You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1025 lines
26 KiB

#include "spawn_sync.h"
#include "env-inl.h"
#include "string_bytes.h"
#include "util.h"
#include <string.h>
#include <stdlib.h>
namespace node {
using v8::Array;
using v8::Context;
using v8::EscapableHandleScope;
using v8::FunctionCallbackInfo;
using v8::HandleScope;
using v8::Integer;
using v8::Isolate;
using v8::Local;
using v8::Null;
using v8::Number;
using v8::Object;
using v8::String;
using v8::Value;
SyncProcessOutputBuffer::SyncProcessOutputBuffer()
: used_(0),
next_(nullptr) {
}
void SyncProcessOutputBuffer::OnAlloc(size_t suggested_size,
uv_buf_t* buf) const {
if (used() == kBufferSize)
*buf = uv_buf_init(nullptr, 0);
else
*buf = uv_buf_init(data_ + used(), available());
}
void SyncProcessOutputBuffer::OnRead(const uv_buf_t* buf, size_t nread) {
// If we hand out the same chunk twice, this should catch it.
CHECK_EQ(buf->base, data_ + used());
used_ += static_cast<unsigned int>(nread);
}
size_t SyncProcessOutputBuffer::Copy(char* dest) const {
memcpy(dest, data_, used());
return used();
}
unsigned int SyncProcessOutputBuffer::available() const {
return sizeof data_ - used();
}
unsigned int SyncProcessOutputBuffer::used() const {
return used_;
}
SyncProcessOutputBuffer* SyncProcessOutputBuffer::next() const {
return next_;
}
void SyncProcessOutputBuffer::set_next(SyncProcessOutputBuffer* next) {
next_ = next;
}
SyncProcessStdioPipe::SyncProcessStdioPipe(SyncProcessRunner* process_handler,
bool readable,
bool writable,
uv_buf_t input_buffer)
: process_handler_(process_handler),
readable_(readable),
writable_(writable),
input_buffer_(input_buffer),
first_output_buffer_(nullptr),
last_output_buffer_(nullptr),
uv_pipe_(),
write_req_(),
shutdown_req_(),
lifecycle_(kUninitialized) {
CHECK(readable || writable);
}
SyncProcessStdioPipe::~SyncProcessStdioPipe() {
CHECK(lifecycle_ == kUninitialized || lifecycle_ == kClosed);
SyncProcessOutputBuffer* buf;
SyncProcessOutputBuffer* next;
for (buf = first_output_buffer_; buf != nullptr; buf = next) {
next = buf->next();
delete buf;
}
}
int SyncProcessStdioPipe::Initialize(uv_loop_t* loop) {
CHECK_EQ(lifecycle_, kUninitialized);
int r = uv_pipe_init(loop, uv_pipe(), 0);
if (r < 0)
return r;
uv_pipe()->data = this;
lifecycle_ = kInitialized;
return 0;
}
int SyncProcessStdioPipe::Start() {
CHECK_EQ(lifecycle_, kInitialized);
// Set the busy flag already. If this function fails no recovery is
// possible.
