);
|
|
if (result->IsFailure()) {
|
|
return result;
|
|
}
|
|
|
|
bind(&empty_result);
|
|
// It was zero; the result is undefined.
|
|
Move(rax, Factory::undefined_value());
|
|
jmp(&prologue);
|
|
|
|
// HandleScope limit has changed. Delete allocated extensions.
|
|
bind(&delete_allocated_handles);
|
|
movq(Operand(base_reg, kLimitOffset), prev_limit_reg);
|
|
movq(prev_limit_reg, rax);
|
|
movq(rax, ExternalReference::delete_handle_scope_extensions());
|
|
call(rax);
|
|
movq(rax, prev_limit_reg);
|
|
jmp(&leave_exit_frame);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
|
|
int result_size) {
|
|
// Set the entry point and jump to the C entry runtime stub.
|
|
movq(rbx, ext);
|
|
CEntryStub ces(result_size);
|
|
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
MaybeObject* MacroAssembler::TryJumpToExternalReference(
|
|
const ExternalReference& ext, int result_size) {
|
|
// Set the entry point and jump to the C entry runtime stub.
|
|
movq(rbx, ext);
|
|
CEntryStub ces(result_size);
|
|
return TryTailCallStub(&ces);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
|
|
InvokeFlag flag,
|
|
PostCallGenerator* post_call_generator) {
|
|
// Calls are not allowed in some stubs.
|
|
ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());
|
|
|
|
// Rely on the assertion to check that the number of provided
|
|
// arguments match the expected number of arguments. Fake a
|
|
// parameter count to avoid emitting code to do the check.
|
|
ParameterCount expected(0);
|
|
GetBuiltinEntry(rdx, id);
|
|
InvokeCode(rdx, expected, expected, flag, post_call_generator);
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetBuiltinFunction(Register target,
|
|
Builtins::JavaScript id) {
|
|
// Load the builtins object into target register.
|
|
movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
|
|
movq(target, FieldOperand(target,
|
|
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
|
|
ASSERT(!target.is(rdi));
|
|
// Load the JavaScript builtin function from the builtins object.
|
|
GetBuiltinFunction(rdi, id);
|
|
movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Set(Register dst, int64_t x) {
|
|
if (x == 0) {
|
|
xorl(dst, dst);
|
|
} else if (is_int32(x)) {
|
|
movq(dst, Immediate(static_cast<int32_t>(x)));
|
|
} else if (is_uint32(x)) {
|
|
movl(dst, Immediate(static_cast<uint32_t>(x)));
|
|
} else {
|
|
movq(dst, x, RelocInfo::NONE);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::Set(const Operand& dst, int64_t x) {
|
|
if (is_int32(x)) {
|
|
movq(dst, Immediate(static_cast<int32_t>(x)));
|
|
} else {
|
|
movq(kScratchRegister, x, RelocInfo::NONE);
|
|
movq(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Smi tagging, untagging and tag detection.
|
|
|
|
Register MacroAssembler::GetSmiConstant(Smi* source) {
|
|
int value = source->value();
|
|
if (value == 0) {
|
|
xorl(kScratchRegister, kScratchRegister);
|
|
return kScratchRegister;
|
|
}
|
|
if (value == 1) {
|
|
return kSmiConstantRegister;
|
|
}
|
|
LoadSmiConstant(kScratchRegister, source);
|
|
return kScratchRegister;
|
|
}
|
|
|
|
void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
|
|
if (FLAG_debug_code) {
|
|
movq(dst,
|
|
reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
|
|
RelocInfo::NONE);
|
|
cmpq(dst, kSmiConstantRegister);
|
|
if (allow_stub_calls()) {
|
|
Assert(equal, "Uninitialized kSmiConstantRegister");
|
|
} else {
|
|
NearLabel ok;
|
|
j(equal, &ok);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
}
|
|
if (source->value() == 0) {
|
|
xorl(dst, dst);
|
|
return;
|
|
}
|
|
int value = source->value();
|
|
bool negative = value < 0;
|
|
unsigned int uvalue = negative ? -value : value;
|
|
|
|
switch (uvalue) {
|
|
case 9:
|
|
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0));
|
|
break;
|
|
case 8:
|
|
xorl(dst, dst);
|
|
lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0));
|
|
break;
|
|
case 4:
|
|
xorl(dst, dst);
|
|
lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0));
|
|
break;
|
|
case 5:
|
|
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0));
|
|
break;
|
|
case 3:
|
|
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0));
|
|
break;
|
|
case 2:
|
|
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0));
|
|
break;
|
|
case 1:
|
|
movq(dst, kSmiConstantRegister);
|
|
break;
|
|
case 0:
|
|
UNREACHABLE();
|
|
return;
|
|
default:
|
|
movq(dst, reinterpret_cast<uint64_t>(source), RelocInfo::NONE);
|
|
return;
|
|
}
|
|
if (negative) {
|
|
neg(dst);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
if (!dst.is(src)) {
|
|
movl(dst, src);
|
|
}
|
|
shl(dst, Immediate(kSmiShift));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
|
|
if (FLAG_debug_code) {
|
|
testb(dst, Immediate(0x01));
|
|
NearLabel ok;
|
|
j(zero, &ok);
|
|
if (allow_stub_calls()) {
|
|
Abort("Integer32ToSmiField writing to non-smi location");
|
|
} else {
|
|
int3();
|
|
}
|
|
bind(&ok);
|
|
}
|
|
ASSERT(kSmiShift % kBitsPerByte == 0);
|
|
movl(Operand(dst, kSmiShift / kBitsPerByte), src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
|
|
Register src,
|
|
int constant) {
|
|
if (dst.is(src)) {
|
|
addq(dst, Immediate(constant));
|
|
} else {
|
|
lea(dst, Operand(src, constant));
|
|
}
|
|
shl(dst, Immediate(kSmiShift));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger32(Register dst, Register src) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
shr(dst, Immediate(kSmiShift));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
|
|
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger64(Register dst, Register src) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
sar(dst, Immediate(kSmiShift));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
|
|
movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiTest(Register src) {
|
|
testq(src, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(Register dst, Register src) {
|
|
cmpq(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(Register dst, Smi* src) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
if (src->value() == 0) {
|
|
testq(dst, dst);
|
|
} else {
|
|
Register constant_reg = GetSmiConstant(src);
|
|
cmpq(dst, constant_reg);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
|
|
cmpq(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
|
|
cmpq(dst, src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
|
|
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
|
|
cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
|
|
Register src,
|
|
int power) {
|
|
ASSERT(power >= 0);
|
|
ASSERT(power < 64);
|
|
if (power == 0) {
|
|
SmiToInteger64(dst, src);
|
|
return;
|
|
}
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
if (power < kSmiShift) {
|
|
sar(dst, Immediate(kSmiShift - power));
|
|
} else if (power > kSmiShift) {
|
|
shl(dst, Immediate(power - kSmiShift));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
|
|
Register src,
|
|
int power) {
|
|
ASSERT((0 <= power) && (power < 32));
|
|
if (dst.is(src)) {
|
|
shr(dst, Immediate(power + kSmiShift));
|
|
} else {
|
|
UNIMPLEMENTED(); // Not used.
