You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

439 lines
14 KiB

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_GLOBAL_HANDLES_H_
#define V8_GLOBAL_HANDLES_H_
#include "include/v8.h"
#include "include/v8-profiler.h"
#include "src/handles.h"
#include "src/list.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
class HeapStats;
class ObjectVisitor;
// Structure for tracking global handles.
// A single list keeps all the allocated global handles.
// Destroyed handles stay in the list but is added to the free list.
// At GC the destroyed global handles are removed from the free list
// and deallocated.
// Data structures for tracking object groups and implicit references.
// An object group is treated like a single JS object: if one of object in
// the group is alive, all objects in the same group are considered alive.
// An object group is used to simulate object relationship in a DOM tree.
// An implicit references group consists of two parts: a parent object and a
// list of children objects. If the parent is alive, all the children are alive
// too.
struct ObjectGroup {
explicit ObjectGroup(size_t length)
: info(NULL), length(length) {
DCHECK(length > 0);
objects = new Object**[length];
}
~ObjectGroup();
v8::RetainedObjectInfo* info;
Object*** objects;
size_t length;
};
struct ImplicitRefGroup {
ImplicitRefGroup(HeapObject** parent, size_t length)
: parent(parent), length(length) {
DCHECK(length > 0);
children = new Object**[length];
}
~ImplicitRefGroup();
HeapObject** parent;
Object*** children;
size_t length;
};
// For internal bookkeeping.
struct ObjectGroupConnection {
ObjectGroupConnection(UniqueId id, Object** object)
: id(id), object(object) {}
bool operator==(const ObjectGroupConnection& other) const {
return id == other.id;
}
bool operator<(const ObjectGroupConnection& other) const {
return id < other.id;
}
UniqueId id;
Object** object;
};
struct ObjectGroupRetainerInfo {
ObjectGroupRetainerInfo(UniqueId id, RetainedObjectInfo* info)
: id(id), info(info) {}
bool operator==(const ObjectGroupRetainerInfo& other) const {
return id == other.id;
}
bool operator<(const ObjectGroupRetainerInfo& other) const {
return id < other.id;
}
UniqueId id;
RetainedObjectInfo* info;
};
enum WeaknessType {
NORMAL_WEAK, // Embedder gets a handle to the dying object.
// In the following cases, the embedder gets the parameter they passed in
// earlier, and the 0, 1 or 2 first internal fields. Note that the internal
// fields must contain aligned non-V8 pointers. Getting pointers to V8
// objects through this interface would be GC unsafe so in that case the
// embedder gets a null pointer instead.
PHANTOM_WEAK_0_INTERNAL_FIELDS,
PHANTOM_WEAK_1_INTERNAL_FIELDS,
PHANTOM_WEAK_2_INTERNAL_FIELDS
};
class GlobalHandles {
public:
~GlobalHandles();
// Creates a new global handle that is alive until Destroy is called.
Handle<Object> Create(Object* value);
// Copy a global handle
static Handle<Object> CopyGlobal(Object** location);
// Destroy a global handle.
static void Destroy(Object** location);
typedef WeakCallbackData<v8::Value, void>::Callback WeakCallback;
// For a phantom weak reference, the callback does not have access to the
// dying object. Phantom weak references are preferred because they allow
// memory to be reclaimed in one GC cycle rather than two. However, for
// historical reasons the default is non-phantom.
enum PhantomState { Nonphantom, Phantom };
// Make the global handle weak and set the callback parameter for the
// handle. When the garbage collector recognizes that only weak global
// handles point to an object the callback function is invoked (for each
// handle) with the handle and corresponding parameter as arguments. By
// default the handle still contains a pointer to the object that is being
// collected. For this reason the object is not collected until the next
// GC. For a phantom weak handle the handle is cleared (set to a Smi)
// before the callback is invoked, but the handle can still be identified
// in the callback by using the location() of the handle.
static void MakeWeak(Object** location, void* parameter,
WeakCallback weak_callback);
// It would be nice to template this one, but it's really hard to get
// the template instantiator to work right if you do.
static void MakePhantom(Object** location, void* parameter,
int number_of_internal_fields,
PhantomCallbackData<void>::Callback weak_callback);
void RecordStats(HeapStats* stats);
// Returns the current number of weak handles.
int NumberOfWeakHandles();
// Returns the current number of weak handles to global objects.