lifecycle_ = kStarted;
if (readable()) {
if (input_buffer_.len > 0) {
CHECK_NE(input_buffer_.base, nullptr);
int r = uv_write(&write_req_,
uv_stream(),
&input_buffer_,
1,
WriteCallback);
if (r < 0)
return r;
}
int r = uv_shutdown(&shutdown_req_, uv_stream(), ShutdownCallback);
if (r < 0)
return r;
}
if (writable()) {
int r = uv_read_start(uv_stream(), AllocCallback, ReadCallback);
if (r < 0)
return r;
}
return 0;
}
void SyncProcessStdioPipe::Close() {
CHECK(lifecycle_ == kInitialized || lifecycle_ == kStarted);
uv_close(uv_handle(), CloseCallback);
lifecycle_ = kClosing;
}
Local<Object> SyncProcessStdioPipe::GetOutputAsBuffer(Environment* env) const {
size_t length = OutputLength();
Local<Object> js_buffer = Buffer::New(env, length).ToLocalChecked();
CopyOutput(Buffer::Data(js_buffer));
return js_buffer;
}
bool SyncProcessStdioPipe::readable() const {
return readable_;
}
bool SyncProcessStdioPipe::writable() const {
return writable_;
}
uv_stdio_flags SyncProcessStdioPipe::uv_flags() const {
unsigned int flags;
flags = UV_CREATE_PIPE;
if (readable())
flags |= UV_READABLE_PIPE;
if (writable())
flags |= UV_WRITABLE_PIPE;
return static_cast<uv_stdio_flags>(flags);
}
uv_pipe_t* SyncProcessStdioPipe::uv_pipe() const {
CHECK_LT(lifecycle_, kClosing);
return &uv_pipe_;
}
uv_stream_t* SyncProcessStdioPipe::uv_stream() const {
return reinterpret_cast<uv_stream_t*>(uv_pipe());
}
uv_handle_t* SyncProcessStdioPipe::uv_handle() const {
return reinterpret_cast<uv_handle_t*>(uv_pipe());
}
size_t SyncProcessStdioPipe::OutputLength() const {
SyncProcessOutputBuffer* buf;
size_t size = 0;
for (buf = first_output_buffer_; buf != nullptr; buf = buf->next())
size += buf->used();
return size;
}
void SyncProcessStdioPipe::CopyOutput(char* dest) const {
SyncProcessOutputBuffer* buf;
size_t offset = 0;
for (buf = first_output_buffer_; buf != nullptr; buf = buf->next())
offset += buf->Copy(dest + offset);
}
void SyncProcessStdioPipe::OnAlloc(size_t suggested_size, uv_buf_t* buf) {
// This function assumes that libuv will never allocate two buffers for the
// same stream at the same time. There's an assert in
// SyncProcessOutputBuffer::OnRead that would fail if this assumption was
// ever violated.
if (last_output_buffer_ == nullptr) {
// Allocate the first capture buffer.
first_output_buffer_ = new SyncProcessOutputBuffer();
last_output_buffer_ = first_output_buffer_;
} else if (last_output_buffer_->available() == 0) {
// The current capture buffer is full so get us a new one.
SyncProcessOutputBuffer* buf = new SyncProcessOutputBuffer();
last_output_buffer_->set_next(buf);
last_output_buffer_ = buf;
}
last_output_buffer_->OnAlloc(suggested_size, buf);
}
void SyncProcessStdioPipe::OnRead(const uv_buf_t* buf, ssize_t nread) {
if (nread == UV_EOF) {
// Libuv implicitly stops reading on EOF.
} else if (nread < 0) {
SetError(static_cast<int>(nread));
// At some point libuv should really implicitly stop reading on error.
uv_read_stop(uv_stream());
} else {
last_output_buffer_->OnRead(buf, nread);
process_handler_->IncrementBufferSizeAndCheckOverflow(nread);
}
}
void SyncProcessStdioPipe::OnWriteDone(int result) {
if (result < 0)
SetError(result);
}
void SyncProcessStdioPipe::OnShutdownDone(int result) {
if (result < 0)
SetError(result);
}
void SyncProcessStdioPipe::OnClose() {
lifecycle_ = kClosed;
}
void SyncProcessStdioPipe::SetError(int error) {
CHECK_NE(error, 0);
process_handler_->SetPipeError(error);
}
void SyncProcessStdioPipe::AllocCallback(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
SyncProcessStdioPipe* self =
reinterpret_cast<SyncProcessStdioPipe*>(handle->data);
self->OnAlloc(suggested_size, buf);
}
void SyncProcessStdioPipe::ReadCallback(uv_stream_t* stream,
ssize_t nread,
const uv_buf_t* buf) {
SyncProcessStdioPipe* self =
reinterpret_cast<SyncProcessStdioPipe*>(stream->data);
self->OnRead(buf, nread);
}
void SyncProcessStdioPipe::WriteCallback(uv_write_t* req, int result) {
SyncProcessStdioPipe* self =
reinterpret_cast<SyncProcessStdioPipe*>(req->handle->data);
self->OnWriteDone(result);
}
void SyncProcessStdioPipe::ShutdownCallback(uv_shutdown_t* req, int result) {
SyncProcessStdioPipe* self =
reinterpret_cast<SyncProcessStdioPipe*>(req->handle->data);
// On AIX, OS X and the BSDs, calling shutdown() on one end of a pipe
// when the other end has closed the connection fails with ENOTCONN.
