You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3499 lines
110 KiB

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_H_
#define V8_AST_H_
#include "src/v8.h"
#include "src/assembler.h"
#include "src/ast-value-factory.h"
#include "src/bailout-reason.h"
#include "src/factory.h"
#include "src/isolate.h"
#include "src/jsregexp.h"
#include "src/list-inl.h"
#include "src/modules.h"
#include "src/runtime/runtime.h"
#include "src/small-pointer-list.h"
#include "src/smart-pointers.h"
#include "src/token.h"
#include "src/types.h"
#include "src/utils.h"
#include "src/variables.h"
namespace v8 {
namespace internal {
// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.
// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.
// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.
#define DECLARATION_NODE_LIST(V) \
V(VariableDeclaration) \
V(FunctionDeclaration) \
V(ModuleDeclaration) \
V(ImportDeclaration) \
V(ExportDeclaration)
#define MODULE_NODE_LIST(V) \
V(ModuleLiteral) \
V(ModulePath) \
V(ModuleUrl)
#define STATEMENT_NODE_LIST(V) \
V(Block) \
V(ModuleStatement) \
V(ExpressionStatement) \
V(EmptyStatement) \
V(IfStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(WithStatement) \
V(SwitchStatement) \
V(DoWhileStatement) \
V(WhileStatement) \
V(ForStatement) \
V(ForInStatement) \
V(ForOfStatement) \
V(TryCatchStatement) \
V(TryFinallyStatement) \
V(DebuggerStatement)
#define EXPRESSION_NODE_LIST(V) \
V(FunctionLiteral) \
V(ClassLiteral) \
V(NativeFunctionLiteral) \
V(Conditional) \
V(VariableProxy) \
V(Literal) \
V(RegExpLiteral) \
V(ObjectLiteral) \
V(ArrayLiteral) \
V(Assignment) \
V(Yield) \
V(Throw) \
V(Property) \
V(Call) \
V(CallNew) \
V(CallRuntime) \
V(UnaryOperation) \
V(CountOperation) \
V(BinaryOperation) \
V(CompareOperation) \
V(ThisFunction) \
V(SuperReference) \
V(CaseClause)
#define AST_NODE_LIST(V) \
DECLARATION_NODE_LIST(V) \
MODULE_NODE_LIST(V) \
STATEMENT_NODE_LIST(V) \
EXPRESSION_NODE_LIST(V)
// Forward declarations
class AstNodeFactory;
class AstVisitor;
class Declaration;
class Module;
class BreakableStatement;
class Expression;
class IterationStatement;
class MaterializedLiteral;
class Statement;
class TypeFeedbackOracle;
class RegExpAlternative;
class RegExpAssertion;
class RegExpAtom;
class RegExpBackReference;
class RegExpCapture;
class RegExpCharacterClass;
class RegExpCompiler;
class RegExpDisjunction;
class RegExpEmpty;
class RegExpLookahead;
class RegExpQuantifier;
class RegExpText;
#define DEF_FORWARD_DECLARATION(type) class type;
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION
// Typedef only introduced to avoid unreadable code.
// Please do appreciate the required space in "> >".
typedef ZoneList<Handle<String> > ZoneStringList;
typedef ZoneList<Handle<Object> > ZoneObjectList;
#define DECLARE_NODE_TYPE(type) \
void Accept(AstVisitor* v) OVERRIDE; \
AstNode::NodeType node_type() const FINAL { return AstNode::k##type; } \
friend class AstNodeFactory;
enum AstPropertiesFlag {
kDontSelfOptimize,
kDontSoftInline,
kDontCache
};
class FeedbackVectorRequirements {
public:
FeedbackVectorRequirements(int slots, int ic_slots)
: slots_(slots), ic_slots_(ic_slots) {}
int slots() const { return slots_; }
int ic_slots() const { return ic_slots_; }
private:
int slots_;
int ic_slots_;
};
class AstProperties FINAL BASE_EMBEDDED {
public:
class Flags : public EnumSet<AstPropertiesFlag, int> {};
AstProperties() : node_count_(0) {}
Flags* flags() { return &flags_; }
int node_count() { return node_count_; }
void add_node_count(int count) { node_count_ += count; }
int slots() const { return spec_.slots(); }
void increase_slots(int count) { spec_.increase_slots(count); }
int ic_slots() const { return spec_.ic_slots(); }
void increase_ic_slots(int count) { spec_.increase_ic_slots(count); }
void SetKind(int ic_slot, Code::Kind kind) { spec_.SetKind(ic_slot, kind); }
const FeedbackVectorSpec& get_spec() const { return spec_; }
private:
Flags flags_;
int node_count_;
FeedbackVectorSpec spec_;
};
class AstNode: public ZoneObject {
public:
#define DECLARE_TYPE_ENUM(type) k##type,
enum NodeType {
AST_NODE_LIST(DECLARE_TYPE_ENUM)
kInvalid = -1
};
#undef DECLARE_TYPE_ENUM
void* operator new(size_t size, Zone* zone) { return zone->New(size); }
explicit AstNode(int position): position_(position) {}
virtual ~AstNode() {}
virtual void Accept(AstVisitor* v) = 0;
virtual NodeType node_type() const = 0;
int position() const { return position_; }
// Type testing & conversion functions overridden by concrete subclasses.
#define DECLARE_NODE_FUNCTIONS(type) \
bool Is##type() const { return node_type() == AstNode::k##type; } \
type* As##type() { \
return Is##type() ? reinterpret_cast<type*>(this) : NULL; \
} \
const type* As##type() const { \
return Is##type() ? reinterpret_cast<const type*>(this) : NULL; \
}
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
virtual BreakableStatement* AsBreakableStatement() { return NULL; }
virtual IterationStatement* AsIterationStatement() { return NULL; }
virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
// The interface for feedback slots, with default no-op implementations for
// node types which don't actually have this. Note that this is conceptually
// not really nice, but multiple inheritance would introduce yet another
// vtable entry per node, something we don't want for space reasons.
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) {
return FeedbackVectorRequirements(0, 0);
}
virtual void SetFirstFeedbackSlot(FeedbackVectorSlot slot) { UNREACHABLE(); }
virtual void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) {
UNREACHABLE();
}
// Each ICSlot stores a kind of IC which the participating node should know.
virtual Code::Kind FeedbackICSlotKind(int index) {
UNREACHABLE();
return Code::NUMBER_OF_KINDS;
}
private:
// Hidden to prevent accidental usage. It would have to load the
// current zone from the TLS.
void* operator new(size_t size);
friend class CaseClause; // Generates AST IDs.
int position_;
};
class Statement : public AstNode {
public:
explicit Statement(Zone* zone, int position) : AstNode(position) {}
bool IsEmpty() { return AsEmptyStatement() != NULL; }
virtual bool IsJump() const { return false; }
};
class SmallMapList FINAL {
public:
SmallMapList() {}
SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
void Clear() { list_.Clear(); }
void Sort() { list_.Sort(); }
bool is_empty() const { return list_.is_empty(); }
int length() const { return list_.length(); }
void AddMapIfMissing(Handle<Map> map, Zone* zone) {
if (!Map::TryUpdate(map).ToHandle(&map)) return;
for (int i = 0; i < length(); ++i) {
if (at(i).is_identical_to(map)) return;
}
Add(map, zone);
}
void FilterForPossibleTransitions(Map* root_map) {
for (int i = list_.length() - 1; i >= 0; i--) {
if (at(i)->FindRootMap() != root_map) {
list_.RemoveElement(list_.at(i));
}
}
}
void Add(Handle<Map> handle, Zone* zone) {
list_.Add(handle.location(), zone);
}
Handle<Map> at(int i) const {
return Handle<Map>(list_.at(i));
}
Handle<Map> first() const { return at(0); }
Handle<Map> last() const { return at(length() - 1); }
private:
// The list stores pointers to Map*, that is Map**, so it's GC safe.
SmallPointerList<Map*> list_;
DISALLOW_COPY_AND_ASSIGN(SmallMapList);
};
class Expression : public AstNode {
public:
enum Context {
// Not assigned a context yet, or else will not be visited during
// code generation.
kUninitialized,
// Evaluated for its side effects.
kEffect,
// Evaluated for its value (and side effects).
kValue,
// Evaluated for control flow (and side effects).
kTest
};
virtual bool IsValidReferenceExpression() const { return false; }
// Helpers for ToBoolean conversion.
virtual bool ToBooleanIsTrue() const { return false; }
virtual bool ToBooleanIsFalse() const { return false; }
// Symbols that cannot be parsed as array indices are considered property
// names. We do not treat symbols that can be array indexes as property
// names because [] for string objects is handled only by keyed ICs.
virtual bool IsPropertyName() const { return false; }
// True iff the expression is a literal represented as a smi.
bool IsSmiLiteral() const;
// True iff the expression is a string literal.
bool IsStringLiteral() const;
// True iff the expression is the null literal.
bool IsNullLiteral() const;
// True if we can prove that the expression is the undefined literal.
bool IsUndefinedLiteral(Isolate* isolate) const;
// Expression type bounds
Bounds bounds() const { return bounds_; }
void set_bounds(Bounds bounds) { bounds_ = bounds; }
// Whether the expression is parenthesized
bool is_parenthesized() const {
return IsParenthesizedField::decode(bit_field_);
}
bool is_multi_parenthesized() const {
return IsMultiParenthesizedField::decode(bit_field_);
}
void increase_parenthesization_level() {
bit_field_ =
IsMultiParenthesizedField::update(bit_field_, is_parenthesized());
bit_field_ = IsParenthesizedField::update(bit_field_, true);
}
// Type feedback information for assignments and properties.
virtual bool IsMonomorphic() {
UNREACHABLE();
return false;
}
virtual SmallMapList* GetReceiverTypes() {
UNREACHABLE();
return NULL;
}
virtual KeyedAccessStoreMode GetStoreMode() const {
UNREACHABLE();
return STANDARD_STORE;
}
virtual IcCheckType GetKeyType() const {
UNREACHABLE();
return ELEMENT;
}
// TODO(rossberg): this should move to its own AST node eventually.
virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
byte to_boolean_types() const {
return ToBooleanTypesField::decode(bit_field_);
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId id() const { return BailoutId(local_id(0)); }
TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
protected:
Expression(Zone* zone, int pos)
: AstNode(pos),
base_id_(BailoutId::None().ToInt()),
bounds_(Bounds::Unbounded(zone)),
bit_field_(0) {}
static int parent_num_ids() { return 0; }
void set_to_boolean_types(byte types) {
bit_field_ = ToBooleanTypesField::update(bit_field_, types);
}
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
Bounds bounds_;
class ToBooleanTypesField : public BitField16<byte, 0, 8> {};
class IsParenthesizedField : public BitField16<bool, 8, 1> {};
class IsMultiParenthesizedField : public BitField16<bool, 9, 1> {};
uint16_t bit_field_;
// Ends with 16-bit field; deriving classes in turn begin with
// 16-bit fields for optimum packing efficiency.
};
class BreakableStatement : public Statement {
public:
enum BreakableType {
TARGET_FOR_ANONYMOUS,
TARGET_FOR_NAMED_ONLY
};
// The labels associated with this statement. May be NULL;
// if it is != NULL, guaranteed to contain at least one entry.