// These handles are also included in NumberOfWeakHandles().
int NumberOfGlobalObjectWeakHandles();
// Returns the current number of handles to global objects.
int global_handles_count() const {
return number_of_global_handles_;
}
// Collect up data for the weak handle callbacks after GC has completed, but
// before memory is reclaimed.
void CollectAllPhantomCallbackData();
// Collect up data for the weak handle callbacks referenced by young
// generation after GC has completed, but before memory is reclaimed.
void CollectYoungPhantomCallbackData();
// Clear the weakness of a global handle.
static void* ClearWeakness(Object** location);
// Clear the weakness of a global handle.
static void MarkIndependent(Object** location);
// Mark the reference to this object externaly unreachable.
static void MarkPartiallyDependent(Object** location);
static bool IsIndependent(Object** location);
// Tells whether global handle is near death.
static bool IsNearDeath(Object** location);
// Tells whether global handle is weak.
static bool IsWeak(Object** location);
// Process pending weak handles.
// Returns the number of freed nodes.
int PostGarbageCollectionProcessing(GarbageCollector collector);
// Iterates over all strong handles.
void IterateStrongRoots(ObjectVisitor* v);
// Iterates over all handles.
void IterateAllRoots(ObjectVisitor* v);
// Iterates over all handles that have embedder-assigned class ID.
void IterateAllRootsWithClassIds(ObjectVisitor* v);
// Iterates over all handles in the new space that have embedder-assigned
// class ID.
void IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v);
// Iterates over all weak roots in heap.
void IterateWeakRoots(ObjectVisitor* v);
// Find all weak handles satisfying the callback predicate, mark
// them as pending.
void IdentifyWeakHandles(WeakSlotCallback f);
// NOTE: Three ...NewSpace... functions below are used during
// scavenge collections and iterate over sets of handles that are
// guaranteed to contain all handles holding new space objects (but
// may also include old space objects).
// Iterates over strong and dependent handles. See the node above.
void IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v);
// Finds weak independent or partially independent handles satisfying
// the callback predicate and marks them as pending. See the note above.
void IdentifyNewSpaceWeakIndependentHandles(WeakSlotCallbackWithHeap f);
// Iterates over weak independent or partially independent handles.
// See the note above.
void IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v);
// Iterate over objects in object groups that have at least one object
// which requires visiting. The callback has to return true if objects
// can be skipped and false otherwise.
bool IterateObjectGroups(ObjectVisitor* v, WeakSlotCallbackWithHeap can_skip);
// Add an object group.
// Should be only used in GC callback function before a collection.
// All groups are destroyed after a garbage collection.
void AddObjectGroup(Object*** handles,
size_t length,
v8::RetainedObjectInfo* info);
// Associates handle with the object group represented by id.
// Should be only used in GC callback function before a collection.
// All groups are destroyed after a garbage collection.
void SetObjectGroupId(Object** handle, UniqueId id);
// Set RetainedObjectInfo for an object group. Should not be called more than
// once for a group. Should not be called for a group which contains no
// handles.
void SetRetainedObjectInfo(UniqueId id, RetainedObjectInfo* info);
// Adds an implicit reference from a group to an object. Should be only used
// in GC callback function before a collection. All implicit references are
// destroyed after a mark-compact collection.
void SetReferenceFromGroup(UniqueId id, Object** child);
// Adds an implicit reference from a parent object to a child object. Should
// be only used in GC callback function before a collection. All implicit
// references are destroyed after a mark-compact collection.
void SetReference(HeapObject** parent, Object** child);
List<ObjectGroup*>* object_groups() {
ComputeObjectGroupsAndImplicitReferences();
return &object_groups_;
}
List<ImplicitRefGroup*>* implicit_ref_groups() {
ComputeObjectGroupsAndImplicitReferences();
return &implicit_ref_groups_;
}
// Remove bags, this should only happen after GC.
void RemoveObjectGroups();
void RemoveImplicitRefGroups();
// Tear down the global handle structure.
void TearDown();
Isolate* isolate() { return isolate_; }
#ifdef DEBUG
void PrintStats();
void Print();
#endif
private:
explicit GlobalHandles(Isolate* isolate);
// Migrates data from the internal representation (object_group_connections_,
// retainer_infos_ and implicit_ref_connections_) to the public and more
// efficient representation (object_groups_ and implicit_ref_groups_).