|
|
}
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckSmi(Register src) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
testb(src, Immediate(kSmiTagMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckSmi(const Operand& src) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
testb(src, Immediate(kSmiTagMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
// Make mask 0x8000000000000001 and test that both bits are zero.
|
|
movq(kScratchRegister, src);
|
|
rol(kScratchRegister, Immediate(1));
|
|
testb(kScratchRegister, Immediate(3));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
|
|
if (first.is(second)) {
|
|
return CheckSmi(first);
|
|
}
|
|
ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
|
|
leal(kScratchRegister, Operand(first, second, times_1, 0));
|
|
testb(kScratchRegister, Immediate(0x03));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
|
|
Register second) {
|
|
if (first.is(second)) {
|
|
return CheckNonNegativeSmi(first);
|
|
}
|
|
movq(kScratchRegister, first);
|
|
or_(kScratchRegister, second);
|
|
rol(kScratchRegister, Immediate(1));
|
|
testl(kScratchRegister, Immediate(3));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckEitherSmi(Register first,
|
|
Register second,
|
|
Register scratch) {
|
|
if (first.is(second)) {
|
|
return CheckSmi(first);
|
|
}
|
|
if (scratch.is(second)) {
|
|
andl(scratch, first);
|
|
} else {
|
|
if (!scratch.is(first)) {
|
|
movl(scratch, first);
|
|
}
|
|
andl(scratch, second);
|
|
}
|
|
testb(scratch, Immediate(kSmiTagMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckIsMinSmi(Register src) {
|
|
ASSERT(!src.is(kScratchRegister));
|
|
// If we overflow by subtracting one, it's the minimal smi value.
|
|
cmpq(src, kSmiConstantRegister);
|
|
return overflow;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
|
|
// A 32-bit integer value can always be converted to a smi.
|
|
return always;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
|
|
// An unsigned 32-bit integer value is valid as long as the high bit
|
|
// is not set.
|
|
testl(src, src);
|
|
return positive;
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
|
|
if (dst.is(src)) {
|
|
andl(dst, Immediate(kSmiTagMask));
|
|
} else {
|
|
movl(dst, Immediate(kSmiTagMask));
|
|
andl(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
|
|
if (!(src.AddressUsesRegister(dst))) {
|
|
movl(dst, Immediate(kSmiTagMask));
|
|
andl(dst, src);
|
|
} else {
|
|
movl(dst, src);
|
|
andl(dst, Immediate(kSmiTagMask));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
|
|
if (constant->value() == 0) {
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
return;
|
|
} else if (dst.is(src)) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
switch (constant->value()) {
|
|
case 1:
|
|
addq(dst, kSmiConstantRegister);
|
|
return;
|
|
case 2:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
|
|
return;
|
|
case 4:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
|
|
return;
|
|
case 8:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
|
|
return;
|
|
default:
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
addq(dst, constant_reg);
|
|
return;
|
|
}
|
|
} else {
|
|
switch (constant->value()) {
|
|
case 1:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_1, 0));
|
|
return;
|
|
case 2:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
|
|
return;
|
|
case 4:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
|
|
return;
|
|
case 8:
|
|
lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
|
|
return;
|
|
default:
|
|
LoadSmiConstant(dst, constant);
|
|
addq(dst, src);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
|
|
if (constant->value() != 0) {
|
|
addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value()));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
|
|
if (constant->value() == 0) {
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
} else if (dst.is(src)) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
subq(dst, constant_reg);
|
|
} else {
|
|
if (constant->value() == Smi::kMinValue) {
|
|
LoadSmiConstant(dst, constant);
|
|
// Adding and subtracting the min-value gives the same result, it only
|
|
// differs on the overflow bit, which we don't check here.
|
|
addq(dst, src);
|
|
} else {
|
|
// Subtract by adding the negation.
|
|
LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
|
|
addq(dst, src);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAdd(Register dst,
|
|
Register src1,
|
|
Register src2) {
|
|
// No overflow checking. Use only when it's known that
|
|
// overflowing is impossible.
|
|
ASSERT(!dst.is(src2));
|
|
if (dst.is(src1)) {
|
|
addq(dst, src2);
|
|
} else {
|
|
movq(dst, src1);
|
|
addq(dst, src2);
|
|
}
|
|
Assert(no_overflow, "Smi addition overflow");
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
|
|
// No overflow checking. Use only when it's known that
|
|
// overflowing is impossible (e.g., subtracting two positive smis).
|
|
ASSERT(!dst.is(src2));
|
|
if (dst.is(src1)) {
|
|
subq(dst, src2);
|
|
} else {
|
|
movq(dst, src1);
|
|
subq(dst, src2);
|
|
}
|
|
Assert(no_overflow, "Smi subtraction overflow");
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiSub(Register dst,
|
|
Register src1,
|
|
const Operand& src2) {
|
|
// No overflow checking. Use only when it's known that
|
|
// overflowing is impossible (e.g., subtracting two positive smis).
|
|
if (dst.is(src1)) {
|
|
subq(dst, src2);
|
|
} else {
|
|
movq(dst, src1);
|
|
subq(dst, src2);
|
|
}
|
|
Assert(no_overflow, "Smi subtraction overflow");
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiNot(Register dst, Register src) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
ASSERT(!src.is(kScratchRegister));
|
|
// Set tag and padding bits before negating, so that they are zero afterwards.
|
|
movl(kScratchRegister, Immediate(~0));
|
|
if (dst.is(src)) {
|
|
xor_(dst, kScratchRegister);
|
|
} else {
|
|
lea(dst, Operand(src, kScratchRegister, times_1, 0));
|
|
}
|
|
not_(dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
|
|
ASSERT(!dst.is(src2));
|
|
if (!dst.is(src1)) {
|
|
movq(dst, src1);
|
|
}
|
|
and_(dst, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
|
|
if (constant->value() == 0) {
|
|
Set(dst, 0);
|
|
} else if (dst.is(src)) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
and_(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
and_(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
|
|
if (!dst.is(src1)) {
|
|
movq(dst, src1);
|
|
}
|
|
or_(dst, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
|
|
if (dst.is(src)) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
or_(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
or_(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
|
|
if (!dst.is(src1)) {
|
|
movq(dst, src1);
|
|
}
|
|
xor_(dst, src2);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
|
|
if (dst.is(src)) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
Register constant_reg = GetSmiConstant(constant);
|
|
xor_(dst, constant_reg);
|
|
} else {
|
|
LoadSmiConstant(dst, constant);
|
|
xor_(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
|
|
Register src,
|
|
int shift_value) {
|
|
ASSERT(is_uint5(shift_value));
|
|
if (shift_value > 0) {
|
|
if (dst.is(src)) {
|
|
sar(dst, Immediate(shift_value + kSmiShift));
|
|
shl(dst, Immediate(kSmiShift));
|
|
} else {
|
|
UNIMPLEMENTED(); // Not used.
