mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
737 lines
22 KiB
737 lines
22 KiB
/* Copyright StrongLoop, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* A connection is modeled as an abstraction on top of two simple state
|
|
* machines, one for reading and one for writing. Either state machine
|
|
* is, when active, in one of three states: busy, done or stop; the fourth
|
|
* and final state, dead, is an end state and only relevant when shutting
|
|
* down the connection. A short overview:
|
|
*
|
|
* busy done stop
|
|
* ----------|---------------------------|--------------------|------|
|
|
* readable | waiting for incoming data | have incoming data | idle |
|
|
* writable | busy writing out data | completed write | idle |
|
|
*
|
|
* We could remove the done state from the writable state machine. For our
|
|
* purposes, it's functionally equivalent to the stop state.
|
|
*
|
|
* When the connection with upstream has been established, the client_ctx
|
|
* moves into a state where incoming data from the client is sent upstream
|
|
* and vice versa, incoming data from upstream is sent to the client. In
|
|
* other words, we're just piping data back and forth. See conn_cycle()
|
|
* for details.
|
|
*
|
|
* An interesting deviation from libuv's I/O model is that reads are discrete
|
|
* rather than continuous events. In layman's terms, when a read operation
|
|
* completes, the connection stops reading until further notice.
|
|
*
|
|
* The rationale for this approach is that we have to wait until the data
|
|
* has been sent out again before we can reuse the read buffer.
|
|
*
|
|
* It also pleasingly unifies with the request model that libuv uses for
|
|
* writes and everything else; libuv may switch to a request model for
|
|
* reads in the future.
|
|
*/
|
|
enum conn_state {
|
|
c_busy, /* Busy; waiting for incoming data or for a write to complete. */
|
|
c_done, /* Done; read incoming data or write finished. */
|
|
c_stop, /* Stopped. */
|
|
c_dead
|
|
};
|
|
|
|
/* Session states. */
|
|
enum sess_state {
|
|
s_handshake, /* Wait for client handshake. */
|
|
s_handshake_auth, /* Wait for client authentication data. */
|
|
s_req_start, /* Start waiting for request data. */
|
|
s_req_parse, /* Wait for request data. */
|
|
s_req_lookup, /* Wait for upstream hostname DNS lookup to complete. */
|
|
s_req_connect, /* Wait for uv_tcp_connect() to complete. */
|
|
s_proxy_start, /* Connected. Start piping data. */
|
|
s_proxy, /* Connected. Pipe data back and forth. */
|
|
s_kill, /* Tear down session. */
|
|
s_almost_dead_0, /* Waiting for finalizers to complete. */
|
|
s_almost_dead_1, /* Waiting for finalizers to complete. */
|
|
s_almost_dead_2, /* Waiting for finalizers to complete. */
|
|
s_almost_dead_3, /* Waiting for finalizers to complete. */
|
|
s_almost_dead_4, /* Waiting for finalizers to complete. */
|
|
s_dead /* Dead. Safe to free now. */
|
|
};
|
|
|
|
static void do_next(client_ctx *cx);
|
|
static int do_handshake(client_ctx *cx);
|
|
static int do_handshake_auth(client_ctx *cx);
|
|
static int do_req_start(client_ctx *cx);
|
|
static int do_req_parse(client_ctx *cx);
|
|
static int do_req_lookup(client_ctx *cx);
|
|
static int do_req_connect_start(client_ctx *cx);
|
|
static int do_req_connect(client_ctx *cx);
|
|
static int do_proxy_start(client_ctx *cx);
|
|
static int do_proxy(client_ctx *cx);
|
|
static int do_kill(client_ctx *cx);
|
|
static int do_almost_dead(client_ctx *cx);
|
|
static int conn_cycle(const char *who, conn *a, conn *b);
|
|
static void conn_timer_reset(conn *c);
|
|
static void conn_timer_expire(uv_timer_t *handle, int status);
|
|
static void conn_getaddrinfo(conn *c, const char *hostname);
|
|
static void conn_getaddrinfo_done(uv_getaddrinfo_t *req,