void ComputeObjectGroupsAndImplicitReferences();
// v8::internal::List is inefficient even for small number of elements, if we
// don't assign any initial capacity.
static const int kObjectGroupConnectionsCapacity = 20;
// Helpers for PostGarbageCollectionProcessing.
int PostScavengeProcessing(int initial_post_gc_processing_count);
int PostMarkSweepProcessing(int initial_post_gc_processing_count);
int DispatchPendingPhantomCallbacks();
void UpdateListOfNewSpaceNodes();
// Internal node structures.
class Node;
class NodeBlock;
class NodeIterator;
class PendingPhantomCallback;
Isolate* isolate_;
// Field always containing the number of handles to global objects.
int number_of_global_handles_;
// List of all allocated node blocks.
NodeBlock* first_block_;
// List of node blocks with used nodes.
NodeBlock* first_used_block_;
// Free list of nodes.
Node* first_free_;
// Contains all nodes holding new space objects. Note: when the list
// is accessed, some of the objects may have been promoted already.
List<Node*> new_space_nodes_;
int post_gc_processing_count_;
// Object groups and implicit references, public and more efficient
// representation.
List<ObjectGroup*> object_groups_;
List<ImplicitRefGroup*> implicit_ref_groups_;
// Object groups and implicit references, temporary representation while
// constructing the groups.
List<ObjectGroupConnection> object_group_connections_;
List<ObjectGroupRetainerInfo> retainer_infos_;
List<ObjectGroupConnection> implicit_ref_connections_;
List<PendingPhantomCallback> pending_phantom_callbacks_;
friend class Isolate;
DISALLOW_COPY_AND_ASSIGN(GlobalHandles);
};
class GlobalHandles::PendingPhantomCallback {
public:
typedef PhantomCallbackData<void> Data;
PendingPhantomCallback(Node* node, Data data, Data::Callback callback)
: node_(node), data_(data), callback_(callback) {}
void invoke();
Node* node() { return node_; }
private:
Node* node_;
Data data_;
Data::Callback callback_;
};
class EternalHandles {
public:
enum SingletonHandle {
I18N_TEMPLATE_ONE,
I18N_TEMPLATE_TWO,
DATE_CACHE_VERSION,
NUMBER_OF_SINGLETON_HANDLES
};
EternalHandles();
~EternalHandles();
int NumberOfHandles() { return size_; }
// Create an EternalHandle, overwriting the index.
void Create(Isolate* isolate, Object* object, int* index);
// Grab the handle for an existing EternalHandle.
inline Handle<Object> Get(int index) {
return Handle<Object>(GetLocation(index));
}
// Grab the handle for an existing SingletonHandle.
inline Handle<Object> GetSingleton(SingletonHandle singleton) {
DCHECK(Exists(singleton));
return Get(singleton_handles_[singleton]);
}
// Checks whether a SingletonHandle has been assigned.
inline bool Exists(SingletonHandle singleton) {
return singleton_handles_[singleton] != kInvalidIndex;
}
// Assign a SingletonHandle to an empty slot and returns the handle.
Handle<Object> CreateSingleton(Isolate* isolate,
Object* object,
SingletonHandle singleton) {
Create(isolate, object, &singleton_handles_[singleton]);
return Get(singleton_handles_[singleton]);
}
// Iterates over all handles.
void IterateAllRoots(ObjectVisitor* visitor);
// Iterates over all handles which might be in new space.
void IterateNewSpaceRoots(ObjectVisitor* visitor);
// Rebuilds new space list.
void PostGarbageCollectionProcessing(Heap* heap);
private:
static const int kInvalidIndex = -1;
static const int kShift = 8;
static const int kSize = 1 << kShift;
static const int kMask = 0xff;
// Gets the slot for an index
inline Object** GetLocation(int index) {
DCHECK(index >= 0 && index < size_);
return &blocks_[index >> kShift][index & kMask];
}
int size_;
List<Object**> blocks_;
List<int> new_space_indices_;
int singleton_handles_[NUMBER_OF_SINGLETON_HANDLES];
DISALLOW_COPY_AND_ASSIGN(EternalHandles);
};
} } // namespace v8::internal
#endif // V8_GLOBAL_HANDLES_H_