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftLeftConstant(Register dst,
|
|
Register src,
|
|
int shift_value) {
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
if (shift_value > 0) {
|
|
shl(dst, Immediate(shift_value));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftLeft(Register dst,
|
|
Register src1,
|
|
Register src2) {
|
|
ASSERT(!dst.is(rcx));
|
|
NearLabel result_ok;
|
|
// Untag shift amount.
|
|
if (!dst.is(src1)) {
|
|
movq(dst, src1);
|
|
}
|
|
SmiToInteger32(rcx, src2);
|
|
// Shift amount specified by lower 5 bits, not six as the shl opcode.
|
|
and_(rcx, Immediate(0x1f));
|
|
shl_cl(dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SmiShiftArithmeticRight(Register dst,
|
|
Register src1,
|
|
Register src2) {
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
ASSERT(!src1.is(kScratchRegister));
|
|
ASSERT(!src2.is(kScratchRegister));
|
|
ASSERT(!dst.is(rcx));
|
|
if (src1.is(rcx)) {
|
|
movq(kScratchRegister, src1);
|
|
} else if (src2.is(rcx)) {
|
|
movq(kScratchRegister, src2);
|
|
}
|
|
if (!dst.is(src1)) {
|
|
movq(dst, src1);
|
|
}
|
|
SmiToInteger32(rcx, src2);
|
|
orl(rcx, Immediate(kSmiShift));
|
|
sar_cl(dst); // Shift 32 + original rcx & 0x1f.
|
|
shl(dst, Immediate(kSmiShift));
|
|
if (src1.is(rcx)) {
|
|
movq(src1, kScratchRegister);
|
|
} else if (src2.is(rcx)) {
|
|
movq(src2, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
SmiIndex MacroAssembler::SmiToIndex(Register dst,
|
|
Register src,
|
|
int shift) {
|
|
ASSERT(is_uint6(shift));
|
|
// There is a possible optimization if shift is in the range 60-63, but that
|
|
// will (and must) never happen.
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
if (shift < kSmiShift) {
|
|
sar(dst, Immediate(kSmiShift - shift));
|
|
} else {
|
|
shl(dst, Immediate(shift - kSmiShift));
|
|
}
|
|
return SmiIndex(dst, times_1);
|
|
}
|
|
|
|
SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
|
|
Register src,
|
|
int shift) {
|
|
// Register src holds a positive smi.
|
|
ASSERT(is_uint6(shift));
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
neg(dst);
|
|
if (shift < kSmiShift) {
|
|
sar(dst, Immediate(kSmiShift - shift));
|
|
} else {
|
|
shl(dst, Immediate(shift - kSmiShift));
|
|
}
|
|
return SmiIndex(dst, times_1);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(Register dst, Register src) {
|
|
if (!dst.is(src)) {
|
|
movq(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(Register dst, Handle<Object> source) {
|
|
ASSERT(!source->IsFailure());
|
|
if (source->IsSmi()) {
|
|
Move(dst, Smi::cast(*source));
|
|
} else {
|
|
movq(dst, source, RelocInfo::EMBEDDED_OBJECT);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
|
|
ASSERT(!source->IsFailure());
|
|
if (source->IsSmi()) {
|
|
Move(dst, Smi::cast(*source));
|
|
} else {
|
|
movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
|
|
movq(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
|
|
if (source->IsSmi()) {
|
|
SmiCompare(dst, Smi::cast(*source));
|
|
} else {
|
|
Move(kScratchRegister, source);
|
|
cmpq(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
|
|
if (source->IsSmi()) {
|
|
SmiCompare(dst, Smi::cast(*source));
|
|
} else {
|
|
ASSERT(source->IsHeapObject());
|
|
movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
|
|
cmpq(dst, kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(Handle<Object> source) {
|
|
if (source->IsSmi()) {
|
|
Push(Smi::cast(*source));
|
|
} else {
|
|
ASSERT(source->IsHeapObject());
|
|
movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
|
|
push(kScratchRegister);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Push(Smi* source) {
|
|
intptr_t smi = reinterpret_cast<intptr_t>(source);
|
|
if (is_int32(smi)) {
|
|
push(Immediate(static_cast<int32_t>(smi)));
|
|
} else {
|
|
Register constant = GetSmiConstant(source);
|
|
push(constant);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Drop(int stack_elements) {
|
|
if (stack_elements > 0) {
|
|
addq(rsp, Immediate(stack_elements * kPointerSize));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Test(const Operand& src, Smi* source) {
|
|
testl(Operand(src, kIntSize), Immediate(source->value()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(ExternalReference ext) {
|
|
movq(kScratchRegister, ext);
|
|
jmp(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
|
|
movq(kScratchRegister, destination, rmode);
|
|
jmp(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
|
|
// TODO(X64): Inline this
|
|
jmp(code_object, rmode);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(ExternalReference ext) {
|
|
movq(kScratchRegister, ext);
|
|
call(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
|
|
movq(kScratchRegister, destination, rmode);
|
|
call(kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) {
|
|
ASSERT(RelocInfo::IsCodeTarget(rmode));
|
|
call(code_object, rmode);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Pushad() {
|
|
push(rax);
|
|
push(rcx);
|
|
push(rdx);
|
|
push(rbx);
|
|
// Not pushing rsp or rbp.
|
|
push(rsi);
|
|
push(rdi);
|
|
push(r8);
|
|
push(r9);
|
|
// r10 is kScratchRegister.
|
|
push(r11);
|
|
push(r12);
|
|
// r13 is kRootRegister.
|
|
push(r14);
|
|
// r15 is kSmiConstantRegister
|
|
STATIC_ASSERT(11 == kNumSafepointSavedRegisters);
|
|
// Use lea for symmetry with Popad.
|
|
int sp_delta =
|
|
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
|
|
lea(rsp, Operand(rsp, -sp_delta));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Popad() {
|
|
// Popad must not change the flags, so use lea instead of addq.
|
|
int sp_delta =
|
|
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
|
|
lea(rsp, Operand(rsp, sp_delta));
|
|
pop(r14);
|
|
pop(r12);
|
|
pop(r11);
|
|
pop(r9);
|
|
pop(r8);
|
|
pop(rdi);
|
|
pop(rsi);
|
|
pop(rbx);
|
|
pop(rdx);
|
|
pop(rcx);
|
|
pop(rax);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Dropad() {
|
|
addq(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
|
|
}
|
|
|
|
|
|
// Order general registers are pushed by Pushad:
|
|
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14.