ZoneList<const AstRawString*>* labels() const { return labels_; }
// Type testing & conversion.
BreakableStatement* AsBreakableStatement() FINAL { return this; }
// Code generation
Label* break_target() { return &break_target_; }
// Testers.
bool is_target_for_anonymous() const {
return breakable_type_ == TARGET_FOR_ANONYMOUS;
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
BailoutId ExitId() const { return BailoutId(local_id(1)); }
protected:
BreakableStatement(Zone* zone, ZoneList<const AstRawString*>* labels,
BreakableType breakable_type, int position)
: Statement(zone, position),
labels_(labels),
breakable_type_(breakable_type),
base_id_(BailoutId::None().ToInt()) {
DCHECK(labels == NULL || labels->length() > 0);
}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
ZoneList<const AstRawString*>* labels_;
BreakableType breakable_type_;
Label break_target_;
int base_id_;
};
class Block FINAL : public BreakableStatement {
public:
DECLARE_NODE_TYPE(Block)
void AddStatement(Statement* statement, Zone* zone) {
statements_.Add(statement, zone);
}
ZoneList<Statement*>* statements() { return &statements_; }
bool is_initializer_block() const { return is_initializer_block_; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId DeclsId() const { return BailoutId(local_id(0)); }
bool IsJump() const OVERRIDE {
return !statements_.is_empty() && statements_.last()->IsJump()
&& labels() == NULL; // Good enough as an approximation...
}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
protected:
Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
bool is_initializer_block, int pos)
: BreakableStatement(zone, labels, TARGET_FOR_NAMED_ONLY, pos),
statements_(capacity, zone),
is_initializer_block_(is_initializer_block),
scope_(NULL) {}
static int parent_num_ids() { return BreakableStatement::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
ZoneList<Statement*> statements_;
bool is_initializer_block_;
Scope* scope_;
};
class Declaration : public AstNode {
public:
VariableProxy* proxy() const { return proxy_; }
VariableMode mode() const { return mode_; }
Scope* scope() const { return scope_; }
virtual InitializationFlag initialization() const = 0;
virtual bool IsInlineable() const;
protected:
Declaration(Zone* zone, VariableProxy* proxy, VariableMode mode, Scope* scope,
int pos)
: AstNode(pos), mode_(mode), proxy_(proxy), scope_(scope) {
DCHECK(IsDeclaredVariableMode(mode));
}
private:
VariableMode mode_;
VariableProxy* proxy_;
// Nested scope from which the declaration originated.
Scope* scope_;
};
class VariableDeclaration FINAL : public Declaration {
public:
DECLARE_NODE_TYPE(VariableDeclaration)
InitializationFlag initialization() const OVERRIDE {
return mode() == VAR ? kCreatedInitialized : kNeedsInitialization;
}
protected:
VariableDeclaration(Zone* zone,
VariableProxy* proxy,
VariableMode mode,
Scope* scope,
int pos)
: Declaration(zone, proxy, mode, scope, pos) {
}
};
class FunctionDeclaration FINAL : public Declaration {
public:
DECLARE_NODE_TYPE(FunctionDeclaration)
FunctionLiteral* fun() const { return fun_; }
InitializationFlag initialization() const OVERRIDE {
return kCreatedInitialized;
}
bool IsInlineable() const OVERRIDE;
protected:
FunctionDeclaration(Zone* zone,
VariableProxy* proxy,
VariableMode mode,
FunctionLiteral* fun,
Scope* scope,
int pos)
: Declaration(zone, proxy, mode, scope, pos),
fun_(fun) {
DCHECK(mode == VAR || mode == LET || mode == CONST);
DCHECK(fun != NULL);
}
private:
FunctionLiteral* fun_;
};
class ModuleDeclaration FINAL : public Declaration {
public:
DECLARE_NODE_TYPE(ModuleDeclaration)
Module* module() const { return module_; }
InitializationFlag initialization() const OVERRIDE {
return kCreatedInitialized;
}
protected:
ModuleDeclaration(Zone* zone, VariableProxy* proxy, Module* module,
Scope* scope, int pos)
: Declaration(zone, proxy, CONST, scope, pos), module_(module) {}
private:
Module* module_;
};
class ImportDeclaration FINAL : public Declaration {
public:
DECLARE_NODE_TYPE(ImportDeclaration)
Module* module() const { return module_; }
InitializationFlag initialization() const OVERRIDE {
return kCreatedInitialized;
}
protected:
ImportDeclaration(Zone* zone,
VariableProxy* proxy,
Module* module,
Scope* scope,
int pos)
: Declaration(zone, proxy, LET, scope, pos),
module_(module) {
}
private:
Module* module_;
};
class ExportDeclaration FINAL : public Declaration {
public:
DECLARE_NODE_TYPE(ExportDeclaration)
InitializationFlag initialization() const OVERRIDE {
return kCreatedInitialized;
}
protected:
ExportDeclaration(Zone* zone, VariableProxy* proxy, Scope* scope, int pos)
: Declaration(zone, proxy, LET, scope, pos) {}
};
class Module : public AstNode {
public:
ModuleDescriptor* descriptor() const { return descriptor_; }
Block* body() const { return body_; }
protected:
Module(Zone* zone, int pos)
: AstNode(pos), descriptor_(ModuleDescriptor::New(zone)), body_(NULL) {}
Module(Zone* zone, ModuleDescriptor* descriptor, int pos, Block* body = NULL)
: AstNode(pos), descriptor_(descriptor), body_(body) {}
private:
ModuleDescriptor* descriptor_;
Block* body_;
};
class ModuleLiteral FINAL : public Module {
public:
DECLARE_NODE_TYPE(ModuleLiteral)
protected:
ModuleLiteral(Zone* zone, Block* body, ModuleDescriptor* descriptor, int pos)
: Module(zone, descriptor, pos, body) {}
};
class ModulePath FINAL : public Module {
public:
DECLARE_NODE_TYPE(ModulePath)
Module* module() const { return module_; }
Handle<String> name() const { return name_->string(); }
protected:
ModulePath(Zone* zone, Module* module, const AstRawString* name, int pos)
: Module(zone, pos), module_(module), name_(name) {}
private:
Module* module_;
const AstRawString* name_;
};
class ModuleUrl FINAL : public Module {
public:
DECLARE_NODE_TYPE(ModuleUrl)
Handle<String> url() const { return url_; }
protected:
ModuleUrl(Zone* zone, Handle<String> url, int pos)
: Module(zone, pos), url_(url) {
}
private:
Handle<String> url_;
};
class ModuleStatement FINAL : public Statement {
public:
DECLARE_NODE_TYPE(ModuleStatement)
Block* body() const { return body_; }
protected:
ModuleStatement(Zone* zone, Block* body, int pos)
: Statement(zone, pos), body_(body) {}
private:
Block* body_;
};
class IterationStatement : public BreakableStatement {
public:
// Type testing & conversion.
IterationStatement* AsIterationStatement() FINAL { return this; }
Statement* body() const { return body_; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
virtual BailoutId ContinueId() const = 0;
virtual BailoutId StackCheckId() const = 0;
// Code generation
Label* continue_target() { return &continue_target_; }
protected:
IterationStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
body_(NULL) {}
static int parent_num_ids() { return BreakableStatement::num_ids(); }
void Initialize(Statement* body) { body_ = body; }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Statement* body_;
Label continue_target_;
};
class DoWhileStatement FINAL : public IterationStatement {
public:
DECLARE_NODE_TYPE(DoWhileStatement)
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ContinueId() const OVERRIDE { return BailoutId(local_id(0)); }
BailoutId StackCheckId() const OVERRIDE { return BackEdgeId(); }
BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
protected:
DoWhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(zone, labels, pos), cond_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* cond_;
};
class WhileStatement FINAL : public IterationStatement {
public:
DECLARE_NODE_TYPE(WhileStatement)
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId ContinueId() const OVERRIDE { return EntryId(); }
BailoutId StackCheckId() const OVERRIDE { return BodyId(); }
BailoutId BodyId() const { return BailoutId(local_id(0)); }
protected:
WhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(zone, labels, pos), cond_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* cond_;
};
class ForStatement FINAL : public IterationStatement {
public:
DECLARE_NODE_TYPE(ForStatement)
void Initialize(Statement* init,
Expression* cond,
Statement* next,
Statement* body) {
IterationStatement::Initialize(body);
init_ = init;
cond_ = cond;
next_ = next;
}
Statement* init() const { return init_; }
Expression* cond() const { return cond_; }
Statement* next() const { return next_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ContinueId() const OVERRIDE { return BailoutId(local_id(0)); }
BailoutId StackCheckId() const OVERRIDE { return BodyId(); }
BailoutId BodyId() const { return BailoutId(local_id(1)); }
protected:
ForStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(zone, labels, pos),
init_(NULL),
cond_(NULL),
next_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Statement* init_;
Expression* cond_;
Statement* next_;
};
class ForEachStatement : public IterationStatement {
public:
enum VisitMode {
ENUMERATE, // for (each in subject) body;
ITERATE // for (each of subject) body;
};
void Initialize(Expression* each, Expression* subject, Statement* body) {
IterationStatement::Initialize(body);
each_ = each;
subject_ = subject;
}
Expression* each() const { return each_; }
Expression* subject() const { return subject_; }
protected:
ForEachStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(zone, labels, pos), each_(NULL), subject_(NULL) {}
private:
Expression* each_;
Expression* subject_;
};
class ForInStatement FINAL : public ForEachStatement {
public:
DECLARE_NODE_TYPE(ForInStatement)
Expression* enumerable() const {
return subject();
}
// Type feedback information.