|
|
int status,
|
|
struct addrinfo *ai);
|
|
static int conn_connect(conn *c);
|
|
static void conn_connect_done(uv_connect_t *req, int status);
|
|
static void conn_read(conn *c);
|
|
static void conn_read_done(uv_stream_t *handle,
|
|
ssize_t nread,
|
|
const uv_buf_t *buf);
|
|
static void conn_alloc(uv_handle_t *handle, size_t size, uv_buf_t *buf);
|
|
static void conn_write(conn *c, const void *data, unsigned int len);
|
|
static void conn_write_done(uv_write_t *req, int status);
|
|
static void conn_close(conn *c);
|
|
static void conn_close_done(uv_handle_t *handle);
|
|
|
|
/* |incoming| has been initialized by server.c when this is called. */
|
|
void client_finish_init(server_ctx *sx, client_ctx *cx) {
|
|
conn *incoming;
|
|
conn *outgoing;
|
|
|
|
cx->sx = sx;
|
|
cx->state = s_handshake;
|
|
s5_init(&cx->parser);
|
|
|
|
incoming = &cx->incoming;
|
|
incoming->client = cx;
|
|
incoming->result = 0;
|
|
incoming->rdstate = c_stop;
|
|
incoming->wrstate = c_stop;
|
|
incoming->idle_timeout = sx->idle_timeout;
|
|
CHECK(0 == uv_timer_init(sx->loop, &incoming->timer_handle));
|
|
|
|
outgoing = &cx->outgoing;
|
|
outgoing->client = cx;
|
|
outgoing->result = 0;
|
|
outgoing->rdstate = c_stop;
|
|
outgoing->wrstate = c_stop;
|
|
outgoing->idle_timeout = sx->idle_timeout;
|
|
CHECK(0 == uv_tcp_init(cx->sx->loop, &outgoing->handle.tcp));
|
|
CHECK(0 == uv_timer_init(cx->sx->loop, &outgoing->timer_handle));
|
|
|
|
/* Wait for the initial packet. */
|
|
conn_read(incoming);
|
|
}
|
|
|
|
/* This is the core state machine that drives the client <-> upstream proxy.
|
|
* We move through the initial handshake and authentication steps first and
|
|
* end up (if all goes well) in the proxy state where we're just proxying
|
|
* data between the client and upstream.
|
|
*/
|
|
static void do_next(client_ctx *cx) {
|
|
int new_state;
|
|
|
|
ASSERT(cx->state != s_dead);
|
|
switch (cx->state) {
|
|
case s_handshake:
|
|
new_state = do_handshake(cx);
|
|
break;
|
|
case s_handshake_auth:
|
|
new_state = do_handshake_auth(cx);
|
|
break;
|
|
case s_req_start:
|
|
new_state = do_req_start(cx);
|
|
break;
|
|
case s_req_parse:
|
|
new_state = do_req_parse(cx);
|
|
break;
|
|
case s_req_lookup:
|
|
new_state = do_req_lookup(cx);
|
|
break;
|
|
case s_req_connect:
|
|
new_state = do_req_connect(cx);
|
|
break;
|
|
case s_proxy_start:
|
|
new_state = do_proxy_start(cx);
|
|
break;
|
|
case s_proxy:
|
|
new_state = do_proxy(cx);
|
|
break;
|
|
case s_kill:
|
|
new_state = do_kill(cx);
|
|
break;
|
|
case s_almost_dead_0:
|
|
case s_almost_dead_1:
|
|
case s_almost_dead_2:
|
|
case s_almost_dead_3:
|
|
case s_almost_dead_4:
|
|
new_state = do_almost_dead(cx);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
cx->state = new_state;
|
|
|
|
if (cx->state == s_dead) {
|
|
if (DEBUG_CHECKS) {
|
|
memset(cx, -1, sizeof(*cx));
|
|
}
|
|
free(cx);
|
|
}
|
|
}
|
|
|
|
static int do_handshake(client_ctx *cx) {
|
|
unsigned int methods;
|
|
conn *incoming;
|
|
s5_ctx *parser;
|
|
uint8_t *data;
|
|
size_t size;
|
|
int err;
|
|
|
|
parser = &cx->parser;
|
|
incoming = &cx->incoming;
|
|
ASSERT(incoming->rdstate == c_done);
|
|
ASSERT(incoming->wrstate == c_stop);
|
|
incoming->rdstate = c_stop;
|
|
|
|
if (incoming->result < 0) {
|
|
pr_err("read error: %s", uv_strerror(incoming->result));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
data = (uint8_t *) incoming->t.buf;
|
|
size = (size_t) incoming->result;
|
|
err = s5_parse(parser, &data, &size);
|
|
if (err == s5_ok) {
|
|
conn_read(incoming);
|
|
return s_handshake; /* Need more data. */
|
|
}
|
|
|
|
if (size != 0) {
|
|
/* Could allow a round-trip saving shortcut here if the requested auth
|
|
* method is S5_AUTH_NONE (provided unauthenticated traffic is allowed.)