// Libuv is not the right place to handle that because it can't tell
// if the error is genuine but we here can.
if (result == UV_ENOTCONN)
result = 0;
self->OnShutdownDone(result);
}
void SyncProcessStdioPipe::CloseCallback(uv_handle_t* handle) {
SyncProcessStdioPipe* self =
reinterpret_cast<SyncProcessStdioPipe*>(handle->data);
self->OnClose();
}
void SyncProcessRunner::Initialize(Local<Object> target,
Local<Value> unused,
Local<Context> context) {
Environment* env = Environment::GetCurrent(context);
env->SetMethod(target, "spawn", Spawn);
}
void SyncProcessRunner::Spawn(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
env->PrintSyncTrace();
SyncProcessRunner p(env);
Local<Value> result = p.Run(args[0]);
args.GetReturnValue().Set(result);
}
SyncProcessRunner::SyncProcessRunner(Environment* env)
: max_buffer_(0),
timeout_(0),
kill_signal_(SIGTERM),
uv_loop_(nullptr),
stdio_count_(0),
uv_stdio_containers_(nullptr),
stdio_pipes_(nullptr),
stdio_pipes_initialized_(false),
uv_process_options_(),
file_buffer_(nullptr),
args_buffer_(nullptr),
env_buffer_(nullptr),
cwd_buffer_(nullptr),
uv_process_(),
killed_(false),
buffered_output_size_(0),
exit_status_(-1),
term_signal_(-1),
uv_timer_(),
kill_timer_initialized_(false),
error_(0),
pipe_error_(0),
lifecycle_(kUninitialized),
env_(env) {
}
SyncProcessRunner::~SyncProcessRunner() {
CHECK_EQ(lifecycle_, kHandlesClosed);
if (stdio_pipes_ != nullptr) {
for (size_t i = 0; i < stdio_count_; i++) {
if (stdio_pipes_[i] != nullptr)
delete stdio_pipes_[i];
}
}
delete[] stdio_pipes_;
delete[] file_buffer_;
delete[] args_buffer_;
delete[] cwd_buffer_;
delete[] env_buffer_;
delete[] uv_stdio_containers_;
}
Environment* SyncProcessRunner::env() const {
return env_;
}
Local<Object> SyncProcessRunner::Run(Local<Value> options) {
EscapableHandleScope scope(env()->isolate());
CHECK_EQ(lifecycle_, kUninitialized);
TryInitializeAndRunLoop(options);
CloseHandlesAndDeleteLoop();
Local<Object> result = BuildResultObject();
return scope.Escape(result);
}
void SyncProcessRunner::TryInitializeAndRunLoop(Local<Value> options) {
int r;
// There is no recovery from failure inside TryInitializeAndRunLoop - the
// only option we'd have is to close all handles and destroy the loop.
CHECK_EQ(lifecycle_, kUninitialized);
lifecycle_ = kInitialized;
uv_loop_ = new uv_loop_t;
if (uv_loop_ == nullptr)
return SetError(UV_ENOMEM);
CHECK_EQ(uv_loop_init(uv_loop_), 0);
r = ParseOptions(options);
if (r < 0)
return SetError(r);
if (timeout_ > 0) {
r = uv_timer_init(uv_loop_, &uv_timer_);
if (r < 0)
return SetError(r);
uv_unref(reinterpret_cast<uv_handle_t*>(&uv_timer_));
uv_timer_.data = this;
kill_timer_initialized_ = true;
// Start the timer immediately. If uv_spawn fails then
// CloseHandlesAndDeleteLoop() will immediately close the timer handle
// which implicitly stops it, so there is no risk that the timeout callback
// runs when the process didn't start.
r = uv_timer_start(&uv_timer_, KillTimerCallback, timeout_, 0);
if (r < 0)
return SetError(r);
}
uv_process_options_.exit_cb = ExitCallback;
r = uv_spawn(uv_loop_, &uv_process_, &uv_process_options_);
if (r < 0)
return SetError(r);
uv_process_.data = this;
for (uint32_t i = 0; i < stdio_count_; i++) {
SyncProcessStdioPipe* h = stdio_pipes_[i];
if (h != nullptr) {
r = h->Start();
if (r < 0)
return SetPipeError(r);
}
}
r = uv_run(uv_loop_, UV_RUN_DEFAULT);
if (r < 0)
// We can't handle uv_run failure.