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(1, 0);
}
void SetFirstFeedbackSlot(FeedbackVectorSlot slot) OVERRIDE {
for_in_feedback_slot_ = slot;
}
FeedbackVectorSlot ForInFeedbackSlot() {
DCHECK(!for_in_feedback_slot_.IsInvalid());
return for_in_feedback_slot_;
}
enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
ForInType for_in_type() const { return for_in_type_; }
void set_for_in_type(ForInType type) { for_in_type_ = type; }
static int num_ids() { return parent_num_ids() + 5; }
BailoutId BodyId() const { return BailoutId(local_id(0)); }
BailoutId PrepareId() const { return BailoutId(local_id(1)); }
BailoutId EnumId() const { return BailoutId(local_id(2)); }
BailoutId ToObjectId() const { return BailoutId(local_id(3)); }
BailoutId AssignmentId() const { return BailoutId(local_id(4)); }
BailoutId ContinueId() const OVERRIDE { return EntryId(); }
BailoutId StackCheckId() const OVERRIDE { return BodyId(); }
protected:
ForInStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(zone, labels, pos),
for_in_type_(SLOW_FOR_IN),
for_in_feedback_slot_(FeedbackVectorSlot::Invalid()) {}
static int parent_num_ids() { return ForEachStatement::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
ForInType for_in_type_;
FeedbackVectorSlot for_in_feedback_slot_;
};
class ForOfStatement FINAL : public ForEachStatement {
public:
DECLARE_NODE_TYPE(ForOfStatement)
void Initialize(Expression* each,
Expression* subject,
Statement* body,
Expression* assign_iterator,
Expression* next_result,
Expression* result_done,
Expression* assign_each) {
ForEachStatement::Initialize(each, subject, body);
assign_iterator_ = assign_iterator;
next_result_ = next_result;
result_done_ = result_done;
assign_each_ = assign_each;
}
Expression* iterable() const {
return subject();
}
// var iterator = subject[Symbol.iterator]();
Expression* assign_iterator() const {
return assign_iterator_;
}
// var result = iterator.next();
Expression* next_result() const {
return next_result_;
}
// result.done
Expression* result_done() const {
return result_done_;
}
// each = result.value
Expression* assign_each() const {
return assign_each_;
}
BailoutId ContinueId() const OVERRIDE { return EntryId(); }
BailoutId StackCheckId() const OVERRIDE { return BackEdgeId(); }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId BackEdgeId() const { return BailoutId(local_id(0)); }
protected:
ForOfStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(zone, labels, pos),
assign_iterator_(NULL),
next_result_(NULL),
result_done_(NULL),
assign_each_(NULL) {}
static int parent_num_ids() { return ForEachStatement::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* assign_iterator_;
Expression* next_result_;
Expression* result_done_;
Expression* assign_each_;
};
class ExpressionStatement FINAL : public Statement {
public:
DECLARE_NODE_TYPE(ExpressionStatement)
void set_expression(Expression* e) { expression_ = e; }
Expression* expression() const { return expression_; }
bool IsJump() const OVERRIDE { return expression_->IsThrow(); }
protected:
ExpressionStatement(Zone* zone, Expression* expression, int pos)
: Statement(zone, pos), expression_(expression) { }
private:
Expression* expression_;
};
class JumpStatement : public Statement {
public:
bool IsJump() const FINAL { return true; }
protected:
explicit JumpStatement(Zone* zone, int pos) : Statement(zone, pos) {}
};
class ContinueStatement FINAL : public JumpStatement {
public:
DECLARE_NODE_TYPE(ContinueStatement)
IterationStatement* target() const { return target_; }
protected:
explicit ContinueStatement(Zone* zone, IterationStatement* target, int pos)
: JumpStatement(zone, pos), target_(target) { }
private:
IterationStatement* target_;
};
class BreakStatement FINAL : public JumpStatement {
public:
DECLARE_NODE_TYPE(BreakStatement)
BreakableStatement* target() const { return target_; }
protected:
explicit BreakStatement(Zone* zone, BreakableStatement* target, int pos)
: JumpStatement(zone, pos), target_(target) { }
private:
BreakableStatement* target_;
};
class ReturnStatement FINAL : public JumpStatement {
public:
DECLARE_NODE_TYPE(ReturnStatement)
Expression* expression() const { return expression_; }
protected:
explicit ReturnStatement(Zone* zone, Expression* expression, int pos)
: JumpStatement(zone, pos), expression_(expression) { }
private:
Expression* expression_;
};
class WithStatement FINAL : public Statement {
public:
DECLARE_NODE_TYPE(WithStatement)
Scope* scope() { return scope_; }
Expression* expression() const { return expression_; }
Statement* statement() const { return statement_; }
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
protected:
WithStatement(Zone* zone, Scope* scope, Expression* expression,
Statement* statement, int pos)
: Statement(zone, pos),
scope_(scope),
expression_(expression),
statement_(statement),
base_id_(BailoutId::None().ToInt()) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Scope* scope_;
Expression* expression_;
Statement* statement_;
int base_id_;
};
class CaseClause FINAL : public Expression {
public:
DECLARE_NODE_TYPE(CaseClause)
bool is_default() const { return label_ == NULL; }
Expression* label() const {
CHECK(!is_default());
return label_;
}
Label* body_target() { return &body_target_; }
ZoneList<Statement*>* statements() const { return statements_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
Type* compare_type() { return compare_type_; }
void set_compare_type(Type* type) { compare_type_ = type; }
protected:
static int parent_num_ids() { return Expression::num_ids(); }
private:
CaseClause(Zone* zone, Expression* label, ZoneList<Statement*>* statements,
int pos);
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* label_;
Label body_target_;
ZoneList<Statement*>* statements_;
Type* compare_type_;
};
class SwitchStatement FINAL : public BreakableStatement {
public:
DECLARE_NODE_TYPE(SwitchStatement)
void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
tag_ = tag;
cases_ = cases;
}
Expression* tag() const { return tag_; }
ZoneList<CaseClause*>* cases() const { return cases_; }
protected:
SwitchStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
: BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
tag_(NULL),
cases_(NULL) {}
private:
Expression* tag_;
ZoneList<CaseClause*>* cases_;
};
// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement FINAL : public Statement {
public:
DECLARE_NODE_TYPE(IfStatement)
bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
Expression* condition() const { return condition_; }
Statement* then_statement() const { return then_statement_; }
Statement* else_statement() const { return else_statement_; }
bool IsJump() const OVERRIDE {
return HasThenStatement() && then_statement()->IsJump()
&& HasElseStatement() && else_statement()->IsJump();
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 3; }
BailoutId IfId() const { return BailoutId(local_id(0)); }
BailoutId ThenId() const { return BailoutId(local_id(1)); }
BailoutId ElseId() const { return BailoutId(local_id(2)); }
protected:
IfStatement(Zone* zone, Expression* condition, Statement* then_statement,
Statement* else_statement, int pos)
: Statement(zone, pos),
condition_(condition),
then_statement_(then_statement),
else_statement_(else_statement),
base_id_(BailoutId::None().ToInt()) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* condition_;
Statement* then_statement_;
Statement* else_statement_;
int base_id_;
};
class TryStatement : public Statement {
public:
int index() const { return index_; }
Block* try_block() const { return try_block_; }
protected:
TryStatement(Zone* zone, int index, Block* try_block, int pos)
: Statement(zone, pos), index_(index), try_block_(try_block) {}
private:
// Unique (per-function) index of this handler. This is not an AST ID.
int index_;
Block* try_block_;
};
class TryCatchStatement FINAL : public TryStatement {
public:
DECLARE_NODE_TYPE(TryCatchStatement)
Scope* scope() { return scope_; }
Variable* variable() { return variable_; }
Block* catch_block() const { return catch_block_; }
protected:
TryCatchStatement(Zone* zone,
int index,
Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos)
: TryStatement(zone, index, try_block, pos),
scope_(scope),
variable_(variable),
catch_block_(catch_block) {
}
private:
Scope* scope_;
Variable* variable_;
Block* catch_block_;
};
class TryFinallyStatement FINAL : public TryStatement {
public:
DECLARE_NODE_TYPE(TryFinallyStatement)
Block* finally_block() const { return finally_block_; }
protected:
TryFinallyStatement(
Zone* zone, int index, Block* try_block, Block* finally_block, int pos)
: TryStatement(zone, index, try_block, pos),
finally_block_(finally_block) { }
private:
Block* finally_block_;
};
class DebuggerStatement FINAL : public Statement {
public:
DECLARE_NODE_TYPE(DebuggerStatement)
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
protected:
explicit DebuggerStatement(Zone* zone, int pos)
: Statement(zone, pos), base_id_(BailoutId::None().ToInt()) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
};
class EmptyStatement FINAL : public Statement {
public:
DECLARE_NODE_TYPE(EmptyStatement)
protected:
explicit EmptyStatement(Zone* zone, int pos): Statement(zone, pos) {}
};
class Literal FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Literal)
bool IsPropertyName() const OVERRIDE { return value_->IsPropertyName(); }
Handle<String> AsPropertyName() {
DCHECK(IsPropertyName());
return Handle<String>::cast(value());
}
const AstRawString* AsRawPropertyName() {
DCHECK(IsPropertyName());
return value_->AsString();
}
bool ToBooleanIsTrue() const OVERRIDE { return value()->BooleanValue(); }
bool ToBooleanIsFalse() const OVERRIDE { return !value()->BooleanValue(); }
Handle<Object> value() const { return value_->value(); }
const AstValue* raw_value() const { return value_; }
// Support for using Literal as a HashMap key. NOTE: Currently, this works
// only for string and number literals!
uint32_t Hash();
static bool Match(void* literal1, void* literal2);
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId LiteralFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
protected:
Literal(Zone* zone, const AstValue* value, int position)
: Expression(zone, position), value_(value) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
const AstValue* value_;
};
// Base class for literals that needs space in the corresponding JSFunction.
class MaterializedLiteral : public Expression {
public:
virtual MaterializedLiteral* AsMaterializedLiteral() { return this; }
int literal_index() { return literal_index_; }
int depth() const {
// only callable after initialization.
DCHECK(depth_ >= 1);
return depth_;
}
protected:
MaterializedLiteral(Zone* zone, int literal_index, int pos)
: Expression(zone, pos),
literal_index_(literal_index),
is_simple_(false),
depth_(0) {}
// A materialized literal is simple if the values consist of only
// constants and simple object and array literals.
bool is_simple() const { return is_simple_; }
void set_is_simple(bool is_simple) { is_simple_ = is_simple; }
friend class CompileTimeValue;
void set_depth(int depth) {
DCHECK(depth >= 1);
depth_ = depth;
}
// Populate the constant properties/elements fixed array.
void BuildConstants(Isolate* isolate);
friend class ArrayLiteral;
friend class ObjectLiteral;
// If the expression is a literal, return the literal value;
// if the expression is a materialized literal and is simple return a
// compile time value as encoded by CompileTimeValue::GetValue().
// Otherwise, return undefined literal as the placeholder
// in the object literal boilerplate.
Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
private:
int literal_index_;
bool is_simple_;
int depth_;
};
// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class ObjectLiteralProperty FINAL : public ZoneObject {
public:
enum Kind {
CONSTANT, // Property with constant value (compile time).
COMPUTED, // Property with computed value (execution time).
MATERIALIZED_LITERAL, // Property value is a materialized literal.
GETTER, SETTER, // Property is an accessor function.
PROTOTYPE // Property is __proto__.
};
Expression* key() { return key_; }
Expression* value() { return value_; }
Kind kind() { return kind_; }
// Type feedback information.
void RecordTypeFeedback(TypeFeedbackOracle* oracle);
bool IsMonomorphic() { return !receiver_type_.is_null(); }
Handle<Map> GetReceiverType() { return receiver_type_; }
bool IsCompileTimeValue();
void set_emit_store(bool emit_store);
bool emit_store();
bool is_static() const { return is_static_; }
bool is_computed_name() const { return is_computed_name_; }
protected:
friend class AstNodeFactory;
ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_static, bool is_computed_name);
ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
Expression* value, bool is_static,
bool is_computed_name);
private:
Expression* key_;
Expression* value_;
Kind kind_;
bool emit_store_;
bool is_static_;
bool is_computed_name_;
Handle<Map> receiver_type_;
};
// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral FINAL : public MaterializedLiteral {
public:
typedef ObjectLiteralProperty Property;
DECLARE_NODE_TYPE(ObjectLiteral)
Handle<FixedArray> constant_properties() const {
return constant_properties_;
}
ZoneList<Property*>* properties() const { return properties_; }
bool fast_elements() const { return fast_elements_; }
bool may_store_doubles() const { return may_store_doubles_; }
bool has_function() const { return has_function_; }
// Decide if a property should be in the object boilerplate.
static bool IsBoilerplateProperty(Property* property);
// Populate the constant properties fixed array.
void BuildConstantProperties(Isolate* isolate);
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
void CalculateEmitStore(Zone* zone);
// Assemble bitfield of flags for the CreateObjectLiteral helper.
int ComputeFlags() const {
int flags = fast_elements() ? kFastElements : kNoFlags;
flags |= has_function() ? kHasFunction : kNoFlags;
return flags;
}
enum Flags {
kNoFlags = 0,
kFastElements = 1,
kHasFunction = 1 << 1
};
struct Accessors: public ZoneObject {
Accessors() : getter(NULL), setter(NULL) {}
Expression* getter;
Expression* setter;
};
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
// Return an AST id for a property that is used in simulate instructions.
BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 1)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ObjectLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 1 + properties()->length(); }
protected:
ObjectLiteral(Zone* zone, ZoneList<Property*>* properties, int literal_index,
int boilerplate_properties, bool has_function, int pos)
: MaterializedLiteral(zone, literal_index, pos),
properties_(properties),
boilerplate_properties_(boilerplate_properties),
fast_elements_(false),
may_store_doubles_(false),
has_function_(has_function) {}
static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Handle<FixedArray> constant_properties_;
ZoneList<Property*>* properties_;
int boilerplate_properties_;
bool fast_elements_;
bool may_store_doubles_;
bool has_function_;
};
// Node for capturing a regexp literal.
class RegExpLiteral FINAL : public MaterializedLiteral {
public:
DECLARE_NODE_TYPE(RegExpLiteral)
Handle<String> pattern() const { return pattern_->string(); }
Handle<String> flags() const { return flags_->string(); }
protected:
RegExpLiteral(Zone* zone, const AstRawString* pattern,
const AstRawString* flags, int literal_index, int pos)
: MaterializedLiteral(zone, literal_index, pos),
pattern_(pattern),
flags_(flags) {
set_depth(1);
}
private:
const AstRawString* pattern_;
const AstRawString* flags_;
};
// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral FINAL : public MaterializedLiteral {
public:
DECLARE_NODE_TYPE(ArrayLiteral)
Handle<FixedArray> constant_elements() const { return constant_elements_; }
ZoneList<Expression*>* values() const { return values_; }
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
// Return an AST id for an element that is used in simulate instructions.
BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ArrayLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
// Populate the constant elements fixed array.
void BuildConstantElements(Isolate* isolate);
// Assemble bitfield of flags for the CreateArrayLiteral helper.
int ComputeFlags() const {
int flags = depth() == 1 ? kShallowElements : kNoFlags;
flags |= ArrayLiteral::kDisableMementos;
return flags;
}
enum Flags {
kNoFlags = 0,
kShallowElements = 1,
kDisableMementos = 1 << 1
};
protected:
ArrayLiteral(Zone* zone, ZoneList<Expression*>* values, int literal_index,
int pos)
: MaterializedLiteral(zone, literal_index, pos), values_(values) {}
static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Handle<FixedArray> constant_elements_;
ZoneList<Expression*>* values_;
};
class VariableProxy FINAL : public Expression {
public:
DECLARE_NODE_TYPE(VariableProxy)
bool IsValidReferenceExpression() const OVERRIDE {
return !is_resolved() || var()->IsValidReference();
}
bool IsArguments() const { return is_resolved() && var()->is_arguments(); }
Handle<String> name() const { return raw_name()->string(); }
const AstRawString* raw_name() const {
return is_resolved() ? var_->raw_name() : raw_name_;
}
Variable* var() const {
DCHECK(is_resolved());
return var_;
}
void set_var(Variable* v) {
DCHECK(!is_resolved());
DCHECK_NOT_NULL(v);
var_ = v;
}
bool is_this() const { return IsThisField::decode(bit_field_); }
bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
void set_is_assigned() {
bit_field_ = IsAssignedField::update(bit_field_, true);
}
bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
void set_is_resolved() {
bit_field_ = IsResolvedField::update(bit_field_, true);
}
// Bind this proxy to the variable var.
void BindTo(Variable* var);
bool UsesVariableFeedbackSlot() const {
return FLAG_vector_ics && (var()->IsUnallocated() || var()->IsLookupSlot());
}
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(0, UsesVariableFeedbackSlot() ? 1 : 0);
}
void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) OVERRIDE {
variable_feedback_slot_ = slot;
}
Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::LOAD_IC; }
FeedbackVectorICSlot VariableFeedbackSlot() {
DCHECK(!UsesVariableFeedbackSlot() || !variable_feedback_slot_.IsInvalid());
return variable_feedback_slot_;
}
protected:
VariableProxy(Zone* zone, Variable* var, int position);
VariableProxy(Zone* zone, const AstRawString* name, bool is_this,
int position);
class IsThisField : public BitField8<bool, 0, 1> {};
class IsAssignedField : public BitField8<bool, 1, 1> {};
class IsResolvedField : public BitField8<bool, 2, 1> {};
// Start with 16-bit (or smaller) field, which should get packed together
// with Expression's trailing 16-bit field.
uint8_t bit_field_;
FeedbackVectorICSlot variable_feedback_slot_;
union {
const AstRawString* raw_name_; // if !is_resolved_
Variable* var_; // if is_resolved_
};
};
class Property FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Property)
bool IsValidReferenceExpression() const OVERRIDE { return true; }
Expression* obj() const { return obj_; }
Expression* key() const { return key_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId LoadId() const { return BailoutId(local_id(0)); }
TypeFeedbackId PropertyFeedbackId() { return TypeFeedbackId(local_id(1)); }
bool IsStringAccess() const {
return IsStringAccessField::decode(bit_field_);
}
// Type feedback information.
bool IsMonomorphic() OVERRIDE { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() OVERRIDE { return &receiver_types_; }
KeyedAccessStoreMode GetStoreMode() const OVERRIDE { return STANDARD_STORE; }
IcCheckType GetKeyType() const OVERRIDE {
return KeyTypeField::decode(bit_field_);
}
bool IsUninitialized() const {
return !is_for_call() && HasNoTypeInformation();
}
bool HasNoTypeInformation() const {
return IsUninitializedField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
void set_is_string_access(bool b) {
bit_field_ = IsStringAccessField::update(bit_field_, b);
}
void set_key_type(IcCheckType key_type) {
bit_field_ = KeyTypeField::update(bit_field_, key_type);
}
void mark_for_call() {
bit_field_ = IsForCallField::update(bit_field_, true);
}
bool is_for_call() const { return IsForCallField::decode(bit_field_); }
bool IsSuperAccess() {
return obj()->IsSuperReference();
}
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(0, FLAG_vector_ics ? 1 : 0);
}
void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) OVERRIDE {
property_feedback_slot_ = slot;
}
Code::Kind FeedbackICSlotKind(int index) OVERRIDE {
return key()->IsPropertyName() ? Code::LOAD_IC : Code::KEYED_LOAD_IC;
}
FeedbackVectorICSlot PropertyFeedbackSlot() const {
DCHECK(!FLAG_vector_ics || !property_feedback_slot_.IsInvalid());
return property_feedback_slot_;
}
protected:
Property(Zone* zone, Expression* obj, Expression* key, int pos)
: Expression(zone, pos),
bit_field_(IsForCallField::encode(false) |
IsUninitializedField::encode(false) |
IsStringAccessField::encode(false)),
property_feedback_slot_(FeedbackVectorICSlot::Invalid()),
obj_(obj),
key_(key) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsForCallField : public BitField8<bool, 0, 1> {};
class IsUninitializedField : public BitField8<bool, 1, 1> {};
class IsStringAccessField : public BitField8<bool, 2, 1> {};
class KeyTypeField : public BitField8<IcCheckType, 3, 1> {};
uint8_t bit_field_;
FeedbackVectorICSlot property_feedback_slot_;
Expression* obj_;
Expression* key_;
SmallMapList receiver_types_;
};
class Call FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Call)
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
// Type feedback information.
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE;
void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) OVERRIDE {
ic_slot_or_slot_ = slot.ToInt();
}
void SetFirstFeedbackSlot(FeedbackVectorSlot slot) OVERRIDE {
ic_slot_or_slot_ = slot.ToInt();
}
Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::CALL_IC; }
FeedbackVectorSlot CallFeedbackSlot() const {
DCHECK(ic_slot_or_slot_ != FeedbackVectorSlot::Invalid().ToInt());
return FeedbackVectorSlot(ic_slot_or_slot_);
}
FeedbackVectorICSlot CallFeedbackICSlot() const {
DCHECK(ic_slot_or_slot_ != FeedbackVectorICSlot::Invalid().ToInt());
return FeedbackVectorICSlot(ic_slot_or_slot_);
}
SmallMapList* GetReceiverTypes() OVERRIDE {
if (expression()->IsProperty()) {
return expression()->AsProperty()->GetReceiverTypes();
}
return NULL;
}
bool IsMonomorphic() OVERRIDE {
if (expression()->IsProperty()) {
return expression()->AsProperty()->IsMonomorphic();
}
return !target_.is_null();
}
bool global_call() const {
VariableProxy* proxy = expression_->AsVariableProxy();
return proxy != NULL && proxy->var()->IsUnallocated();
}
bool known_global_function() const {
return global_call() && !target_.is_null();
}
Handle<JSFunction> target() { return target_; }
Handle<Cell> cell() { return cell_; }
Handle<AllocationSite> allocation_site() { return allocation_site_; }
void set_target(Handle<JSFunction> target) { target_ = target; }
void set_allocation_site(Handle<AllocationSite> site) {
allocation_site_ = site;
}
bool ComputeGlobalTarget(Handle<GlobalObject> global, LookupIterator* it);
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ReturnId() const { return BailoutId(local_id(0)); }
BailoutId EvalOrLookupId() const { return BailoutId(local_id(1)); }
bool is_uninitialized() const {
return IsUninitializedField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
enum CallType {
POSSIBLY_EVAL_CALL,
GLOBAL_CALL,
LOOKUP_SLOT_CALL,
PROPERTY_CALL,
SUPER_CALL,
OTHER_CALL
};
// Helpers to determine how to handle the call.
CallType GetCallType(Isolate* isolate) const;
bool IsUsingCallFeedbackSlot(Isolate* isolate) const;
bool IsUsingCallFeedbackICSlot(Isolate* isolate) const;
#ifdef DEBUG
// Used to assert that the FullCodeGenerator records the return site.
bool return_is_recorded_;
#endif
protected:
Call(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
int pos)
: Expression(zone, pos),
ic_slot_or_slot_(FeedbackVectorICSlot::Invalid().ToInt()),
expression_(expression),
arguments_(arguments),
bit_field_(IsUninitializedField::encode(false)) {
if (expression->IsProperty()) {
expression->AsProperty()->mark_for_call();
}
}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
// We store this as an integer because we don't know if we have a slot or
// an ic slot until scoping time.
int ic_slot_or_slot_;
Expression* expression_;
ZoneList<Expression*>* arguments_;
Handle<JSFunction> target_;
Handle<Cell> cell_;
Handle<AllocationSite> allocation_site_;
class IsUninitializedField : public BitField8<bool, 0, 1> {};
uint8_t bit_field_;
};
class CallNew FINAL : public Expression {
public:
DECLARE_NODE_TYPE(CallNew)
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
// Type feedback information.