|
|
* Requires client support however.
|
|
*/
|
|
pr_err("junk in handshake");
|
|
return do_kill(cx);
|
|
}
|
|
|
|
if (err != s5_auth_select) {
|
|
pr_err("handshake error: %s", s5_strerror(err));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
methods = s5_auth_methods(parser);
|
|
if ((methods & S5_AUTH_NONE) && can_auth_none(cx->sx, cx)) {
|
|
s5_select_auth(parser, S5_AUTH_NONE);
|
|
conn_write(incoming, "\5\0", 2); /* No auth required. */
|
|
return s_req_start;
|
|
}
|
|
|
|
if ((methods & S5_AUTH_PASSWD) && can_auth_passwd(cx->sx, cx)) {
|
|
/* TODO(bnoordhuis) Implement username/password auth. */
|
|
}
|
|
|
|
conn_write(incoming, "\5\377", 2); /* No acceptable auth. */
|
|
return s_kill;
|
|
}
|
|
|
|
/* TODO(bnoordhuis) Implement username/password auth. */
|
|
static int do_handshake_auth(client_ctx *cx) {
|
|
UNREACHABLE();
|
|
return do_kill(cx);
|
|
}
|
|
|
|
static int do_req_start(client_ctx *cx) {
|
|
conn *incoming;
|
|
|
|
incoming = &cx->incoming;
|
|
ASSERT(incoming->rdstate == c_stop);
|
|
ASSERT(incoming->wrstate == c_done);
|
|
incoming->wrstate = c_stop;
|
|
|
|
if (incoming->result < 0) {
|
|
pr_err("write error: %s", uv_strerror(incoming->result));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
conn_read(incoming);
|
|
return s_req_parse;
|
|
}
|
|
|
|
static int do_req_parse(client_ctx *cx) {
|
|
conn *incoming;
|
|
conn *outgoing;
|
|
s5_ctx *parser;
|
|
uint8_t *data;
|
|
size_t size;
|
|
int err;
|
|
|
|
parser = &cx->parser;
|
|
incoming = &cx->incoming;
|
|
outgoing = &cx->outgoing;
|
|
ASSERT(incoming->rdstate == c_done);
|
|
ASSERT(incoming->wrstate == c_stop);
|
|
ASSERT(outgoing->rdstate == c_stop);
|
|
ASSERT(outgoing->wrstate == c_stop);
|
|
incoming->rdstate = c_stop;
|
|
|
|
if (incoming->result < 0) {
|
|
pr_err("read error: %s", uv_strerror(incoming->result));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
data = (uint8_t *) incoming->t.buf;
|
|
size = (size_t) incoming->result;
|
|
err = s5_parse(parser, &data, &size);
|
|
if (err == s5_ok) {
|
|
conn_read(incoming);
|
|
return s_req_parse; /* Need more data. */
|
|
}
|
|
|
|
if (size != 0) {
|
|
pr_err("junk in request %u", (unsigned) size);
|
|
return do_kill(cx);
|
|
}
|
|
|
|
if (err != s5_exec_cmd) {
|
|
pr_err("request error: %s", s5_strerror(err));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
if (parser->cmd == s5_cmd_tcp_bind) {
|
|
/* Not supported but relatively straightforward to implement. */
|
|
pr_warn("BIND requests are not supported.");
|
|
return do_kill(cx);
|
|
}
|
|
|
|
if (parser->cmd == s5_cmd_udp_assoc) {
|
|
/* Not supported. Might be hard to implement because libuv has no
|
|
* functionality for detecting the MTU size which the RFC mandates.