|
|
int MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
|
|
0,
|
|
1,
|
|
2,
|
|
3,
|
|
-1,
|
|
-1,
|
|
4,
|
|
5,
|
|
6,
|
|
7,
|
|
-1,
|
|
8,
|
|
9,
|
|
-1,
|
|
10,
|
|
-1
|
|
};
|
|
|
|
|
|
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
|
|
movq(SafepointRegisterSlot(dst), src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
|
|
movq(dst, SafepointRegisterSlot(src));
|
|
}
|
|
|
|
|
|
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
|
|
return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushTryHandler(CodeLocation try_location,
|
|
HandlerType type) {
|
|
// Adjust this code if not the case.
|
|
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
|
|
|
// The pc (return address) is already on TOS. This code pushes state,
|
|
// frame pointer and current handler. Check that they are expected
|
|
// next on the stack, in that order.
|
|
ASSERT_EQ(StackHandlerConstants::kStateOffset,
|
|
StackHandlerConstants::kPCOffset - kPointerSize);
|
|
ASSERT_EQ(StackHandlerConstants::kFPOffset,
|
|
StackHandlerConstants::kStateOffset - kPointerSize);
|
|
ASSERT_EQ(StackHandlerConstants::kNextOffset,
|
|
StackHandlerConstants::kFPOffset - kPointerSize);
|
|
|
|
if (try_location == IN_JAVASCRIPT) {
|
|
if (type == TRY_CATCH_HANDLER) {
|
|
push(Immediate(StackHandler::TRY_CATCH));
|
|
} else {
|
|
push(Immediate(StackHandler::TRY_FINALLY));
|
|
}
|
|
push(rbp);
|
|
} else {
|
|
ASSERT(try_location == IN_JS_ENTRY);
|
|
// The frame pointer does not point to a JS frame so we save NULL
|
|
// for rbp. We expect the code throwing an exception to check rbp
|
|
// before dereferencing it to restore the context.
|
|
push(Immediate(StackHandler::ENTRY));
|
|
push(Immediate(0)); // NULL frame pointer.
|
|
}
|
|
// Save the current handler.
|
|
movq(kScratchRegister, ExternalReference(Top::k_handler_address));
|
|
push(Operand(kScratchRegister, 0));
|
|
// Link this handler.
|
|
movq(Operand(kScratchRegister, 0), rsp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PopTryHandler() {
|
|
ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
|
|
// Unlink this handler.
|
|
movq(kScratchRegister, ExternalReference(Top::k_handler_address));
|
|
pop(Operand(kScratchRegister, 0));
|
|
// Remove the remaining fields.
|
|
addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Throw(Register value) {
|
|
// Check that stack should contain next handler, frame pointer, state and
|
|
// return address in that order.
|
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
|
|
StackHandlerConstants::kStateOffset);
|
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
|
|
StackHandlerConstants::kPCOffset);
|
|
// Keep thrown value in rax.
|
|
if (!value.is(rax)) {
|
|
movq(rax, value);
|
|
}
|
|
|
|
ExternalReference handler_address(Top::k_handler_address);
|
|
movq(kScratchRegister, handler_address);
|
|
movq(rsp, Operand(kScratchRegister, 0));
|
|
// get next in chain
|
|
pop(rcx);
|
|
movq(Operand(kScratchRegister, 0), rcx);
|
|
pop(rbp); // pop frame pointer
|
|
pop(rdx); // remove state
|
|
|
|
// Before returning we restore the context from the frame pointer if not NULL.
|
|
// The frame pointer is NULL in the exception handler of a JS entry frame.
|
|
Set(rsi, 0); // Tentatively set context pointer to NULL
|
|
NearLabel skip;
|
|
cmpq(rbp, Immediate(0));
|
|
j(equal, &skip);
|
|
movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
|
|
bind(&skip);
|
|
ret(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type,
|
|
Register value) {
|
|
// Keep thrown value in rax.
|
|
if (!value.is(rax)) {
|
|
movq(rax, value);
|
|
}
|
|
// Fetch top stack handler.
|
|
ExternalReference handler_address(Top::k_handler_address);
|
|
movq(kScratchRegister, handler_address);
|
|
movq(rsp, Operand(kScratchRegister, 0));
|
|
|
|
// Unwind the handlers until the ENTRY handler is found.
|
|
NearLabel loop, done;
|
|
bind(&loop);
|
|
// Load the type of the current stack handler.
|
|
const int kStateOffset = StackHandlerConstants::kStateOffset;
|
|
cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
|
|
j(equal, &done);
|
|
// Fetch the next handler in the list.
|
|
const int kNextOffset = StackHandlerConstants::kNextOffset;
|
|
movq(rsp, Operand(rsp, kNextOffset));
|
|
jmp(&loop);
|
|
bind(&done);
|
|
|
|
// Set the top handler address to next handler past the current ENTRY handler.
|
|
movq(kScratchRegister, handler_address);
|
|
pop(Operand(kScratchRegister, 0));
|
|
|
|
if (type == OUT_OF_MEMORY) {
|
|
// Set external caught exception to false.
|
|
ExternalReference external_caught(Top::k_external_caught_exception_address);
|
|
movq(rax, Immediate(false));
|
|
store_rax(external_caught);
|
|
|
|
// Set pending exception and rax to out of memory exception.
|
|
ExternalReference pending_exception(Top::k_pending_exception_address);
|
|
movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
|
|
store_rax(pending_exception);
|
|
}
|
|
|
|
// Clear the context pointer.
|
|
Set(rsi, 0);
|
|
|
|
// Restore registers from handler.