ABORT();
// If we get here the process should have exited.
CHECK_GE(exit_status_, 0);
}
void SyncProcessRunner::CloseHandlesAndDeleteLoop() {
CHECK_LT(lifecycle_, kHandlesClosed);
if (uv_loop_ != nullptr) {
CloseStdioPipes();
CloseKillTimer();
// Close the process handle when ExitCallback was not called.
uv_handle_t* uv_process_handle =
reinterpret_cast<uv_handle_t*>(&uv_process_);
// Close the process handle if it is still open. The handle type also
// needs to be checked because TryInitializeAndRunLoop() won't spawn a
// process if input validation fails.
if (uv_process_handle->type == UV_PROCESS &&
!uv_is_closing(uv_process_handle))
uv_close(uv_process_handle, nullptr);
// Give closing watchers a chance to finish closing and get their close
// callbacks called.
int r = uv_run(uv_loop_, UV_RUN_DEFAULT);
if (r < 0)
ABORT();
CHECK_EQ(uv_loop_close(uv_loop_), 0);
delete uv_loop_;
uv_loop_ = nullptr;
} else {
// If the loop doesn't exist, neither should any pipes or timers.
CHECK_EQ(false, stdio_pipes_initialized_);
CHECK_EQ(false, kill_timer_initialized_);
}
lifecycle_ = kHandlesClosed;
}
void SyncProcessRunner::CloseStdioPipes() {
CHECK_LT(lifecycle_, kHandlesClosed);
if (stdio_pipes_initialized_) {
CHECK_NE(stdio_pipes_, nullptr);
CHECK_NE(uv_loop_, nullptr);
for (uint32_t i = 0; i < stdio_count_; i++) {
if (stdio_pipes_[i] != nullptr)
stdio_pipes_[i]->Close();
}
stdio_pipes_initialized_ = false;
}
}
void SyncProcessRunner::CloseKillTimer() {
CHECK_LT(lifecycle_, kHandlesClosed);
if (kill_timer_initialized_) {
CHECK_GT(timeout_, 0);
CHECK_NE(uv_loop_, nullptr);
uv_handle_t* uv_timer_handle = reinterpret_cast<uv_handle_t*>(&uv_timer_);
uv_ref(uv_timer_handle);
uv_close(uv_timer_handle, KillTimerCloseCallback);
kill_timer_initialized_ = false;
}
}
void SyncProcessRunner::Kill() {
// Only attempt to kill once.
if (killed_)
return;
killed_ = true;
// We might get here even if the process we spawned has already exited. This
// could happen when our child process spawned another process which
// inherited (one of) the stdio pipes. In this case we won't attempt to send
// a signal to the process, however we will still close our end of the stdio
// pipes so this situation won't make us hang.
if (exit_status_ < 0) {
int r = uv_process_kill(&uv_process_, kill_signal_);
// If uv_kill failed with an error that isn't ESRCH, the user probably
// specified an invalid or unsupported signal. Signal this to the user as
// and error and kill the process with SIGKILL instead.
if (r < 0 && r != UV_ESRCH) {
SetError(r);
r = uv_process_kill(&uv_process_, SIGKILL);
CHECK(r >= 0 || r == UV_ESRCH);
}
}
// Close all stdio pipes.
CloseStdioPipes();
// Stop the timeout timer immediately.