|
|
*/
|
|
pr_warn("UDP ASSOC requests are not supported.");
|
|
return do_kill(cx);
|
|
}
|
|
ASSERT(parser->cmd == s5_cmd_tcp_connect);
|
|
|
|
if (parser->atyp == s5_atyp_host) {
|
|
conn_getaddrinfo(outgoing, (const char *) parser->daddr);
|
|
return s_req_lookup;
|
|
}
|
|
|
|
if (parser->atyp == s5_atyp_ipv4) {
|
|
memset(&outgoing->t.addr4, 0, sizeof(outgoing->t.addr4));
|
|
outgoing->t.addr4.sin_family = AF_INET;
|
|
outgoing->t.addr4.sin_port = htons(parser->dport);
|
|
memcpy(&outgoing->t.addr4.sin_addr,
|
|
parser->daddr,
|
|
sizeof(outgoing->t.addr4.sin_addr));
|
|
} else if (parser->atyp == s5_atyp_ipv6) {
|
|
memset(&outgoing->t.addr6, 0, sizeof(outgoing->t.addr6));
|
|
outgoing->t.addr6.sin6_family = AF_INET6;
|
|
outgoing->t.addr6.sin6_port = htons(parser->dport);
|
|
memcpy(&outgoing->t.addr6.sin6_addr,
|
|
parser->daddr,
|
|
sizeof(outgoing->t.addr6.sin6_addr));
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
return do_req_connect_start(cx);
|
|
}
|
|
|
|
static int do_req_lookup(client_ctx *cx) {
|
|
s5_ctx *parser;
|
|
conn *incoming;
|
|
conn *outgoing;
|
|
|
|
parser = &cx->parser;
|
|
incoming = &cx->incoming;
|
|
outgoing = &cx->outgoing;
|
|
ASSERT(incoming->rdstate == c_stop);
|
|
ASSERT(incoming->wrstate == c_stop);
|
|
ASSERT(outgoing->rdstate == c_stop);
|
|
ASSERT(outgoing->wrstate == c_stop);
|
|
|
|
if (outgoing->result < 0) {
|
|
/* TODO(bnoordhuis) Escape control characters in parser->daddr. */
|
|
pr_err("lookup error for \"%s\": %s",
|
|
parser->daddr,
|
|
uv_strerror(outgoing->result));
|
|
/* Send back a 'Host unreachable' reply. */
|
|
conn_write(incoming, "\5\4\0\1\0\0\0\0\0\0", 10);
|
|
return s_kill;
|
|
}
|
|
|
|
/* Don't make assumptions about the offset of sin_port/sin6_port. */
|
|
switch (outgoing->t.addr.sa_family) {
|
|
case AF_INET:
|
|
outgoing->t.addr4.sin_port = htons(parser->dport);
|
|
break;
|
|
case AF_INET6:
|
|
outgoing->t.addr6.sin6_port = htons(parser->dport);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
return do_req_connect_start(cx);
|
|
}
|
|
|
|
/* Assumes that cx->outgoing.t.sa contains a valid AF_INET/AF_INET6 address. */
|
|
static int do_req_connect_start(client_ctx *cx) {
|
|
conn *incoming;
|
|
conn *outgoing;
|
|
int err;
|
|
|
|
incoming = &cx->incoming;
|
|
outgoing = &cx->outgoing;
|
|
ASSERT(incoming->rdstate == c_stop);
|
|
ASSERT(incoming->wrstate == c_stop);
|
|
ASSERT(outgoing->rdstate == c_stop);
|
|
ASSERT(outgoing->wrstate == c_stop);
|
|
|
|
if (!can_access(cx->sx, cx, &outgoing->t.addr)) {
|
|
pr_warn("connection not allowed by ruleset");
|
|
/* Send a 'Connection not allowed by ruleset' reply. */
|
|
conn_write(incoming, "\5\2\0\1\0\0\0\0\0\0", 10);
|
|
return s_kill;
|
|
}
|
|
|
|
err = conn_connect(outgoing);
|
|
if (err != 0) {
|
|
pr_err("connect error: %s\n", uv_strerror(err));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
return s_req_connect;
|
|
}
|
|
|
|