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(FLAG_pretenuring_call_new ? 2 : 1, 0);
}
void SetFirstFeedbackSlot(FeedbackVectorSlot slot) OVERRIDE {
callnew_feedback_slot_ = slot;
}
FeedbackVectorSlot CallNewFeedbackSlot() {
DCHECK(!callnew_feedback_slot_.IsInvalid());
return callnew_feedback_slot_;
}
FeedbackVectorSlot AllocationSiteFeedbackSlot() {
DCHECK(FLAG_pretenuring_call_new);
return CallNewFeedbackSlot().next();
}
void RecordTypeFeedback(TypeFeedbackOracle* oracle);
bool IsMonomorphic() OVERRIDE { return is_monomorphic_; }
Handle<JSFunction> target() const { return target_; }
Handle<AllocationSite> allocation_site() const {
return allocation_site_;
}
static int num_ids() { return parent_num_ids() + 1; }
static int feedback_slots() { return 1; }
BailoutId ReturnId() const { return BailoutId(local_id(0)); }
protected:
CallNew(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
int pos)
: Expression(zone, pos),
expression_(expression),
arguments_(arguments),
is_monomorphic_(false),
callnew_feedback_slot_(FeedbackVectorSlot::Invalid()) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* expression_;
ZoneList<Expression*>* arguments_;
bool is_monomorphic_;
Handle<JSFunction> target_;
Handle<AllocationSite> allocation_site_;
FeedbackVectorSlot callnew_feedback_slot_;
};
// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript (see "v8natives.js").
class CallRuntime FINAL : public Expression {
public:
DECLARE_NODE_TYPE(CallRuntime)
Handle<String> name() const { return raw_name_->string(); }
const AstRawString* raw_name() const { return raw_name_; }
const Runtime::Function* function() const { return function_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
bool is_jsruntime() const { return function_ == NULL; }
// Type feedback information.
bool HasCallRuntimeFeedbackSlot() const {
return FLAG_vector_ics && is_jsruntime();
}
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(0, HasCallRuntimeFeedbackSlot() ? 1 : 0);
}
void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) OVERRIDE {
callruntime_feedback_slot_ = slot;
}
Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::LOAD_IC; }
FeedbackVectorICSlot CallRuntimeFeedbackSlot() {
DCHECK(!HasCallRuntimeFeedbackSlot() ||
!callruntime_feedback_slot_.IsInvalid());
return callruntime_feedback_slot_;
}
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId CallRuntimeFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
protected:
CallRuntime(Zone* zone, const AstRawString* name,
const Runtime::Function* function,
ZoneList<Expression*>* arguments, int pos)
: Expression(zone, pos),
raw_name_(name),
function_(function),
arguments_(arguments),
callruntime_feedback_slot_(FeedbackVectorICSlot::Invalid()) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
const AstRawString* raw_name_;
const Runtime::Function* function_;
ZoneList<Expression*>* arguments_;
FeedbackVectorICSlot callruntime_feedback_slot_;
};
class UnaryOperation FINAL : public Expression {
public:
DECLARE_NODE_TYPE(UnaryOperation)
Token::Value op() const { return op_; }
Expression* expression() const { return expression_; }
// For unary not (Token::NOT), the AST ids where true and false will
// actually be materialized, respectively.
static int num_ids() { return parent_num_ids() + 2; }
BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
virtual void RecordToBooleanTypeFeedback(
TypeFeedbackOracle* oracle) OVERRIDE;
protected:
UnaryOperation(Zone* zone, Token::Value op, Expression* expression, int pos)
: Expression(zone, pos), op_(op), expression_(expression) {
DCHECK(Token::IsUnaryOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Token::Value op_;
Expression* expression_;
};
class BinaryOperation FINAL : public Expression {
public:
DECLARE_NODE_TYPE(BinaryOperation)
Token::Value op() const { return static_cast<Token::Value>(op_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
Handle<AllocationSite> allocation_site() const { return allocation_site_; }
void set_allocation_site(Handle<AllocationSite> allocation_site) {
allocation_site_ = allocation_site;
}
// The short-circuit logical operations need an AST ID for their
// right-hand subexpression.
static int num_ids() { return parent_num_ids() + 2; }
BailoutId RightId() const { return BailoutId(local_id(0)); }
TypeFeedbackId BinaryOperationFeedbackId() const {
return TypeFeedbackId(local_id(1));
}
Maybe<int> fixed_right_arg() const {
return has_fixed_right_arg_ ? Maybe<int>(fixed_right_arg_value_)
: Maybe<int>();
}
void set_fixed_right_arg(Maybe<int> arg) {
has_fixed_right_arg_ = arg.has_value;
if (arg.has_value) fixed_right_arg_value_ = arg.value;
}
virtual void RecordToBooleanTypeFeedback(
TypeFeedbackOracle* oracle) OVERRIDE;
protected:
BinaryOperation(Zone* zone, Token::Value op, Expression* left,
Expression* right, int pos)
: Expression(zone, pos),
op_(static_cast<byte>(op)),
has_fixed_right_arg_(false),
fixed_right_arg_value_(0),
left_(left),
right_(right) {
DCHECK(Token::IsBinaryOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
const byte op_; // actually Token::Value
// TODO(rossberg): the fixed arg should probably be represented as a Constant
// type for the RHS. Currenty it's actually a Maybe<int>
bool has_fixed_right_arg_;
int fixed_right_arg_value_;
Expression* left_;
Expression* right_;
Handle<AllocationSite> allocation_site_;
};
class CountOperation FINAL : public Expression {
public:
DECLARE_NODE_TYPE(CountOperation)
bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
bool is_postfix() const { return !is_prefix(); }
Token::Value op() const { return TokenField::decode(bit_field_); }
Token::Value binary_op() {
return (op() == Token::INC) ? Token::ADD : Token::SUB;
}
Expression* expression() const { return expression_; }
bool IsMonomorphic() OVERRIDE { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() OVERRIDE { return &receiver_types_; }
IcCheckType GetKeyType() const OVERRIDE {
return KeyTypeField::decode(bit_field_);
}
KeyedAccessStoreMode GetStoreMode() const OVERRIDE {
return StoreModeField::decode(bit_field_);
}
Type* type() const { return type_; }
void set_key_type(IcCheckType type) {
bit_field_ = KeyTypeField::update(bit_field_, type);
}
void set_store_mode(KeyedAccessStoreMode mode) {
bit_field_ = StoreModeField::update(bit_field_, mode);
}
void set_type(Type* type) { type_ = type; }
static int num_ids() { return parent_num_ids() + 4; }
BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
TypeFeedbackId CountBinOpFeedbackId() const {
return TypeFeedbackId(local_id(2));
}
TypeFeedbackId CountStoreFeedbackId() const {
return TypeFeedbackId(local_id(3));
}
protected:
CountOperation(Zone* zone, Token::Value op, bool is_prefix, Expression* expr,
int pos)
: Expression(zone, pos),
bit_field_(IsPrefixField::encode(is_prefix) |
KeyTypeField::encode(ELEMENT) |
StoreModeField::encode(STANDARD_STORE) |
TokenField::encode(op)),
type_(NULL),
expression_(expr) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsPrefixField : public BitField16<bool, 0, 1> {};
class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 4> {};
class TokenField : public BitField16<Token::Value, 6, 8> {};
// Starts with 16-bit field, which should get packed together with
// Expression's trailing 16-bit field.
uint16_t bit_field_;
Type* type_;
Expression* expression_;
SmallMapList receiver_types_;
};
class CompareOperation FINAL : public Expression {
public:
DECLARE_NODE_TYPE(CompareOperation)
Token::Value op() const { return op_; }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
// Type feedback information.
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId CompareOperationFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
Type* combined_type() const { return combined_type_; }
void set_combined_type(Type* type) { combined_type_ = type; }
// Match special cases.
bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
bool IsLiteralCompareUndefined(Expression** expr, Isolate* isolate);
bool IsLiteralCompareNull(Expression** expr);
protected:
CompareOperation(Zone* zone, Token::Value op, Expression* left,
Expression* right, int pos)
: Expression(zone, pos),
op_(op),
left_(left),
right_(right),
combined_type_(Type::None(zone)) {
DCHECK(Token::IsCompareOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Token::Value op_;
Expression* left_;
Expression* right_;
Type* combined_type_;
};
class Conditional FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Conditional)
Expression* condition() const { return condition_; }
Expression* then_expression() const { return then_expression_; }
Expression* else_expression() const { return else_expression_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ThenId() const { return BailoutId(local_id(0)); }
BailoutId ElseId() const { return BailoutId(local_id(1)); }
protected:
Conditional(Zone* zone, Expression* condition, Expression* then_expression,
Expression* else_expression, int position)
: Expression(zone, position),
condition_(condition),
then_expression_(then_expression),
else_expression_(else_expression) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* condition_;
Expression* then_expression_;
Expression* else_expression_;
};
class Assignment FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Assignment)
Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
Token::Value binary_op() const;
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* target() const { return target_; }
Expression* value() const { return value_; }
BinaryOperation* binary_operation() const { return binary_operation_; }
// This check relies on the definition order of token in token.h.
bool is_compound() const { return op() > Token::ASSIGN; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
// Type feedback information.
TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
bool IsMonomorphic() OVERRIDE { return receiver_types_.length() == 1; }
bool IsUninitialized() const {
return IsUninitializedField::decode(bit_field_);
}
bool HasNoTypeInformation() {
return IsUninitializedField::decode(bit_field_);
}
SmallMapList* GetReceiverTypes() OVERRIDE { return &receiver_types_; }
IcCheckType GetKeyType() const OVERRIDE {
return KeyTypeField::decode(bit_field_);
}
KeyedAccessStoreMode GetStoreMode() const OVERRIDE {
return StoreModeField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
void set_key_type(IcCheckType key_type) {
bit_field_ = KeyTypeField::update(bit_field_, key_type);
}
void set_store_mode(KeyedAccessStoreMode mode) {
bit_field_ = StoreModeField::update(bit_field_, mode);
}
protected:
Assignment(Zone* zone, Token::Value op, Expression* target, Expression* value,
int pos);
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsUninitializedField : public BitField16<bool, 0, 1> {};
class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 4> {};
class TokenField : public BitField16<Token::Value, 6, 8> {};
// Starts with 16-bit field, which should get packed together with
// Expression's trailing 16-bit field.
uint16_t bit_field_;
Expression* target_;
Expression* value_;
BinaryOperation* binary_operation_;
SmallMapList receiver_types_;
};
class Yield FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Yield)
enum Kind {
kInitial, // The initial yield that returns the unboxed generator object.
kSuspend, // A normal yield: { value: EXPRESSION, done: false }
kDelegating, // A yield*.
kFinal // A return: { value: EXPRESSION, done: true }
};
Expression* generator_object() const { return generator_object_; }
Expression* expression() const { return expression_; }
Kind yield_kind() const { return yield_kind_; }
// Delegating yield surrounds the "yield" in a "try/catch". This index
// locates the catch handler in the handler table, and is equivalent to
// TryCatchStatement::index().
int index() const {
DCHECK_EQ(kDelegating, yield_kind());
return index_;
}
void set_index(int index) {
DCHECK_EQ(kDelegating, yield_kind());
index_ = index;
}
// Type feedback information.