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
|
|
StackHandlerConstants::kFPOffset);
|
|
pop(rbp); // FP
|
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
|
|
StackHandlerConstants::kStateOffset);
|
|
pop(rdx); // State
|
|
|
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
|
|
StackHandlerConstants::kPCOffset);
|
|
ret(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ret() {
|
|
ret(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
|
|
if (is_uint16(bytes_dropped)) {
|
|
ret(bytes_dropped);
|
|
} else {
|
|
pop(scratch);
|
|
addq(rsp, Immediate(bytes_dropped));
|
|
push(scratch);
|
|
ret(0);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::FCmp() {
|
|
fucomip();
|
|
fstp(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpObjectType(Register heap_object,
|
|
InstanceType type,
|
|
Register map) {
|
|
movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
CmpInstanceType(map, type);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
|
|
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
|
|
Immediate(static_cast<int8_t>(type)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckMap(Register obj,
|
|
Handle<Map> map,
|
|
Label* fail,
|
|
bool is_heap_object) {
|
|
if (!is_heap_object) {
|
|
JumpIfSmi(obj, fail);
|
|
}
|
|
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
|
|
j(not_equal, fail);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AbortIfNotNumber(Register object) {
|
|
NearLabel ok;
|
|
Condition is_smi = CheckSmi(object);
|
|
j(is_smi, &ok);
|
|
Cmp(FieldOperand(object, HeapObject::kMapOffset),
|
|
Factory::heap_number_map());
|
|
Assert(equal, "Operand not a number");
|
|
bind(&ok);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AbortIfSmi(Register object) {
|
|
NearLabel ok;
|
|
Condition is_smi = CheckSmi(object);
|
|
Assert(NegateCondition(is_smi), "Operand is a smi");
|
|
}
|
|
|
|
|
|
void MacroAssembler::AbortIfNotSmi(Register object) {
|
|
NearLabel ok;
|
|
Condition is_smi = CheckSmi(object);
|
|
Assert(is_smi, "Operand is not a smi");
|
|
}
|
|
|
|
|
|
void MacroAssembler::AbortIfNotString(Register object) {
|
|
testb(object, Immediate(kSmiTagMask));
|
|
Assert(not_equal, "Operand is not a string");
|
|
push(object);
|
|
movq(object, FieldOperand(object, HeapObject::kMapOffset));
|
|
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
|
|
pop(object);
|
|
Assert(below, "Operand is not a string");
|
|
}
|
|
|
|
|
|
void MacroAssembler::AbortIfNotRootValue(Register src,
|
|
Heap::RootListIndex root_value_index,
|
|
const char* message) {
|
|
ASSERT(!src.is(kScratchRegister));
|
|
LoadRoot(kScratchRegister, root_value_index);
|
|
cmpq(src, kScratchRegister);
|
|
Check(equal, message);
|
|
}
|
|
|
|
|
|
|
|
Condition MacroAssembler::IsObjectStringType(Register heap_object,
|
|
Register map,
|
|
Register instance_type) {
|
|
movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
ASSERT(kNotStringTag != 0);
|
|
testb(instance_type, Immediate(kIsNotStringMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
void MacroAssembler::TryGetFunctionPrototype(Register function,
|
|
Register result,
|
|
Label* miss) {
|
|
// Check that the receiver isn't a smi.
|
|
testl(function, Immediate(kSmiTagMask));
|
|
j(zero, miss);
|
|
|
|
// Check that the function really is a function.
|
|
CmpObjectType(function, JS_FUNCTION_TYPE, result);
|
|
j(not_equal, miss);
|
|
|
|
// Make sure that the function has an instance prototype.
|
|
NearLabel non_instance;
|
|
testb(FieldOperand(result, Map::kBitFieldOffset),
|
|
Immediate(1 << Map::kHasNonInstancePrototype));
|
|
j(not_zero, &non_instance);
|
|
|
|
// Get the prototype or initial map from the function.
|
|
movq(result,
|
|
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// If the prototype or initial map is the hole, don't return it and
|
|
// simply miss the cache instead. This will allow us to allocate a
|
|
// prototype object on-demand in the runtime system.
|
|
CompareRoot(result, Heap::kTheHoleValueRootIndex);
|
|
j(equal, miss);
|
|
|
|
// If the function does not have an initial map, we're done.
|
|
NearLabel done;
|
|
CmpObjectType(result, MAP_TYPE, kScratchRegister);
|
|
j(not_equal, &done);
|
|
|
|
// Get the prototype from the initial map.
|
|
movq(result, FieldOperand(result, Map::kPrototypeOffset));
|
|
jmp(&done);
|
|
|
|
// Non-instance prototype: Fetch prototype from constructor field
|
|
// in initial map.
|
|
bind(&non_instance);
|
|
movq(result, FieldOperand(result, Map::kConstructorOffset));
|
|
|
|
// All done.
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
movq(kScratchRegister, ExternalReference(counter));
|
|
movl(Operand(kScratchRegister, 0), Immediate(value));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
|
|
ASSERT(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
movq(kScratchRegister, ExternalReference(counter));
|
|
Operand operand(kScratchRegister, 0);
|
|
if (value == 1) {
|
|
incl(operand);
|
|
} else {
|
|
addl(operand, Immediate(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
|
|
ASSERT(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
movq(kScratchRegister, ExternalReference(counter));
|
|
Operand operand(kScratchRegister, 0);
|
|
if (value == 1) {
|
|
decl(operand);
|
|
} else {
|
|
subl(operand, Immediate(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
void MacroAssembler::DebugBreak() {
|
|
ASSERT(allow_stub_calls());
|
|
Set(rax, 0); // No arguments.
|
|
movq(rbx, ExternalReference(Runtime::kDebugBreak));
|
|
CEntryStub ces(1);
|
|
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
|
|
}
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
|
|
|
|
void MacroAssembler::InvokeCode(Register code,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
PostCallGenerator* post_call_generator) {
|
|
NearLabel done;
|
|
InvokePrologue(expected,
|
|
actual,
|
|
Handle<Code>::null(),
|
|
code,
|
|
&done,
|
|
flag,
|
|
post_call_generator);
|
|
if (flag == CALL_FUNCTION) {
|
|
call(code);
|
|
if (post_call_generator != NULL) post_call_generator->Generate();
|
|
} else {
|
|
ASSERT(flag == JUMP_FUNCTION);
|
|
jmp(code);
|
|
}
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeCode(Handle<Code> code,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
RelocInfo::Mode rmode,
|
|
InvokeFlag flag,
|
|
PostCallGenerator* post_call_generator) {
|
|
NearLabel done;
|
|
Register dummy = rax;
|
|
InvokePrologue(expected,
|
|
actual,
|
|
code,
|
|
dummy,
|
|
&done,
|
|
flag,
|
|
post_call_generator);
|
|
if (flag == CALL_FUNCTION) {
|
|
Call(code, rmode);
|
|
if (post_call_generator != NULL) post_call_generator->Generate();
|
|
} else {
|
|
ASSERT(flag == JUMP_FUNCTION);
|
|
Jump(code, rmode);
|
|
}
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Register function,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
PostCallGenerator* post_call_generator) {
|
|
ASSERT(function.is(rdi));
|
|
movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
|
movq(rsi, FieldOperand(function, JSFunction::kContextOffset));
|
|
movsxlq(rbx,
|
|
FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
|
|
// Advances rdx to the end of the Code object header, to the start of
|
|
// the executable code.
|
|
movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
|
|
|
|
ParameterCount expected(rbx);
|
|
InvokeCode(rdx, expected, actual, flag, post_call_generator);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(JSFunction* function,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
PostCallGenerator* post_call_generator) {
|
|
ASSERT(function->is_compiled());
|
|
// Get the function and setup the context.
|
|
Move(rdi, Handle<JSFunction>(function));
|
|
movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
|
|
|
|
if (V8::UseCrankshaft()) {
|
|
// Since Crankshaft can recompile a function, we need to load
|
|
// the Code object every time we call the function.
|
|
movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
|
|
ParameterCount expected(function->shared()->formal_parameter_count());
|
|
InvokeCode(rdx, expected, actual, flag, post_call_generator);
|
|
} else {
|
|
// Invoke the cached code.
|
|
Handle<Code> code(function->code());
|
|
ParameterCount expected(function->shared()->formal_parameter_count());
|
|
InvokeCode(code,
|
|
expected,
|
|
actual,
|
|
RelocInfo::CODE_TARGET,
|
|
flag,
|
|
post_call_generator);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterFrame(StackFrame::Type type) {
|
|
push(rbp);
|
|
movq(rbp, rsp);
|
|
push(rsi); // Context.