static int do_req_connect(client_ctx *cx) {
|
|
const struct sockaddr_in6 *in6;
|
|
const struct sockaddr_in *in;
|
|
char addr_storage[sizeof(*in6)];
|
|
conn *incoming;
|
|
conn *outgoing;
|
|
uint8_t *buf;
|
|
int addrlen;
|
|
|
|
incoming = &cx->incoming;
|
|
outgoing = &cx->outgoing;
|
|
ASSERT(incoming->rdstate == c_stop);
|
|
ASSERT(incoming->wrstate == c_stop);
|
|
ASSERT(outgoing->rdstate == c_stop);
|
|
ASSERT(outgoing->wrstate == c_stop);
|
|
|
|
/* Build and send the reply. Not very pretty but gets the job done. */
|
|
buf = (uint8_t *) incoming->t.buf;
|
|
if (outgoing->result == 0) {
|
|
/* The RFC mandates that the SOCKS server must include the local port
|
|
* and address in the reply. So that's what we do.
|
|
*/
|
|
addrlen = sizeof(addr_storage);
|
|
CHECK(0 == uv_tcp_getsockname(&outgoing->handle.tcp,
|
|
(struct sockaddr *) addr_storage,
|
|
&addrlen));
|
|
buf[0] = 5; /* Version. */
|
|
buf[1] = 0; /* Success. */
|
|
buf[2] = 0; /* Reserved. */
|
|
if (addrlen == sizeof(*in)) {
|
|
buf[3] = 1; /* IPv4. */
|
|
in = (const struct sockaddr_in *) &addr_storage;
|
|
memcpy(buf + 4, &in->sin_addr, 4);
|
|
memcpy(buf + 8, &in->sin_port, 2);
|
|
conn_write(incoming, buf, 10);
|
|
} else if (addrlen == sizeof(*in6)) {
|
|
buf[3] = 4; /* IPv6. */
|
|
in6 = (const struct sockaddr_in6 *) &addr_storage;
|
|
memcpy(buf + 4, &in6->sin6_addr, 16);
|
|
memcpy(buf + 20, &in6->sin6_port, 2);
|
|
conn_write(incoming, buf, 22);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
return s_proxy_start;
|
|
} else {
|
|
pr_err("upstream connection error: %s\n", uv_strerror(outgoing->result));
|
|
/* Send a 'Connection refused' reply. */
|
|
conn_write(incoming, "\5\5\0\1\0\0\0\0\0\0", 10);
|
|
return s_kill;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return s_kill;
|
|
}
|
|
|
|
static int do_proxy_start(client_ctx *cx) {
|
|
conn *incoming;
|
|
conn *outgoing;
|
|
|
|
incoming = &cx->incoming;
|
|
outgoing = &cx->outgoing;
|
|
ASSERT(incoming->rdstate == c_stop);
|
|
ASSERT(incoming->wrstate == c_done);
|
|
ASSERT(outgoing->rdstate == c_stop);
|
|
ASSERT(outgoing->wrstate == c_stop);
|
|
incoming->wrstate = c_stop;
|
|
|
|
if (incoming->result < 0) {
|
|
pr_err("write error: %s", uv_strerror(incoming->result));
|
|
return do_kill(cx);
|
|
}
|
|
|
|
conn_read(incoming);
|
|
conn_read(outgoing);
|
|
return s_proxy;
|
|
}
|
|
|
|
/* Proxy incoming data back and forth. */
|
|
static int do_proxy(client_ctx *cx) {
|
|
if (conn_cycle("client", &cx->incoming, &cx->outgoing)) {
|
|
return do_kill(cx);
|
|
}
|
|
|
|
if (conn_cycle("upstream", &cx->outgoing, &cx->incoming)) {
|
|
return do_kill(cx);
|
|
}
|
|
|
|
return s_proxy;
|
|
}
|
|
|
|
static int do_kill(client_ctx *cx) {
|
|
int new_state;
|
|
|
|
if (cx->state >= s_almost_dead_0) {
|
|
return cx->state;
|
|
}
|
|
|
|
/* Try to cancel the request. The callback still runs but if the
|
|
* cancellation succeeded, it gets called with status=UV_ECANCELED.