bool HasFeedbackSlots() const {
return FLAG_vector_ics && (yield_kind() == kDelegating);
}
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(0, HasFeedbackSlots() ? 3 : 0);
}
void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) OVERRIDE {
yield_first_feedback_slot_ = slot;
}
Code::Kind FeedbackICSlotKind(int index) OVERRIDE {
return index == 0 ? Code::KEYED_LOAD_IC : Code::LOAD_IC;
}
FeedbackVectorICSlot KeyedLoadFeedbackSlot() {
DCHECK(!HasFeedbackSlots() || !yield_first_feedback_slot_.IsInvalid());
return yield_first_feedback_slot_;
}
FeedbackVectorICSlot DoneFeedbackSlot() {
return KeyedLoadFeedbackSlot().next();
}
FeedbackVectorICSlot ValueFeedbackSlot() { return DoneFeedbackSlot().next(); }
protected:
Yield(Zone* zone, Expression* generator_object, Expression* expression,
Kind yield_kind, int pos)
: Expression(zone, pos),
generator_object_(generator_object),
expression_(expression),
yield_kind_(yield_kind),
index_(-1),
yield_first_feedback_slot_(FeedbackVectorICSlot::Invalid()) {}
private:
Expression* generator_object_;
Expression* expression_;
Kind yield_kind_;
int index_;
FeedbackVectorICSlot yield_first_feedback_slot_;
};
class Throw FINAL : public Expression {
public:
DECLARE_NODE_TYPE(Throw)
Expression* exception() const { return exception_; }
protected:
Throw(Zone* zone, Expression* exception, int pos)
: Expression(zone, pos), exception_(exception) {}
private:
Expression* exception_;
};
class FunctionLiteral FINAL : public Expression {
public:
enum FunctionType {
ANONYMOUS_EXPRESSION,
NAMED_EXPRESSION,
DECLARATION
};
enum ParameterFlag {
kNoDuplicateParameters = 0,
kHasDuplicateParameters = 1
};
enum IsFunctionFlag {
kGlobalOrEval,
kIsFunction
};
enum IsParenthesizedFlag {
kIsParenthesized,
kNotParenthesized
};
enum ArityRestriction {
NORMAL_ARITY,
GETTER_ARITY,
SETTER_ARITY
};
DECLARE_NODE_TYPE(FunctionLiteral)
Handle<String> name() const { return raw_name_->string(); }
const AstRawString* raw_name() const { return raw_name_; }
Scope* scope() const { return scope_; }
ZoneList<Statement*>* body() const { return body_; }
void set_function_token_position(int pos) { function_token_position_ = pos; }
int function_token_position() const { return function_token_position_; }
int start_position() const;
int end_position() const;
int SourceSize() const { return end_position() - start_position(); }
bool is_expression() const { return IsExpression::decode(bitfield_); }
bool is_anonymous() const { return IsAnonymous::decode(bitfield_); }
LanguageMode language_mode() const;
bool uses_super_property() const;
static bool NeedsHomeObject(Expression* literal) {
return literal != NULL && literal->IsFunctionLiteral() &&
literal->AsFunctionLiteral()->uses_super_property();
}
int materialized_literal_count() { return materialized_literal_count_; }
int expected_property_count() { return expected_property_count_; }
int handler_count() { return handler_count_; }
int parameter_count() { return parameter_count_; }
bool AllowsLazyCompilation();
bool AllowsLazyCompilationWithoutContext();
void InitializeSharedInfo(Handle<Code> code);
Handle<String> debug_name() const {
if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
return raw_name_->string();
}
return inferred_name();
}
Handle<String> inferred_name() const {
if (!inferred_name_.is_null()) {
DCHECK(raw_inferred_name_ == NULL);
return inferred_name_;
}
if (raw_inferred_name_ != NULL) {
return raw_inferred_name_->string();
}
UNREACHABLE();
return Handle<String>();
}
// Only one of {set_inferred_name, set_raw_inferred_name} should be called.
void set_inferred_name(Handle<String> inferred_name) {
DCHECK(!inferred_name.is_null());
inferred_name_ = inferred_name;
DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
raw_inferred_name_ = NULL;
}
void set_raw_inferred_name(const AstString* raw_inferred_name) {
DCHECK(raw_inferred_name != NULL);
raw_inferred_name_ = raw_inferred_name;
DCHECK(inferred_name_.is_null());
inferred_name_ = Handle<String>();
}
// shared_info may be null if it's not cached in full code.
Handle<SharedFunctionInfo> shared_info() { return shared_info_; }
bool pretenure() { return Pretenure::decode(bitfield_); }
void set_pretenure() { bitfield_ |= Pretenure::encode(true); }
bool has_duplicate_parameters() {
return HasDuplicateParameters::decode(bitfield_);
}
bool is_function() { return IsFunction::decode(bitfield_) == kIsFunction; }
// This is used as a heuristic on when to eagerly compile a function
// literal. We consider the following constructs as hints that the
// function will be called immediately:
// - (function() { ... })();
// - var x = function() { ... }();
bool is_parenthesized() {
return IsParenthesized::decode(bitfield_) == kIsParenthesized;
}
void set_parenthesized() {
bitfield_ = IsParenthesized::update(bitfield_, kIsParenthesized);
}
FunctionKind kind() { return FunctionKindBits::decode(bitfield_); }
int ast_node_count() { return ast_properties_.node_count(); }
AstProperties::Flags* flags() { return ast_properties_.flags(); }
void set_ast_properties(AstProperties* ast_properties) {
ast_properties_ = *ast_properties;
}
const FeedbackVectorSpec& feedback_vector_spec() const {
return ast_properties_.get_spec();
}
bool dont_optimize() { return dont_optimize_reason_ != kNoReason; }
BailoutReason dont_optimize_reason() { return dont_optimize_reason_; }
void set_dont_optimize_reason(BailoutReason reason) {
dont_optimize_reason_ = reason;
}
protected:
FunctionLiteral(Zone* zone, const AstRawString* name,
AstValueFactory* ast_value_factory, Scope* scope,
ZoneList<Statement*>* body, int materialized_literal_count,
int expected_property_count, int handler_count,
int parameter_count, FunctionType function_type,
ParameterFlag has_duplicate_parameters,
IsFunctionFlag is_function,
IsParenthesizedFlag is_parenthesized, FunctionKind kind,
int position)
: Expression(zone, position),
raw_name_(name),
scope_(scope),
body_(body),
raw_inferred_name_(ast_value_factory->empty_string()),
dont_optimize_reason_(kNoReason),
materialized_literal_count_(materialized_literal_count),
expected_property_count_(expected_property_count),
handler_count_(handler_count),
parameter_count_(parameter_count),
function_token_position_(RelocInfo::kNoPosition) {
bitfield_ = IsExpression::encode(function_type != DECLARATION) |
IsAnonymous::encode(function_type == ANONYMOUS_EXPRESSION) |
Pretenure::encode(false) |
HasDuplicateParameters::encode(has_duplicate_parameters) |
IsFunction::encode(is_function) |
IsParenthesized::encode(is_parenthesized) |
FunctionKindBits::encode(kind);
DCHECK(IsValidFunctionKind(kind));
}
private:
const AstRawString* raw_name_;
Handle<String> name_;
Handle<SharedFunctionInfo> shared_info_;
Scope* scope_;
ZoneList<Statement*>* body_;
const AstString* raw_inferred_name_;
Handle<String> inferred_name_;
AstProperties ast_properties_;
BailoutReason dont_optimize_reason_;
int materialized_literal_count_;
int expected_property_count_;
int handler_count_;
int parameter_count_;
int function_token_position_;
unsigned bitfield_;
class IsExpression : public BitField<bool, 0, 1> {};
class IsAnonymous : public BitField<bool, 1, 1> {};
class Pretenure : public BitField<bool, 2, 1> {};
class HasDuplicateParameters : public BitField<ParameterFlag, 3, 1> {};
class IsFunction : public BitField<IsFunctionFlag, 4, 1> {};
class IsParenthesized : public BitField<IsParenthesizedFlag, 5, 1> {};
class FunctionKindBits : public BitField<FunctionKind, 6, 7> {};
};
class ClassLiteral FINAL : public Expression {
public:
typedef ObjectLiteralProperty Property;
DECLARE_NODE_TYPE(ClassLiteral)
Handle<String> name() const { return raw_name_->string(); }
const AstRawString* raw_name() const { return raw_name_; }
Scope* scope() const { return scope_; }
VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
Expression* extends() const { return extends_; }
FunctionLiteral* constructor() const { return constructor_; }
ZoneList<Property*>* properties() const { return properties_; }
int start_position() const { return position(); }
int end_position() const { return end_position_; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
BailoutId DeclsId() const { return BailoutId(local_id(1)); }
BailoutId ExitId() { return BailoutId(local_id(2)); }
// Return an AST id for a property that is used in simulate instructions.
BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 3)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ClassLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 3 + properties()->length(); }
protected:
ClassLiteral(Zone* zone, const AstRawString* name, Scope* scope,
VariableProxy* class_variable_proxy, Expression* extends,
FunctionLiteral* constructor, ZoneList<Property*>* properties,
int start_position, int end_position)
: Expression(zone, start_position),
raw_name_(name),
scope_(scope),
class_variable_proxy_(class_variable_proxy),
extends_(extends),
constructor_(constructor),
properties_(properties),
end_position_(end_position) {}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
const AstRawString* raw_name_;
Scope* scope_;
VariableProxy* class_variable_proxy_;
Expression* extends_;
FunctionLiteral* constructor_;
ZoneList<Property*>* properties_;
int end_position_;
};
class NativeFunctionLiteral FINAL : public Expression {
public:
DECLARE_NODE_TYPE(NativeFunctionLiteral)
Handle<String> name() const { return name_->string(); }
v8::Extension* extension() const { return extension_; }
protected:
NativeFunctionLiteral(Zone* zone, const AstRawString* name,
v8::Extension* extension, int pos)
: Expression(zone, pos), name_(name), extension_(extension) {}
private:
const AstRawString* name_;
v8::Extension* extension_;
};
class ThisFunction FINAL : public Expression {
public:
DECLARE_NODE_TYPE(ThisFunction)
protected:
ThisFunction(Zone* zone, int pos) : Expression(zone, pos) {}
};
class SuperReference FINAL : public Expression {
public:
DECLARE_NODE_TYPE(SuperReference)
VariableProxy* this_var() const { return this_var_; }
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId HomeObjectFeedbackId() { return TypeFeedbackId(local_id(0)); }
// Type feedback information.
virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
Isolate* isolate) OVERRIDE {
return FeedbackVectorRequirements(0, FLAG_vector_ics ? 1 : 0);
}
void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot) OVERRIDE {
homeobject_feedback_slot_ = slot;
}
Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::LOAD_IC; }
FeedbackVectorICSlot HomeObjectFeedbackSlot() {
DCHECK(!FLAG_vector_ics || !homeobject_feedback_slot_.IsInvalid());
return homeobject_feedback_slot_;
}
protected:
SuperReference(Zone* zone, VariableProxy* this_var, int pos)
: Expression(zone, pos),
this_var_(this_var),
homeobject_feedback_slot_(FeedbackVectorICSlot::Invalid()) {
DCHECK(this_var->is_this());
}
static int parent_num_ids() { return Expression::num_ids(); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
VariableProxy* this_var_;
FeedbackVectorICSlot homeobject_feedback_slot_;
};
#undef DECLARE_NODE_TYPE
// ----------------------------------------------------------------------------
// Regular expressions
class RegExpVisitor BASE_EMBEDDED {
public:
virtual ~RegExpVisitor() { }
#define MAKE_CASE(Name) \
virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
};
class RegExpTree : public ZoneObject {
public:
static const int kInfinity = kMaxInt;
virtual ~RegExpTree() {}
virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) = 0;
virtual bool IsTextElement() { return false; }
virtual bool IsAnchoredAtStart() { return false; }
virtual bool IsAnchoredAtEnd() { return false; }
virtual int min_match() = 0;
virtual int max_match() = 0;
// Returns the interval of registers used for captures within this
// expression.