|
|
Push(Smi::FromInt(type));
|
|
movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
|
|
push(kScratchRegister);
|
|
if (FLAG_debug_code) {
|
|
movq(kScratchRegister,
|
|
Factory::undefined_value(),
|
|
RelocInfo::EMBEDDED_OBJECT);
|
|
cmpq(Operand(rsp, 0), kScratchRegister);
|
|
Check(not_equal, "code object not properly patched");
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
|
|
if (FLAG_debug_code) {
|
|
Move(kScratchRegister, Smi::FromInt(type));
|
|
cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
|
|
Check(equal, "stack frame types must match");
|
|
}
|
|
movq(rsp, rbp);
|
|
pop(rbp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
|
|
// Setup the frame structure on the stack.
|
|
// All constants are relative to the frame pointer of the exit frame.
|
|
ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
|
|
ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
|
|
ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
|
|
push(rbp);
|
|
movq(rbp, rsp);
|
|
|
|
// Reserve room for entry stack pointer and push the code object.
|
|
ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
|
|
push(Immediate(0)); // Saved entry sp, patched before call.
|
|
movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
|
|
push(kScratchRegister); // Accessed from EditFrame::code_slot.
|
|
|
|
// Save the frame pointer and the context in top.
|
|
ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
|
|
ExternalReference context_address(Top::k_context_address);
|
|
if (save_rax) {
|
|
movq(r14, rax); // Backup rax before we use it.
|
|
}
|
|
|
|
movq(rax, rbp);
|
|
store_rax(c_entry_fp_address);
|
|
movq(rax, rsi);
|
|
store_rax(context_address);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
|
|
bool save_doubles) {
|
|
#ifdef _WIN64
|
|
const int kShadowSpace = 4;
|
|
arg_stack_space += kShadowSpace;
|
|
#endif
|
|
// Optionally save all XMM registers.
|
|
if (save_doubles) {
|
|
CpuFeatures::Scope scope(SSE2);
|
|
int space = XMMRegister::kNumRegisters * kDoubleSize +
|
|
arg_stack_space * kPointerSize;
|
|
subq(rsp, Immediate(space));
|
|
int offset = -2 * kPointerSize;
|
|
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
|
|
XMMRegister reg = XMMRegister::FromAllocationIndex(i);
|
|
movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
|
|
}
|
|
} else if (arg_stack_space > 0) {
|
|
subq(rsp, Immediate(arg_stack_space * kPointerSize));
|
|
}
|
|
|
|
// Get the required frame alignment for the OS.
|
|
static const int kFrameAlignment = OS::ActivationFrameAlignment();
|
|
if (kFrameAlignment > 0) {
|
|
ASSERT(IsPowerOf2(kFrameAlignment));
|
|
movq(kScratchRegister, Immediate(-kFrameAlignment));
|
|
and_(rsp, kScratchRegister);
|
|
}
|
|
|
|
// Patch the saved entry sp.
|
|
movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
|
|
EnterExitFramePrologue(true);
|
|
|
|
// Setup argv in callee-saved register r12. It is reused in LeaveExitFrame,
|
|
// so it must be retained across the C-call.
|
|
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
lea(r12, Operand(rbp, r14, times_pointer_size, offset));
|
|
|
|
EnterExitFrameEpilogue(arg_stack_space, save_doubles);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
|
|
EnterExitFramePrologue(false);
|
|
EnterExitFrameEpilogue(arg_stack_space, false);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
|
|
// Registers:
|
|
// r12 : argv
|
|
if (save_doubles) {
|
|
int offset = -2 * kPointerSize;
|
|
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
|
|
XMMRegister reg = XMMRegister::FromAllocationIndex(i);
|
|
movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
|
|
}
|
|
}
|
|
// Get the return address from the stack and restore the frame pointer.
|
|
movq(rcx, Operand(rbp, 1 * kPointerSize));
|
|
movq(rbp, Operand(rbp, 0 * kPointerSize));
|
|
|
|
// Drop everything up to and including the arguments and the receiver
|
|
// from the caller stack.
|
|
lea(rsp, Operand(r12, 1 * kPointerSize));
|
|
|
|
// Push the return address to get ready to return.
|
|
push(rcx);
|
|
|
|
LeaveExitFrameEpilogue();
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveApiExitFrame() {
|
|
movq(rsp, rbp);
|
|
pop(rbp);
|
|
|
|
LeaveExitFrameEpilogue();
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveExitFrameEpilogue() {
|
|
// Restore current context from top and clear it in debug mode.
|
|
ExternalReference context_address(Top::k_context_address);
|
|
movq(kScratchRegister, context_address);
|
|
movq(rsi, Operand(kScratchRegister, 0));
|
|
#ifdef DEBUG
|
|
movq(Operand(kScratchRegister, 0), Immediate(0));
|
|
#endif
|
|
|
|
// Clear the top frame.
|
|
ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
|
|
movq(kScratchRegister, c_entry_fp_address);
|
|
movq(Operand(kScratchRegister, 0), Immediate(0));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
|
|
Register scratch,
|
|
Label* miss) {
|
|
Label same_contexts;
|
|
|
|
ASSERT(!holder_reg.is(scratch));
|
|
ASSERT(!scratch.is(kScratchRegister));
|
|
// Load current lexical context from the stack frame.
|
|
movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
|
|
|
|
// When generating debug code, make sure the lexical context is set.
|
|
if (FLAG_debug_code) {
|
|
cmpq(scratch, Immediate(0));
|
|
Check(not_equal, "we should not have an empty lexical context");
|
|
}
|
|
// Load the global context of the current context.
|
|
int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
|
|
movq(scratch, FieldOperand(scratch, offset));
|
|
movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
|
|
|
|
// Check the context is a global context.
|
|
if (FLAG_debug_code) {
|
|
Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
|
|
Factory::global_context_map());
|
|
Check(equal, "JSGlobalObject::global_context should be a global context.");
|
|
}
|
|
|
|
// Check if both contexts are the same.
|
|
cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
|
|
j(equal, &same_contexts);
|
|
|
|
// Compare security tokens.
|
|
// Check that the security token in the calling global object is
|
|
// compatible with the security token in the receiving global
|
|
// object.
|
|
|
|
// Check the context is a global context.
|
|
if (FLAG_debug_code) {
|
|
// Preserve original value of holder_reg.