|
|
*/
|
|
new_state = s_almost_dead_1;
|
|
if (cx->state == s_req_lookup) {
|
|
new_state = s_almost_dead_0;
|
|
uv_cancel(&cx->outgoing.t.req);
|
|
}
|
|
|
|
conn_close(&cx->incoming);
|
|
conn_close(&cx->outgoing);
|
|
return new_state;
|
|
}
|
|
|
|
static int do_almost_dead(client_ctx *cx) {
|
|
ASSERT(cx->state >= s_almost_dead_0);
|
|
return cx->state + 1; /* Another finalizer completed. */
|
|
}
|
|
|
|
static int conn_cycle(const char *who, conn *a, conn *b) {
|
|
if (a->result < 0) {
|
|
if (a->result != UV_EOF) {
|
|
pr_err("%s error: %s", who, uv_strerror(a->result));
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (b->result < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (a->wrstate == c_done) {
|
|
a->wrstate = c_stop;
|
|
}
|
|
|
|
/* The logic is as follows: read when we don't write and write when we don't
|
|
* read. That gives us back-pressure handling for free because if the peer
|
|
* sends data faster than we consume it, TCP congestion control kicks in.
|
|
*/
|
|
if (a->wrstate == c_stop) {
|
|
if (b->rdstate == c_stop) {
|
|
conn_read(b);
|
|
} else if (b->rdstate == c_done) {
|
|
conn_write(a, b->t.buf, b->result);
|
|
b->rdstate = c_stop; /* Triggers the call to conn_read() above. */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void conn_timer_reset(conn *c) {
|
|
CHECK(0 == uv_timer_start(&c->timer_handle,
|
|
conn_timer_expire,
|
|
c->idle_timeout,
|
|
0));
|
|
}
|
|
|
|
static void conn_timer_expire(uv_timer_t *handle, int status) {
|
|
conn *c;
|
|
|
|
CHECK(0 == status);
|
|
c = CONTAINER_OF(handle, conn, timer_handle);
|
|
c->result = UV_ETIMEDOUT;
|
|
do_next(c->client);
|
|
}
|
|
|
|
static void conn_getaddrinfo(conn *c, const char *hostname) {
|
|
struct addrinfo hints;
|
|
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = IPPROTO_TCP;
|
|
CHECK(0 == uv_getaddrinfo(c->client->sx->loop,
|
|
&c->t.addrinfo_req,
|
|
conn_getaddrinfo_done,
|
|
hostname,
|
|
NULL,
|
|
&hints));
|
|
conn_timer_reset(c);
|
|
}
|
|
|
|
static void conn_getaddrinfo_done(uv_getaddrinfo_t *req,
|
|
int status,
|
|
struct addrinfo *ai) {
|
|
conn *c;
|
|
|
|
c = CONTAINER_OF(req, conn, t.addrinfo_req);
|
|
c->result = status;
|
|
|
|
if (status == 0) {
|
|
/* FIXME(bnoordhuis) Should try all addresses. */
|
|
if (ai->ai_family == AF_INET) {
|
|
c->t.addr4 = *(const struct sockaddr_in *) ai->ai_addr;
|
|
} else if (ai->ai_family == AF_INET6) {
|
|
c->t.addr6 = *(const struct sockaddr_in6 *) ai->ai_addr;
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
uv_freeaddrinfo(ai);
|
|
do_next(c->client);
|
|
}
|
|
|
|
/* Assumes that c->t.sa contains a valid AF_INET or AF_INET6 address. */