virtual Interval CaptureRegisters() { return Interval::Empty(); }
virtual void AppendToText(RegExpText* text, Zone* zone);
std::ostream& Print(std::ostream& os, Zone* zone); // NOLINT
#define MAKE_ASTYPE(Name) \
virtual RegExp##Name* As##Name(); \
virtual bool Is##Name();
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
#undef MAKE_ASTYPE
};
class RegExpDisjunction FINAL : public RegExpTree {
public:
explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpDisjunction* AsDisjunction() OVERRIDE;
Interval CaptureRegisters() OVERRIDE;
bool IsDisjunction() OVERRIDE;
bool IsAnchoredAtStart() OVERRIDE;
bool IsAnchoredAtEnd() OVERRIDE;
int min_match() OVERRIDE { return min_match_; }
int max_match() OVERRIDE { return max_match_; }
ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
private:
ZoneList<RegExpTree*>* alternatives_;
int min_match_;
int max_match_;
};
class RegExpAlternative FINAL : public RegExpTree {
public:
explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpAlternative* AsAlternative() OVERRIDE;
Interval CaptureRegisters() OVERRIDE;
bool IsAlternative() OVERRIDE;
bool IsAnchoredAtStart() OVERRIDE;
bool IsAnchoredAtEnd() OVERRIDE;
int min_match() OVERRIDE { return min_match_; }
int max_match() OVERRIDE { return max_match_; }
ZoneList<RegExpTree*>* nodes() { return nodes_; }
private:
ZoneList<RegExpTree*>* nodes_;
int min_match_;
int max_match_;
};
class RegExpAssertion FINAL : public RegExpTree {
public:
enum AssertionType {
START_OF_LINE,
START_OF_INPUT,
END_OF_LINE,
END_OF_INPUT,
BOUNDARY,
NON_BOUNDARY
};
explicit RegExpAssertion(AssertionType type) : assertion_type_(type) { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpAssertion* AsAssertion() OVERRIDE;
bool IsAssertion() OVERRIDE;
bool IsAnchoredAtStart() OVERRIDE;
bool IsAnchoredAtEnd() OVERRIDE;
int min_match() OVERRIDE { return 0; }
int max_match() OVERRIDE { return 0; }
AssertionType assertion_type() { return assertion_type_; }
private:
AssertionType assertion_type_;
};
class CharacterSet FINAL BASE_EMBEDDED {
public:
explicit CharacterSet(uc16 standard_set_type)
: ranges_(NULL),
standard_set_type_(standard_set_type) {}
explicit CharacterSet(ZoneList<CharacterRange>* ranges)
: ranges_(ranges),
standard_set_type_(0) {}
ZoneList<CharacterRange>* ranges(Zone* zone);
uc16 standard_set_type() { return standard_set_type_; }
void set_standard_set_type(uc16 special_set_type) {
standard_set_type_ = special_set_type;
}
bool is_standard() { return standard_set_type_ != 0; }
void Canonicalize();
private:
ZoneList<CharacterRange>* ranges_;
// If non-zero, the value represents a standard set (e.g., all whitespace
// characters) without having to expand the ranges.
uc16 standard_set_type_;
};
class RegExpCharacterClass FINAL : public RegExpTree {
public:
RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
: set_(ranges),
is_negated_(is_negated) { }
explicit RegExpCharacterClass(uc16 type)
: set_(type),
is_negated_(false) { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpCharacterClass* AsCharacterClass() OVERRIDE;
bool IsCharacterClass() OVERRIDE;
bool IsTextElement() OVERRIDE { return true; }
int min_match() OVERRIDE { return 1; }
int max_match() OVERRIDE { return 1; }
void AppendToText(RegExpText* text, Zone* zone) OVERRIDE;
CharacterSet character_set() { return set_; }
// TODO(lrn): Remove need for complex version if is_standard that
// recognizes a mangled standard set and just do { return set_.is_special(); }
bool is_standard(Zone* zone);
// Returns a value representing the standard character set if is_standard()
// returns true.
// Currently used values are:
// s : unicode whitespace
// S : unicode non-whitespace
// w : ASCII word character (digit, letter, underscore)
// W : non-ASCII word character
// d : ASCII digit
// D : non-ASCII digit
// . : non-unicode non-newline
// * : All characters
uc16 standard_type() { return set_.standard_set_type(); }
ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
bool is_negated() { return is_negated_; }
private:
CharacterSet set_;
bool is_negated_;
};
class RegExpAtom FINAL : public RegExpTree {
public:
explicit RegExpAtom(Vector<const uc16> data) : data_(data) { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpAtom* AsAtom() OVERRIDE;
bool IsAtom() OVERRIDE;
bool IsTextElement() OVERRIDE { return true; }
int min_match() OVERRIDE { return data_.length(); }
int max_match() OVERRIDE { return data_.length(); }
void AppendToText(RegExpText* text, Zone* zone) OVERRIDE;
Vector<const uc16> data() { return data_; }
int length() { return data_.length(); }
private:
Vector<const uc16> data_;
};
class RegExpText FINAL : public RegExpTree {
public:
explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {}
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpText* AsText() OVERRIDE;
bool IsText() OVERRIDE;
bool IsTextElement() OVERRIDE { return true; }
int min_match() OVERRIDE { return length_; }
int max_match() OVERRIDE { return length_; }
void AppendToText(RegExpText* text, Zone* zone) OVERRIDE;
void AddElement(TextElement elm, Zone* zone) {
elements_.Add(elm, zone);
length_ += elm.length();
}
ZoneList<TextElement>* elements() { return &elements_; }
private:
ZoneList<TextElement> elements_;
int length_;
};
class RegExpQuantifier FINAL : public RegExpTree {
public:
enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body)
: body_(body),
min_(min),
max_(max),
min_match_(min * body->min_match()),
quantifier_type_(type) {
if (max > 0 && body->max_match() > kInfinity / max) {
max_match_ = kInfinity;
} else {
max_match_ = max * body->max_match();
}
}
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
static RegExpNode* ToNode(int min,
int max,
bool is_greedy,
RegExpTree* body,
RegExpCompiler* compiler,
RegExpNode* on_success,
bool not_at_start = false);
RegExpQuantifier* AsQuantifier() OVERRIDE;
Interval CaptureRegisters() OVERRIDE;
bool IsQuantifier() OVERRIDE;
int min_match() OVERRIDE { return min_match_; }
int max_match() OVERRIDE { return max_match_; }
int min() { return min_; }
int max() { return max_; }
bool is_possessive() { return quantifier_type_ == POSSESSIVE; }
bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; }
bool is_greedy() { return quantifier_type_ == GREEDY; }
RegExpTree* body() { return body_; }
private:
RegExpTree* body_;
int min_;
int max_;
int min_match_;
int max_match_;
QuantifierType quantifier_type_;
};
class RegExpCapture FINAL : public RegExpTree {
public:
explicit RegExpCapture(RegExpTree* body, int index)
: body_(body), index_(index) { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
static RegExpNode* ToNode(RegExpTree* body,
int index,
RegExpCompiler* compiler,
RegExpNode* on_success);
RegExpCapture* AsCapture() OVERRIDE;
bool IsAnchoredAtStart() OVERRIDE;
bool IsAnchoredAtEnd() OVERRIDE;
Interval CaptureRegisters() OVERRIDE;
bool IsCapture() OVERRIDE;
int min_match() OVERRIDE { return body_->min_match(); }
int max_match() OVERRIDE { return body_->max_match(); }
RegExpTree* body() { return body_; }
int index() { return index_; }
static int StartRegister(int index) { return index * 2; }
static int EndRegister(int index) { return index * 2 + 1; }
private:
RegExpTree* body_;
int index_;
};
class RegExpLookahead FINAL : public RegExpTree {
public:
RegExpLookahead(RegExpTree* body,
bool is_positive,
int capture_count,
int capture_from)
: body_(body),
is_positive_(is_positive),
capture_count_(capture_count),
capture_from_(capture_from) { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpLookahead* AsLookahead() OVERRIDE;
Interval CaptureRegisters() OVERRIDE;
bool IsLookahead() OVERRIDE;
bool IsAnchoredAtStart() OVERRIDE;
int min_match() OVERRIDE { return 0; }
int max_match() OVERRIDE { return 0; }
RegExpTree* body() { return body_; }
bool is_positive() { return is_positive_; }
int capture_count() { return capture_count_; }
int capture_from() { return capture_from_; }
private:
RegExpTree* body_;
bool is_positive_;
int capture_count_;
int capture_from_;
};
class RegExpBackReference FINAL : public RegExpTree {
public:
explicit RegExpBackReference(RegExpCapture* capture)
: capture_(capture) { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpBackReference* AsBackReference() OVERRIDE;
bool IsBackReference() OVERRIDE;
int min_match() OVERRIDE { return 0; }
int max_match() OVERRIDE { return capture_->max_match(); }
int index() { return capture_->index(); }
RegExpCapture* capture() { return capture_; }
private:
RegExpCapture* capture_;
};
class RegExpEmpty FINAL : public RegExpTree {
public:
RegExpEmpty() { }
void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) OVERRIDE;
RegExpEmpty* AsEmpty() OVERRIDE;
bool IsEmpty() OVERRIDE;
int min_match() OVERRIDE { return 0; }
int max_match() OVERRIDE { return 0; }
};
// ----------------------------------------------------------------------------
// Basic visitor
// - leaf node visitors are abstract.
class AstVisitor BASE_EMBEDDED {
public:
AstVisitor() {}
virtual ~AstVisitor() {}
// Stack overflow check and dynamic dispatch.
virtual void Visit(AstNode* node) = 0;
// Iteration left-to-right.
virtual void VisitDeclarations(ZoneList<Declaration*>* declarations);
virtual void VisitStatements(ZoneList<Statement*>* statements);
virtual void VisitExpressions(ZoneList<Expression*>* expressions);
// Individual AST nodes.