|
|
push(holder_reg);
|
|
movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
|
|
CompareRoot(holder_reg, Heap::kNullValueRootIndex);
|
|
Check(not_equal, "JSGlobalProxy::context() should not be null.");
|
|
|
|
// Read the first word and compare to global_context_map(),
|
|
movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
|
|
CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex);
|
|
Check(equal, "JSGlobalObject::global_context should be a global context.");
|
|
pop(holder_reg);
|
|
}
|
|
|
|
movq(kScratchRegister,
|
|
FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
|
|
int token_offset =
|
|
Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
|
|
movq(scratch, FieldOperand(scratch, token_offset));
|
|
cmpq(scratch, FieldOperand(kScratchRegister, token_offset));
|
|
j(not_equal, miss);
|
|
|
|
bind(&same_contexts);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadAllocationTopHelper(Register result,
|
|
Register scratch,
|
|
AllocationFlags flags) {
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address();
|
|
|
|
// Just return if allocation top is already known.
|
|
if ((flags & RESULT_CONTAINS_TOP) != 0) {
|
|
// No use of scratch if allocation top is provided.
|
|
ASSERT(!scratch.is_valid());
|
|
#ifdef DEBUG
|
|
// Assert that result actually contains top on entry.
|
|
movq(kScratchRegister, new_space_allocation_top);
|
|
cmpq(result, Operand(kScratchRegister, 0));
|
|
Check(equal, "Unexpected allocation top");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// Move address of new object to result. Use scratch register if available,
|
|
// and keep address in scratch until call to UpdateAllocationTopHelper.
|
|
if (scratch.is_valid()) {
|
|
movq(scratch, new_space_allocation_top);
|
|
movq(result, Operand(scratch, 0));
|
|
} else if (result.is(rax)) {
|
|
load_rax(new_space_allocation_top);
|
|
} else {
|
|
movq(kScratchRegister, new_space_allocation_top);
|
|
movq(result, Operand(kScratchRegister, 0));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
|
|
Register scratch) {
|
|
if (FLAG_debug_code) {
|
|
testq(result_end, Immediate(kObjectAlignmentMask));
|
|
Check(zero, "Unaligned allocation in new space");
|
|
}
|
|
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address();
|
|
|
|
// Update new top.
|
|
if (result_end.is(rax)) {
|
|
// rax can be stored directly to a memory location.
|
|
store_rax(new_space_allocation_top);
|
|
} else {
|
|
// Register required - use scratch provided if available.
|
|
if (scratch.is_valid()) {
|
|
movq(Operand(scratch, 0), result_end);
|
|
} else {
|
|
movq(kScratchRegister, new_space_allocation_top);
|
|
movq(Operand(kScratchRegister, 0), result_end);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateInNewSpace(int object_size,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
if (!FLAG_inline_new) {
|
|
if (FLAG_debug_code) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
movl(result, Immediate(0x7091));
|
|
if (result_end.is_valid()) {
|
|
movl(result_end, Immediate(0x7191));
|
|
}
|
|
if (scratch.is_valid()) {
|
|
movl(scratch, Immediate(0x7291));
|
|
}
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
ASSERT(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
// Calculate new top and bail out if new space is exhausted.
|
|
ExternalReference new_space_allocation_limit =
|
|
ExternalReference::new_space_allocation_limit_address();
|
|
|
|
Register top_reg = result_end.is_valid() ? result_end : result;
|
|
|
|
if (!top_reg.is(result)) {
|
|
movq(top_reg, result);
|
|
}
|
|
addq(top_reg, Immediate(object_size));
|
|
j(carry, gc_required);
|
|
movq(kScratchRegister, new_space_allocation_limit);
|
|
cmpq(top_reg, Operand(kScratchRegister, 0));
|
|
j(above, gc_required);
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(top_reg, scratch);
|
|
|
|
if (top_reg.is(result)) {
|
|
if ((flags & TAG_OBJECT) != 0) {
|
|
subq(result, Immediate(object_size - kHeapObjectTag));
|
|
} else {
|
|
subq(result, Immediate(object_size));
|
|
}
|
|
} else if ((flags & TAG_OBJECT) != 0) {
|
|
// Tag the result if requested.
|
|
addq(result, Immediate(kHeapObjectTag));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateInNewSpace(int header_size,
|
|
ScaleFactor element_size,
|
|
Register element_count,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
if (!FLAG_inline_new) {
|
|
if (FLAG_debug_code) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
movl(result, Immediate(0x7091));
|
|
movl(result_end, Immediate(0x7191));
|
|
if (scratch.is_valid()) {
|
|
movl(scratch, Immediate(0x7291));
|
|
}
|
|
// Register element_count is not modified by the function.
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
ASSERT(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
// Calculate new top and bail out if new space is exhausted.
|
|
ExternalReference new_space_allocation_limit =
|
|
ExternalReference::new_space_allocation_limit_address();
|
|
|
|
// We assume that element_count*element_size + header_size does not
|
|
// overflow.
|
|
lea(result_end, Operand(element_count, element_size, header_size));
|
|
addq(result_end, result);
|
|
j(carry, gc_required);
|
|
movq(kScratchRegister, new_space_allocation_limit);
|
|
cmpq(result_end, Operand(kScratchRegister, 0));
|
|
j(above, gc_required);
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(result_end, scratch);
|
|
|
|
// Tag the result if requested.
|
|
if ((flags & TAG_OBJECT) != 0) {
|
|
addq(result, Immediate(kHeapObjectTag));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateInNewSpace(Register object_size,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
if (!FLAG_inline_new) {
|
|
if (FLAG_debug_code) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
movl(result, Immediate(0x7091));
|
|
movl(result_end, Immediate(0x7191));
|
|
if (scratch.is_valid()) {
|
|
movl(scratch, Immediate(0x7291));
|
|
}
|
|
// object_size is left unchanged by this function.
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
ASSERT(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
// Calculate new top and bail out if new space is exhausted.
|
|
ExternalReference new_space_allocation_limit =
|
|
ExternalReference::new_space_allocation_limit_address();
|
|
if (!object_size.is(result_end)) {
|
|
movq(result_end, object_size);
|
|
}
|
|
addq(result_end, result);
|
|
j(carry, gc_required);
|
|
movq(kScratchRegister, new_space_allocation_limit);
|
|
cmpq(result_end, Operand(kScratchRegister, 0));
|
|
j(above, gc_required);
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(result_end, scratch);
|
|
|
|
// Tag the result if requested.
|
|
if ((flags & TAG_OBJECT) != 0) {
|
|
addq(result, Immediate(kHeapObjectTag));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::UndoAllocationInNewSpace(Register object) {
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address();
|
|
|
|
// Make sure the object has no tag before resetting top.
|
|
and_(object, Immediate(~kHeapObjectTagMask));
|
|
movq(kScratchRegister, new_space_allocation_top);
|
|
#ifdef DEBUG
|
|
cmpq(object, Operand(kScratchRegister, 0));
|
|
Check(below, "Undo allocation of non allocated memory");
|
|
#endif
|
|
movq(Operand(kScratchRegister, 0), object);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateHeapNumber(Register result,
|
|
Register scratch,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
AllocateInNewSpace(HeapNumber::kSize,
|
|
result,
|
|
scratch,
|
|
no_reg,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map.