CloseKillTimer();
}
void SyncProcessRunner::IncrementBufferSizeAndCheckOverflow(ssize_t length) {
buffered_output_size_ += length;
if (max_buffer_ > 0 && buffered_output_size_ > max_buffer_) {
SetError(UV_ENOBUFS);
Kill();
}
}
void SyncProcessRunner::OnExit(int64_t exit_status, int term_signal) {
if (exit_status < 0)
return SetError(static_cast<int>(exit_status));
exit_status_ = exit_status;
term_signal_ = term_signal;
}
void SyncProcessRunner::OnKillTimerTimeout() {
SetError(UV_ETIMEDOUT);
Kill();
}
int SyncProcessRunner::GetError() {
if (error_ != 0)
return error_;
else
return pipe_error_;
}
void SyncProcessRunner::SetError(int error) {
if (error_ == 0)
error_ = error;
}
void SyncProcessRunner::SetPipeError(int pipe_error) {
if (pipe_error_ == 0)
pipe_error_ = pipe_error;
}
Local<Object> SyncProcessRunner::BuildResultObject() {
EscapableHandleScope scope(env()->isolate());
Local<Object> js_result = Object::New(env()->isolate());
if (GetError() != 0) {
js_result->Set(env()->error_string(),
Integer::New(env()->isolate(), GetError()));
}
if (exit_status_ >= 0) {
if (term_signal_ > 0) {
js_result->Set(env()->status_string(), Null(env()->isolate()));
} else {
js_result->Set(env()->status_string(),
Number::New(env()->isolate(), static_cast<double>(exit_status_)));
}
} else {
// If exit_status_ < 0 the process was never started because of some error.
js_result->Set(env()->status_string(), Null(env()->isolate()));
}
if (term_signal_ > 0)
js_result->Set(env()->signal_string(),
String::NewFromUtf8(env()->isolate(), signo_string(term_signal_)));
else
js_result->Set(env()->signal_string(), Null(env()->isolate()));
if (exit_status_ >= 0)
js_result->Set(env()->output_string(), BuildOutputArray());
else
js_result->Set(env()->output_string(), Null(env()->isolate()));
js_result->Set(env()->pid_string(),
Number::New(env()->isolate(), uv_process_.pid));
return scope.Escape(js_result);
}
Local<Array> SyncProcessRunner::BuildOutputArray() {
CHECK_GE(lifecycle_, kInitialized);
CHECK_NE(stdio_pipes_, nullptr);
EscapableHandleScope scope(env()->isolate());
Local<Array> js_output = Array::New(env()->isolate(), stdio_count_);
for (uint32_t i = 0; i < stdio_count_; i++) {
SyncProcessStdioPipe* h = stdio_pipes_[i];
if (h != nullptr && h->writable())
js_output->Set(i, h->GetOutputAsBuffer(env()));
else
js_output->Set(i, Null(env()->isolate()));
}
return scope.Escape(js_output);
}
int SyncProcessRunner::ParseOptions(Local<Value> js_value) {
HandleScope scope(env()->isolate());
int r;
if (!js_value->IsObject())
return UV_EINVAL;
Local<Object> js_options = js_value.As<Object>();
Local<Value> js_file = js_options->Get(env()->file_string());
r = CopyJsString(js_file, &file_buffer_);
if (r < 0)
return r;
uv_process_options_.file = file_buffer_;
Local<Value> js_args = js_options->Get(env()->args_string());
r = CopyJsStringArray(js_args, &args_buffer_);
if (r < 0)
return r;
uv_process_options_.args = reinterpret_cast<char**>(args_buffer_);
Local<Value> js_cwd = js_options->Get(env()->cwd_string());
if (IsSet(js_cwd)) {
r = CopyJsString(js_cwd, &cwd_buffer_);
if (r < 0)
return r;
uv_process_options_.cwd = cwd_buffer_;
}
Local<Value> js_env_pairs = js_options->Get(env()->env_pairs_string());
if (IsSet(js_env_pairs)) {
r = CopyJsStringArray(js_env_pairs, &env_buffer_);
if (r < 0)
return r;
