You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

416 lines
13 KiB

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <iostream> // NOLINT(readability/streams)
#include "src/base/utils/random-number-generator.h"
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/mips/simulator-mips.h"
#include "src/v8.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
typedef void* (*F)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
#define __ masm->
static byte to_non_zero(int n) {
return static_cast<unsigned>(n) % 255 + 1;
}
static bool all_zeroes(const byte* beg, const byte* end) {
CHECK(beg);
CHECK(beg <= end);
while (beg < end) {
if (*beg++ != 0)
return false;
}
return true;
}
TEST(CopyBytes) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
const int data_size = 1 * KB;
size_t act_size;
// Allocate two blocks to copy data between.
byte* src_buffer =
static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
CHECK(src_buffer);
CHECK(act_size >= static_cast<size_t>(data_size));
byte* dest_buffer =
static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
CHECK(dest_buffer);
CHECK(act_size >= static_cast<size_t>(data_size));
// Storage for a0 and a1.
byte* a0_;
byte* a1_;
MacroAssembler assembler(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
// Code to be generated: The stuff in CopyBytes followed by a store of a0 and
// a1, respectively.
__ CopyBytes(a0, a1, a2, a3);
__ li(a2, Operand(reinterpret_cast<int>(&a0_)));
__ li(a3, Operand(reinterpret_cast<int>(&a1_)));
__ sw(a0, MemOperand(a2));
__ jr(ra);
__ sw(a1, MemOperand(a3));
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
::F f = FUNCTION_CAST< ::F>(code->entry());
// Initialise source data with non-zero bytes.
for (int i = 0; i < data_size; i++) {
src_buffer[i] = to_non_zero(i);
}
const int fuzz = 11;
for (int size = 0; size < 600; size++) {
for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
memset(dest_buffer, 0, data_size);
CHECK(dest + size < dest_buffer + data_size);
(void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int>(src),
reinterpret_cast<int>(dest), size, 0, 0);
// a0 and a1 should point at the first byte after the copied data.
CHECK_EQ(src + size, a0_);
CHECK_EQ(dest + size, a1_);
// Check that we haven't written outside the target area.
CHECK(all_zeroes(dest_buffer, dest));
CHECK(all_zeroes(dest + size, dest_buffer + data_size));
// Check the target area.
CHECK_EQ(0, memcmp(src, dest, size));
}
}
}
// Check that the source data hasn't been clobbered.
for (int i = 0; i < data_size; i++) {
CHECK(src_buffer[i] == to_non_zero(i));
}
}
static void TestNaN(const char *code) {
// NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
// tests checks the case where a x86 NaN value is serialized into the
// snapshot on the simulator during cross compilation.
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> context = CcTest::NewContext(PRINT_EXTENSION);
v8::Context::Scope context_scope(context);
v8::Local<v8::Script> script =
v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
v8::Local<v8::Object> result =
v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
i::Handle<i::JSArray> array1(reinterpret_cast<i::JSArray*>(*o));
i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements());
double value = a->get_scalar(0);
CHECK(std::isnan(value) &&
bit_cast<uint64_t>(value) ==
bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
}
TEST(NaN0) {
TestNaN(
"var result;"
"for (var i = 0; i < 2; i++) {"
" result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
"}"
"result;");
}
TEST(NaN1) {
TestNaN(
"var result;"
"for (var i = 0; i < 2; i++) {"
" result = [NaN];"
"}"
"result;");
}
TEST(jump_tables4) {
// Similar to test-assembler-mips jump_tables1, with extra test for branch
// trampoline required before emission of the dd table (where trampolines are
// blocked), and proper transition to long-branch mode.
// Regression test for v8:4294.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label near_start, end;
__ addiu(sp, sp, -4);
__ sw(ra, MemOperand(sp));
__ mov(v0, zero_reg);
__ Branch(&end);
__ bind(&near_start);
// Generate slightly less than 32K instructions, which will soon require
// trampoline for branch distance fixup.
for (int i = 0; i < 32768 - 256; ++i) {
__ addiu(v0, v0, 1);
}
Label done;
{
__ BlockTrampolinePoolFor(kNumCases + 6);
PredictableCodeSizeScope predictable(
masm, (kNumCases + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ sll(at, a0, 2); // In delay slot.
__ bind(&here);
__ addu(at, at, ra);
__ lw(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop(); // Branch delay slot nop.
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ Branch(&done);
}
__ bind(&done);
__ lw(ra, MemOperand(sp));
__ addiu(sp, sp, 4);
__ jr(ra);
__ nop();
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res =
reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables5) {
if (!IsMipsArchVariant(kMips32r6)) return;
// Similar to test-assembler-mips jump_tables1, with extra test for emitting a
// compact branch instruction before emission of the dd table.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done;
__ addiu(sp, sp, -4);
__ sw(ra, MemOperand(sp));
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 7 + 1);
PredictableCodeSizeScope predictable(
masm, kNumCases * kPointerSize + ((7 + 1) * Assembler::kInstrSize));
Label here;
__ bal(&here);
__ sll(at, a0, 2); // In delay slot.
__ bind(&here);
__ addu(at, at, ra);
__ lw(at, MemOperand(at, 6 * Assembler::kInstrSize));
__ jalr(at);
__ nop(); // Branch delay slot nop.
__ bc(&done);
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ jr(ra);
__ nop();
}
__ bind(&done);
__ lw(ra, MemOperand(sp));
__ addiu(sp, sp, 4);
__ jr(ra);
__ nop();
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int32_t res = reinterpret_cast<int32_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Lsa(v0, a0, a1, sa);
__ jr(ra);
__ nop();
CodeDesc desc;
assembler.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
uint32_t res = reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));
return res;
}
TEST(Lsa) {
CcTest::InitializeVM();
struct TestCaseLsa {
int32_t rt;
int32_t rs;
uint8_t sa;
uint32_t expected_res;
};
struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
{0x4, 0x1, 1, 0x6},
{0x4, 0x1, 2, 0x8},
{0x4, 0x1, 3, 0xc},
{0x4, 0x1, 4, 0x14},
{0x4, 0x1, 5, 0x24},
{0x0, 0x1, 1, 0x2},
{0x0, 0x1, 2, 0x4},
{0x0, 0x1, 3, 0x8},
{0x0, 0x1, 4, 0x10},
{0x0, 0x1, 5, 0x20},
{0x4, 0x0, 1, 0x4},
{0x4, 0x0, 2, 0x4},
{0x4, 0x0, 3, 0x4},
{0x4, 0x0, 4, 0x4},
{0x4, 0x0, 5, 0x4},
// Shift overflow.
{0x4, INT32_MAX, 1, 0x2},
{0x4, INT32_MAX >> 1, 2, 0x0},
{0x4, INT32_MAX >> 2, 3, 0xfffffffc},
{0x4, INT32_MAX >> 3, 4, 0xfffffff4},
{0x4, INT32_MAX >> 4, 5, 0xffffffe4},
// Signed addition overflow.
{INT32_MAX - 1, 0x1, 1, 0x80000000},
{INT32_MAX - 3, 0x1, 2, 0x80000000},
{INT32_MAX - 7, 0x1, 3, 0x80000000},
{INT32_MAX - 15, 0x1, 4, 0x80000000},
{INT32_MAX - 31, 0x1, 5, 0x80000000},
// Addition overflow.
{-2, 0x1, 1, 0x0},
{-4, 0x1, 2, 0x0},
{-8, 0x1, 3, 0x0},
{-16, 0x1, 4, 0x0},
{-32, 0x1, 5, 0x0}};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
tc[i].rt, tc[i].rs, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
#undef __