|
|
LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
|
|
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required) {
|
|
// Calculate the number of bytes needed for the characters in the string while
|
|
// observing object alignment.
|
|
const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
|
|
kObjectAlignmentMask;
|
|
ASSERT(kShortSize == 2);
|
|
// scratch1 = length * 2 + kObjectAlignmentMask.
|
|
lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
|
|
kHeaderAlignment));
|
|
and_(scratch1, Immediate(~kObjectAlignmentMask));
|
|
if (kHeaderAlignment > 0) {
|
|
subq(scratch1, Immediate(kHeaderAlignment));
|
|
}
|
|
|
|
// Allocate two byte string in new space.
|
|
AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
|
|
times_1,
|
|
scratch1,
|
|
result,
|
|
scratch2,
|
|
scratch3,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
|
|
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
Integer32ToSmi(scratch1, length);
|
|
movq(FieldOperand(result, String::kLengthOffset), scratch1);
|
|
movq(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateAsciiString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required) {
|
|
// Calculate the number of bytes needed for the characters in the string while
|
|
// observing object alignment.
|
|
const int kHeaderAlignment = SeqAsciiString::kHeaderSize &
|
|
kObjectAlignmentMask;
|
|
movl(scratch1, length);
|
|
ASSERT(kCharSize == 1);
|
|
addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
|
|
and_(scratch1, Immediate(~kObjectAlignmentMask));
|
|
if (kHeaderAlignment > 0) {
|
|
subq(scratch1, Immediate(kHeaderAlignment));
|
|
}
|
|
|
|
// Allocate ascii string in new space.
|
|
AllocateInNewSpace(SeqAsciiString::kHeaderSize,
|
|
times_1,
|
|
scratch1,
|
|
result,
|
|
scratch2,
|
|
scratch3,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex);
|
|
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
Integer32ToSmi(scratch1, length);
|
|
movq(FieldOperand(result, String::kLengthOffset), scratch1);
|
|
movq(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateConsString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
AllocateInNewSpace(ConsString::kSize,
|
|
result,
|
|
scratch1,
|
|
scratch2,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
|
|
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateAsciiConsString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
AllocateInNewSpace(ConsString::kSize,
|
|
result,
|
|
scratch1,
|
|
scratch2,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex);
|
|
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
|
|
if (context_chain_length > 0) {
|
|
// Move up the chain of contexts to the context containing the slot.
|
|
movq(dst, Operand(rsi, Context::SlotOffset(Context::CLOSURE_INDEX)));
|
|
// Load the function context (which is the incoming, outer context).
|
|
movq(dst, FieldOperand(dst, JSFunction::kContextOffset));
|
|
for (int i = 1; i < context_chain_length; i++) {
|
|
movq(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
|
|
movq(dst, FieldOperand(dst, JSFunction::kContextOffset));
|
|
}
|
|
// The context may be an intermediate context, not a function context.
|
|
movq(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
|
|
} else {
|
|
// Slot is in the current function context. Move it into the
|
|
// destination register in case we store into it (the write barrier
|
|
// cannot be allowed to destroy the context in rsi).
|
|
movq(dst, rsi);
|
|
}
|
|
|
|
// We should not have found a 'with' context by walking the context chain
|
|
// (i.e., the static scope chain and runtime context chain do not agree).
|
|
// A variable occurring in such a scope should have slot type LOOKUP and
|
|
// not CONTEXT.
|
|
if (FLAG_debug_code) {
|
|
cmpq(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
|
|
Check(equal, "Yo dawg, I heard you liked function contexts "
|
|
"so I put function contexts in all your contexts");
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
|
|
// Load the global or builtins object from the current context.
|
|
movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
// Load the global context from the global or builtins object.
|
|
movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
|
|
// Load the function from the global context.
|
|
movq(function, Operand(function, Context::SlotOffset(index)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
|
|
Register map) {
|
|
// Load the initial map. The global functions all have initial maps.
|
|
movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
|
if (FLAG_debug_code) {
|
|
Label ok, fail;
|
|
CheckMap(map, Factory::meta_map(), &fail, false);
|
|
jmp(&ok);
|
|
bind(&fail);
|
|
Abort("Global functions must have initial map");
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
|
|
// On Windows 64 stack slots are reserved by the caller for all arguments
|
|
// including the ones passed in registers, and space is always allocated for
|
|
// the four register arguments even if the function takes fewer than four
|
|
// arguments.
|
|
// On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
|
|
// and the caller does not reserve stack slots for them.
|
|
ASSERT(num_arguments >= 0);
|
|
#ifdef _WIN64
|
|
static const int kMinimumStackSlots = 4;
|
|
if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
|
|
return num_arguments;
|
|
#else
|
|
static const int kRegisterPassedArguments = 6;
|
|
if (num_arguments < kRegisterPassedArguments) return 0;
|
|
return num_arguments - kRegisterPassedArguments;
|
|
#endif
|
|
}
|
|
|
|
|
|
void MacroAssembler::PrepareCallCFunction(int num_arguments) {
|
|
int frame_alignment = OS::ActivationFrameAlignment();
|
|
ASSERT(frame_alignment != 0);
|
|
ASSERT(num_arguments >= 0);
|
|
// Make stack end at alignment and allocate space for arguments and old rsp.
|
|
movq(kScratchRegister, rsp);
|
|
ASSERT(IsPowerOf2(frame_alignment));
|
|
int argument_slots_on_stack =
|
|
ArgumentStackSlotsForCFunctionCall(num_arguments);
|
|
subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize));
|
|
and_(rsp, Immediate(-frame_alignment));
|
|
movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallCFunction(ExternalReference function,
|
|
int num_arguments) {
|
|
movq(rax, function);
|
|
CallCFunction(rax, num_arguments);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallCFunction(Register function, int num_arguments) {
|
|
// Check stack alignment.
|
|
if (FLAG_debug_code) {
|
|
CheckStackAlignment();
|
|
}
|
|
|
|
call(function);
|
|
ASSERT(OS::ActivationFrameAlignment() != 0);
|
|
ASSERT(num_arguments >= 0);
|
|
int argument_slots_on_stack =
|
|
ArgumentStackSlotsForCFunctionCall(num_arguments);
|
|
movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize));
|
|
}
|
|
|
|
|
|
CodePatcher::CodePatcher(byte* address, int size)
|
|
: address_(address), size_(size), masm_(address, size + Assembler::kGap) {
|
|
// Create a new macro assembler pointing to the address of the code to patch.
|
|
// The size is adjusted with kGap on order for the assembler to generate size
|
|
// bytes of instructions without failing with buffer size constraints.
|
|
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
|
|
}
|
|
|
|
|
|
CodePatcher::~CodePatcher() {
|
|
// Indicate that code has changed.
|
|
CPU::FlushICache(address_, size_);
|
|
|
|
// Check that the code was patched as expected.
|
|
ASSERT(masm_.pc_ == address_ + size_);
|
|
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
|
|
}
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_X64
|
|
|