uv_process_options_.env = reinterpret_cast<char**>(env_buffer_);
}
Local<Value> js_uid = js_options->Get(env()->uid_string());
if (IsSet(js_uid)) {
CHECK(js_uid->IsInt32());
const int32_t uid = js_uid->Int32Value(env()->context()).FromJust();
uv_process_options_.uid = static_cast<uv_uid_t>(uid);
uv_process_options_.flags |= UV_PROCESS_SETUID;
}
Local<Value> js_gid = js_options->Get(env()->gid_string());
if (IsSet(js_gid)) {
CHECK(js_gid->IsInt32());
const int32_t gid = js_gid->Int32Value(env()->context()).FromJust();
uv_process_options_.gid = static_cast<uv_gid_t>(gid);
uv_process_options_.flags |= UV_PROCESS_SETGID;
}
if (js_options->Get(env()->detached_string())->BooleanValue())
uv_process_options_.flags |= UV_PROCESS_DETACHED;
Local<String> wba = env()->windows_verbatim_arguments_string();
if (js_options->Get(wba)->BooleanValue())
uv_process_options_.flags |= UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS;
Local<Value> js_timeout = js_options->Get(env()->timeout_string());
if (IsSet(js_timeout)) {
CHECK(js_timeout->IsNumber());
int64_t timeout = js_timeout->IntegerValue();
timeout_ = static_cast<uint64_t>(timeout);
}
Local<Value> js_max_buffer = js_options->Get(env()->max_buffer_string());
if (IsSet(js_max_buffer)) {
CHECK(js_max_buffer->IsNumber());
max_buffer_ = js_max_buffer->NumberValue();
}
Local<Value> js_kill_signal = js_options->Get(env()->kill_signal_string());
if (IsSet(js_kill_signal)) {
CHECK(js_kill_signal->IsInt32());
kill_signal_ = js_kill_signal->Int32Value();
}
Local<Value> js_stdio = js_options->Get(env()->stdio_string());
r = ParseStdioOptions(js_stdio);
if (r < 0)
return r;
return 0;
}
int SyncProcessRunner::ParseStdioOptions(Local<Value> js_value) {
HandleScope scope(env()->isolate());
Local<Array> js_stdio_options;
if (!js_value->IsArray())
return UV_EINVAL;
js_stdio_options = js_value.As<Array>();
stdio_count_ = js_stdio_options->Length();
uv_stdio_containers_ = new uv_stdio_container_t[stdio_count_];
stdio_pipes_ = new SyncProcessStdioPipe*[stdio_count_]();
stdio_pipes_initialized_ = true;
for (uint32_t i = 0; i < stdio_count_; i++) {
Local<Value> js_stdio_option = js_stdio_options->Get(i);
if (!js_stdio_option->IsObject())
return UV_EINVAL;
int r = ParseStdioOption(i, js_stdio_option.As<Object>());
if (r < 0)
return r;
}
uv_process_options_.stdio = uv_stdio_containers_;
uv_process_options_.stdio_count = stdio_count_;
return 0;
}
int SyncProcessRunner::ParseStdioOption(int child_fd,
Local<Object> js_stdio_option) {
Local<Value> js_type = js_stdio_option->Get(env()->type_string());
if (js_type->StrictEquals(env()->ignore_string())) {
return AddStdioIgnore(child_fd);
} else if (js_type->StrictEquals(env()->pipe_string())) {
Local<String> rs = env()->readable_string();
Local<String> ws = env()->writable_string();
bool readable = js_stdio_option->Get(rs)->BooleanValue();
bool writable = js_stdio_option->Get(ws)->BooleanValue();
uv_buf_t buf = uv_buf_init(nullptr, 0);
if (readable) {
Local<Value> input = js_stdio_option->Get(env()->input_string());
if (Buffer::HasInstance(input)) {
buf = uv_buf_init(Buffer::Data(input),
static_cast<unsigned int>(Buffer::Length(input)));
} else if (!input->IsUndefined() && !input->IsNull()) {
// Strings, numbers etc. are currently unsupported. It's not possible
// to create a buffer for them here because there is no way to free
// them afterwards.