|
|
static int conn_connect(conn *c) {
|
|
ASSERT(c->t.addr.sa_family == AF_INET ||
|
|
c->t.addr.sa_family == AF_INET6);
|
|
conn_timer_reset(c);
|
|
return uv_tcp_connect(&c->t.connect_req,
|
|
&c->handle.tcp,
|
|
&c->t.addr,
|
|
conn_connect_done);
|
|
}
|
|
|
|
static void conn_connect_done(uv_connect_t *req, int status) {
|
|
conn *c;
|
|
|
|
if (status == UV_ECANCELED) {
|
|
return; /* Handle has been closed. */
|
|
}
|
|
|
|
c = CONTAINER_OF(req, conn, t.connect_req);
|
|
c->result = status;
|
|
do_next(c->client);
|
|
}
|
|
|
|
static void conn_read(conn *c) {
|
|
ASSERT(c->rdstate == c_stop);
|
|
CHECK(0 == uv_read_start(&c->handle.stream, conn_alloc, conn_read_done));
|
|
c->rdstate = c_busy;
|
|
conn_timer_reset(c);
|
|
}
|
|
|
|
static void conn_read_done(uv_stream_t *handle,
|
|
ssize_t nread,
|
|
const uv_buf_t *buf) {
|
|
conn *c;
|
|
|
|
c = CONTAINER_OF(handle, conn, handle);
|
|
ASSERT(c->t.buf == buf->base);
|
|
ASSERT(c->rdstate == c_busy);
|
|
c->rdstate = c_done;
|
|
c->result = nread;
|
|
|
|
uv_read_stop(&c->handle.stream);
|
|
do_next(c->client);
|
|
}
|
|
|
|
static void conn_alloc(uv_handle_t *handle, size_t size, uv_buf_t *buf) {
|
|
conn *c;
|
|
|
|
c = CONTAINER_OF(handle, conn, handle);
|
|
ASSERT(c->rdstate == c_busy);
|
|
buf->base = c->t.buf;
|
|
buf->len = sizeof(c->t.buf);
|
|
}
|
|
|
|
static void conn_write(conn *c, const void *data, unsigned int len) {
|
|
uv_buf_t buf;
|
|
|
|
ASSERT(c->wrstate == c_stop || c->wrstate == c_done);
|
|
c->wrstate = c_busy;
|
|
|
|
/* It's okay to cast away constness here, uv_write() won't modify the
|
|
* memory.
|
|
*/
|
|
buf.base = (char *) data;
|
|
buf.len = len;
|
|
|
|
CHECK(0 == uv_write(&c->write_req,
|
|
&c->handle.stream,
|
|
&buf,
|
|
1,
|
|
conn_write_done));
|
|
conn_timer_reset(c);
|
|
}
|
|
|
|
static void conn_write_done(uv_write_t *req, int status) {
|
|
conn *c;
|
|
|
|
if (status == UV_ECANCELED) {
|
|
return; /* Handle has been closed. */
|
|
}
|
|
|
|
c = CONTAINER_OF(req, conn, write_req);
|
|
ASSERT(c->wrstate == c_busy);
|
|
c->wrstate = c_done;
|
|
c->result = status;
|
|
do_next(c->client);
|
|
}
|
|
|
|
static void conn_close(conn *c) {
|
|
ASSERT(c->rdstate != c_dead);
|
|
ASSERT(c->wrstate != c_dead);
|
|
c->rdstate = c_dead;
|
|
c->wrstate = c_dead;
|
|
c->timer_handle.data = c;
|
|
c->handle.handle.data = c;
|
|
uv_close(&c->handle.handle, conn_close_done);
|
|
uv_close((uv_handle_t *) &c->timer_handle, conn_close_done);
|
|
}
|
|
|
|
static void conn_close_done(uv_handle_t *handle) {
|
|
conn *c;
|
|
|
|
c = handle->data;
|
|
do_next(c->client);
|
|
}
|
|
|