#define DEF_VISIT(type) \
virtual void Visit##type(type* node) = 0;
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
};
#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
public: \
void Visit(AstNode* node) FINAL { \
if (!CheckStackOverflow()) node->Accept(this); \
} \
\
void SetStackOverflow() { stack_overflow_ = true; } \
void ClearStackOverflow() { stack_overflow_ = false; } \
bool HasStackOverflow() const { return stack_overflow_; } \
\
bool CheckStackOverflow() { \
if (stack_overflow_) return true; \
StackLimitCheck check(isolate_); \
if (!check.HasOverflowed()) return false; \
stack_overflow_ = true; \
return true; \
} \
\
private: \
void InitializeAstVisitor(Isolate* isolate, Zone* zone) { \
isolate_ = isolate; \
zone_ = zone; \
stack_overflow_ = false; \
} \
Zone* zone() { return zone_; } \
Isolate* isolate() { return isolate_; } \
\
Isolate* isolate_; \
Zone* zone_; \
bool stack_overflow_
// ----------------------------------------------------------------------------
// AstNode factory
class AstNodeFactory FINAL BASE_EMBEDDED {
public:
explicit AstNodeFactory(AstValueFactory* ast_value_factory)
: zone_(ast_value_factory->zone()),
ast_value_factory_(ast_value_factory) {}
VariableDeclaration* NewVariableDeclaration(VariableProxy* proxy,
VariableMode mode,
Scope* scope,
int pos) {
return new (zone_) VariableDeclaration(zone_, proxy, mode, scope, pos);
}
FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
VariableMode mode,
FunctionLiteral* fun,
Scope* scope,
int pos) {
return new (zone_) FunctionDeclaration(zone_, proxy, mode, fun, scope, pos);
}
ModuleDeclaration* NewModuleDeclaration(VariableProxy* proxy,
Module* module,
Scope* scope,
int pos) {
return new (zone_) ModuleDeclaration(zone_, proxy, module, scope, pos);
}
ImportDeclaration* NewImportDeclaration(VariableProxy* proxy,
Module* module,
Scope* scope,
int pos) {
return new (zone_) ImportDeclaration(zone_, proxy, module, scope, pos);
}
ExportDeclaration* NewExportDeclaration(VariableProxy* proxy,
Scope* scope,
int pos) {
return new (zone_) ExportDeclaration(zone_, proxy, scope, pos);
}
ModuleLiteral* NewModuleLiteral(Block* body, ModuleDescriptor* descriptor,
int pos) {
return new (zone_) ModuleLiteral(zone_, body, descriptor, pos);
}
ModulePath* NewModulePath(Module* origin, const AstRawString* name, int pos) {
return new (zone_) ModulePath(zone_, origin, name, pos);
}
ModuleUrl* NewModuleUrl(Handle<String> url, int pos) {
return new (zone_) ModuleUrl(zone_, url, pos);
}
Block* NewBlock(ZoneList<const AstRawString*>* labels,
int capacity,
bool is_initializer_block,
int pos) {
return new (zone_)
Block(zone_, labels, capacity, is_initializer_block, pos);
}
#define STATEMENT_WITH_LABELS(NodeType) \
NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
return new (zone_) NodeType(zone_, labels, pos); \
}
STATEMENT_WITH_LABELS(DoWhileStatement)
STATEMENT_WITH_LABELS(WhileStatement)
STATEMENT_WITH_LABELS(ForStatement)
STATEMENT_WITH_LABELS(SwitchStatement)
#undef STATEMENT_WITH_LABELS
ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
ZoneList<const AstRawString*>* labels,
int pos) {
switch (visit_mode) {
case ForEachStatement::ENUMERATE: {
return new (zone_) ForInStatement(zone_, labels, pos);
}
case ForEachStatement::ITERATE: {
return new (zone_) ForOfStatement(zone_, labels, pos);
}
}
UNREACHABLE();
return NULL;
}
ModuleStatement* NewModuleStatement(Block* body, int pos) {
return new (zone_) ModuleStatement(zone_, body, pos);
}
ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
return new (zone_) ExpressionStatement(zone_, expression, pos);
}
ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
return new (zone_) ContinueStatement(zone_, target, pos);
}
BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
return new (zone_) BreakStatement(zone_, target, pos);
}
ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
return new (zone_) ReturnStatement(zone_, expression, pos);
}
WithStatement* NewWithStatement(Scope* scope,
Expression* expression,
Statement* statement,
int pos) {
return new (zone_) WithStatement(zone_, scope, expression, statement, pos);
}
IfStatement* NewIfStatement(Expression* condition,
Statement* then_statement,
Statement* else_statement,
int pos) {
return new (zone_)
IfStatement(zone_, condition, then_statement, else_statement, pos);
}
TryCatchStatement* NewTryCatchStatement(int index,
Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_) TryCatchStatement(zone_, index, try_block, scope,
variable, catch_block, pos);
}
TryFinallyStatement* NewTryFinallyStatement(int index,
Block* try_block,
Block* finally_block,
int pos) {
return new (zone_)
TryFinallyStatement(zone_, index, try_block, finally_block, pos);
}
DebuggerStatement* NewDebuggerStatement(int pos) {
return new (zone_) DebuggerStatement(zone_, pos);
}
EmptyStatement* NewEmptyStatement(int pos) {
return new(zone_) EmptyStatement(zone_, pos);
}
CaseClause* NewCaseClause(
Expression* label, ZoneList<Statement*>* statements, int pos) {
return new (zone_) CaseClause(zone_, label, statements, pos);
}
Literal* NewStringLiteral(const AstRawString* string, int pos) {
return new (zone_)
Literal(zone_, ast_value_factory_->NewString(string), pos);
}
// A JavaScript symbol (ECMA-262 edition 6).
Literal* NewSymbolLiteral(const char* name, int pos) {
return new (zone_) Literal(zone_, ast_value_factory_->NewSymbol(name), pos);
}
Literal* NewNumberLiteral(double number, int pos) {
return new (zone_)
Literal(zone_, ast_value_factory_->NewNumber(number), pos);
}
Literal* NewSmiLiteral(int number, int pos) {
return new (zone_) Literal(zone_, ast_value_factory_->NewSmi(number), pos);
}
Literal* NewBooleanLiteral(bool b, int pos) {
return new (zone_) Literal(zone_, ast_value_factory_->NewBoolean(b), pos);
}
Literal* NewNullLiteral(int pos) {
return new (zone_) Literal(zone_, ast_value_factory_->NewNull(), pos);
}
Literal* NewUndefinedLiteral(int pos) {
return new (zone_) Literal(zone_, ast_value_factory_->NewUndefined(), pos);
}
Literal* NewTheHoleLiteral(int pos) {
return new (zone_) Literal(zone_, ast_value_factory_->NewTheHole(), pos);
}
ObjectLiteral* NewObjectLiteral(
ZoneList<ObjectLiteral::Property*>* properties,
int literal_index,
int boilerplate_properties,
bool has_function,
int pos) {
return new (zone_) ObjectLiteral(zone_, properties, literal_index,
boilerplate_properties, has_function, pos);
}
ObjectLiteral::Property* NewObjectLiteralProperty(
Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
bool is_static, bool is_computed_name) {
return new (zone_)
ObjectLiteral::Property(key, value, kind, is_static, is_computed_name);
}
ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
Expression* value,
bool is_static,
bool is_computed_name) {
return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value,
is_static, is_computed_name);
}
RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern,
const AstRawString* flags,
int literal_index,
int pos) {
return new (zone_) RegExpLiteral(zone_, pattern, flags, literal_index, pos);
}
ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
int literal_index,
int pos) {
return new (zone_) ArrayLiteral(zone_, values, literal_index, pos);
}
VariableProxy* NewVariableProxy(Variable* var,
int pos = RelocInfo::kNoPosition) {
return new (zone_) VariableProxy(zone_, var, pos);
}
VariableProxy* NewVariableProxy(const AstRawString* name,
bool is_this,
int position = RelocInfo::kNoPosition) {
return new (zone_) VariableProxy(zone_, name, is_this, position);
}
Property* NewProperty(Expression* obj, Expression* key, int pos) {
return new (zone_) Property(zone_, obj, key, pos);
}
Call* NewCall(Expression* expression,
ZoneList<Expression*>* arguments,
int pos) {
return new (zone_) Call(zone_, expression, arguments, pos);
}
CallNew* NewCallNew(Expression* expression,
ZoneList<Expression*>* arguments,
int pos) {
return new (zone_) CallNew(zone_, expression, arguments, pos);
}
CallRuntime* NewCallRuntime(const AstRawString* name,
const Runtime::Function* function,
ZoneList<Expression*>* arguments,
int pos) {
return new (zone_) CallRuntime(zone_, name, function, arguments, pos);
}
UnaryOperation* NewUnaryOperation(Token::Value op,
Expression* expression,
int pos) {
return new (zone_) UnaryOperation(zone_, op, expression, pos);
}
BinaryOperation* NewBinaryOperation(Token::Value op,
Expression* left,
Expression* right,
int pos) {
return new (zone_) BinaryOperation(zone_, op, left, right, pos);
}
CountOperation* NewCountOperation(Token::Value op,
bool is_prefix,
Expression* expr,
int pos) {
return new (zone_) CountOperation(zone_, op, is_prefix, expr, pos);
}
CompareOperation* NewCompareOperation(Token::Value op,
Expression* left,
Expression* right,
int pos) {
return new (zone_) CompareOperation(zone_, op, left, right, pos);
}
Conditional* NewConditional(Expression* condition,
Expression* then_expression,
Expression* else_expression,
int position) {
return new (zone_) Conditional(zone_, condition, then_expression,
else_expression, position);
}
Assignment* NewAssignment(Token::Value op,
Expression* target,
Expression* value,
int pos) {
DCHECK(Token::IsAssignmentOp(op));
Assignment* assign = new (zone_) Assignment(zone_, op, target, value, pos);
if (assign->is_compound()) {
DCHECK(Token::IsAssignmentOp(op));
assign->binary_operation_ =
NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
}
return assign;
}
Yield* NewYield(Expression *generator_object,
Expression* expression,
Yield::Kind yield_kind,
int pos) {
if (!expression) expression = NewUndefinedLiteral(pos);
return new (zone_)
Yield(zone_, generator_object, expression, yield_kind, pos);
}
Throw* NewThrow(Expression* exception, int pos) {
return new (zone_) Throw(zone_, exception, pos);
}
FunctionLiteral* NewFunctionLiteral(
const AstRawString* name, AstValueFactory* ast_value_factory,
Scope* scope, ZoneList<Statement*>* body, int materialized_literal_count,
int expected_property_count, int handler_count, int parameter_count,
FunctionLiteral::ParameterFlag has_duplicate_parameters,
FunctionLiteral::FunctionType function_type,
FunctionLiteral::IsFunctionFlag is_function,
FunctionLiteral::IsParenthesizedFlag is_parenthesized, FunctionKind kind,
int position) {
return new (zone_) FunctionLiteral(
zone_, name, ast_value_factory, scope, body, materialized_literal_count,
expected_property_count, handler_count, parameter_count, function_type,
has_duplicate_parameters, is_function, is_parenthesized, kind,
position);
}
ClassLiteral* NewClassLiteral(const AstRawString* name, Scope* scope,
VariableProxy* proxy, Expression* extends,
FunctionLiteral* constructor,
ZoneList<ObjectLiteral::Property*>* properties,
int start_position, int end_position) {
return new (zone_)
ClassLiteral(zone_, name, scope, proxy, extends, constructor,
properties, start_position, end_position);
}
NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
v8::Extension* extension,
int pos) {
return new (zone_) NativeFunctionLiteral(zone_, name, extension, pos);
}
ThisFunction* NewThisFunction(int pos) {
return new (zone_) ThisFunction(zone_, pos);
}
SuperReference* NewSuperReference(VariableProxy* this_var, int pos) {
return new (zone_) SuperReference(zone_, this_var, pos);
}
private:
Zone* zone_;
AstValueFactory* ast_value_factory_;
};
} } // namespace v8::internal
#endif // V8_AST_H_