return UV_EINVAL;
}
}
return AddStdioPipe(child_fd, readable, writable, buf);
} else if (js_type->StrictEquals(env()->inherit_string()) ||
js_type->StrictEquals(env()->fd_string())) {
int inherit_fd = js_stdio_option->Get(env()->fd_string())->Int32Value();
return AddStdioInheritFD(child_fd, inherit_fd);
} else {
CHECK(0 && "invalid child stdio type");
return UV_EINVAL;
}
}
int SyncProcessRunner::AddStdioIgnore(uint32_t child_fd) {
CHECK_LT(child_fd, stdio_count_);
CHECK_EQ(stdio_pipes_[child_fd], nullptr);
uv_stdio_containers_[child_fd].flags = UV_IGNORE;
return 0;
}
int SyncProcessRunner::AddStdioPipe(uint32_t child_fd,
bool readable,
bool writable,
uv_buf_t input_buffer) {
CHECK_LT(child_fd, stdio_count_);
CHECK_EQ(stdio_pipes_[child_fd], nullptr);
SyncProcessStdioPipe* h = new SyncProcessStdioPipe(this,
readable,
writable,
input_buffer);
int r = h->Initialize(uv_loop_);
if (r < 0) {
delete h;
return r;
}
stdio_pipes_[child_fd] = h;
uv_stdio_containers_[child_fd].flags = h->uv_flags();
uv_stdio_containers_[child_fd].data.stream = h->uv_stream();
return 0;
}
int SyncProcessRunner::AddStdioInheritFD(uint32_t child_fd, int inherit_fd) {
CHECK_LT(child_fd, stdio_count_);
CHECK_EQ(stdio_pipes_[child_fd], nullptr);
uv_stdio_containers_[child_fd].flags = UV_INHERIT_FD;
uv_stdio_containers_[child_fd].data.fd = inherit_fd;
return 0;
}
bool SyncProcessRunner::IsSet(Local<Value> value) {
return !value->IsUndefined() && !value->IsNull();
}
int SyncProcessRunner::CopyJsString(Local<Value> js_value,
const char** target) {
Isolate* isolate = env()->isolate();
Local<String> js_string;
size_t size, written;
char* buffer;
if (js_value->IsString())
js_string = js_value.As<String>();
else
js_string = js_value->ToString(env()->isolate());
// Include space for null terminator byte.
size = StringBytes::StorageSize(isolate, js_string, UTF8) + 1;
buffer = new char[size];
written = StringBytes::Write(isolate, buffer, -1, js_string, UTF8);
buffer[written] = '\0';
*target = buffer;
return 0;
}
int SyncProcessRunner::CopyJsStringArray(Local<Value> js_value,
char** target) {
Isolate* isolate = env()->isolate();
Local<Array> js_array;
uint32_t length;
size_t list_size, data_size, data_offset;
char** list;
char* buffer;
if (!js_value->IsArray())
return UV_EINVAL;
js_array = js_value.As<Array>()->Clone().As<Array>();
length = js_array->Length();
// Convert all array elements to string. Modify the js object itself if
// needed - it's okay since we cloned the original object.
for (uint32_t i = 0; i < length; i++) {
if (!js_array->Get(i)->IsString())
js_array->Set(i, js_array->Get(i)->ToString(env()->isolate()));
}
// Index has a pointer to every string element, plus one more for a final
// null pointer.
list_size = (length + 1) * sizeof *list;
// Compute the length of all strings. Include room for null terminator
// after every string. Align strings to cache lines.
data_size = 0;
for (uint32_t i = 0; i < length; i++) {
data_size += StringBytes::StorageSize(isolate, js_array->Get(i), UTF8) + 1;
data_size = ROUND_UP(data_size, sizeof(void*));
}
buffer = new char[list_size + data_size];
list = reinterpret_cast<char**>(buffer);
data_offset = list_size;
for (uint32_t i = 0; i < length; i++) {
list[i] = buffer + data_offset;
data_offset += StringBytes::Write(isolate,
buffer + data_offset,
-1,
js_array->Get(i),
UTF8);
buffer[data_offset++] = '\0';
data_offset = ROUND_UP(data_offset, sizeof(void*));
}
list[length] = nullptr;
*target = buffer;
return 0;
}
void SyncProcessRunner::ExitCallback(uv_process_t* handle,
int64_t exit_status,
int term_signal) {
SyncProcessRunner* self = reinterpret_cast<SyncProcessRunner*>(handle->data);
uv_close(reinterpret_cast<uv_handle_t*>(handle), nullptr);
self->OnExit(exit_status, term_signal);
}
void SyncProcessRunner::KillTimerCallback(uv_timer_t* handle) {
SyncProcessRunner* self = reinterpret_cast<SyncProcessRunner*>(handle->data);
self->OnKillTimerTimeout();
}
void SyncProcessRunner::KillTimerCloseCallback(uv_handle_t* handle) {
// No-op.
}
} // namespace node
NODE_MODULE_CONTEXT_AWARE_BUILTIN(spawn_sync,
node::SyncProcessRunner::Initialize)