mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2043 lines
60 KiB
2043 lines
60 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Platform specific code for Win32.
|
|
|
|
#define V8_WIN32_HEADERS_FULL
|
|
#include "win32-headers.h"
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform.h"
|
|
#include "vm-state-inl.h"
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
|
|
// defined in strings.h.
|
|
int strncasecmp(const char* s1, const char* s2, int n) {
|
|
return _strnicmp(s1, s2, n);
|
|
}
|
|
|
|
#endif // _MSC_VER
|
|
|
|
|
|
// Extra functions for MinGW. Most of these are the _s functions which are in
|
|
// the Microsoft Visual Studio C++ CRT.
|
|
#ifdef __MINGW32__
|
|
|
|
int localtime_s(tm* out_tm, const time_t* time) {
|
|
tm* posix_local_time_struct = localtime(time);
|
|
if (posix_local_time_struct == NULL) return 1;
|
|
*out_tm = *posix_local_time_struct;
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Not sure this the correct interpretation of _mkgmtime
|
|
time_t _mkgmtime(tm* timeptr) {
|
|
return mktime(timeptr);
|
|
}
|
|
|
|
|
|
int fopen_s(FILE** pFile, const char* filename, const char* mode) {
|
|
*pFile = fopen(filename, mode);
|
|
return *pFile != NULL ? 0 : 1;
|
|
}
|
|
|
|
|
|
#define _TRUNCATE 0
|
|
#define STRUNCATE 80
|
|
|
|
int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
|
|
const char* format, va_list argptr) {
|
|
ASSERT(count == _TRUNCATE);
|
|
return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
|
|
}
|
|
|
|
|
|
int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
|
|
CHECK(source != NULL);
|
|
CHECK(dest != NULL);
|
|
CHECK_GT(dest_size, 0);
|
|
|
|
if (count == _TRUNCATE) {
|
|
while (dest_size > 0 && *source != 0) {
|
|
*(dest++) = *(source++);
|
|
--dest_size;
|
|
}
|
|
if (dest_size == 0) {
|
|
*(dest - 1) = 0;
|
|
return STRUNCATE;
|
|
}
|
|
} else {
|
|
while (dest_size > 0 && count > 0 && *source != 0) {
|
|
*(dest++) = *(source++);
|
|
--dest_size;
|
|
--count;
|
|
}
|
|
}
|
|
CHECK_GT(dest_size, 0);
|
|
*dest = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
inline void MemoryBarrier() {
|
|
int barrier = 0;
|
|
__asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
|
|
}
|
|
|
|
#endif // __MINGW32__
|
|
|
|
// Generate a pseudo-random number in the range 0-2^31-1. Usually
|
|
// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
|
|
int random() {
|
|
return rand();
|
|
}
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
intptr_t OS::MaxVirtualMemory() {
|
|
return 0;
|
|
}
|
|
|
|
|
|
double ceiling(double x) {
|
|
return ceil(x);
|
|
}
|
|
|
|
|
|
static Mutex* limit_mutex = NULL;
|
|
|
|
#if defined(V8_TARGET_ARCH_IA32)
|
|
static OS::MemCopyFunction memcopy_function = NULL;
|
|
static Mutex* memcopy_function_mutex = OS::CreateMutex();
|
|
// Defined in codegen-ia32.cc.
|
|
OS::MemCopyFunction CreateMemCopyFunction();
|
|
|
|
// Copy memory area to disjoint memory area.
|
|
void OS::MemCopy(void* dest, const void* src, size_t size) {
|
|
if (memcopy_function == NULL) {
|
|
ScopedLock lock(memcopy_function_mutex);
|
|
if (memcopy_function == NULL) {
|
|
OS::MemCopyFunction temp = CreateMemCopyFunction();
|
|
MemoryBarrier();
|
|
memcopy_function = temp;
|
|
}
|
|
}
|
|
// Note: here we rely on dependent reads being ordered. This is true
|
|
// on all architectures we currently support.
|
|
(*memcopy_function)(dest, src, size);
|
|
#ifdef DEBUG
|
|
CHECK_EQ(0, memcmp(dest, src, size));
|
|
#endif
|
|
}
|
|
#endif // V8_TARGET_ARCH_IA32
|
|
|
|
#ifdef _WIN64
|
|
typedef double (*ModuloFunction)(double, double);
|
|
static ModuloFunction modulo_function = NULL;
|
|
static Mutex* modulo_function_mutex = OS::CreateMutex();
|
|
// Defined in codegen-x64.cc.
|
|
ModuloFunction CreateModuloFunction();
|
|
|
|
double modulo(double x, double y) {
|
|
if (modulo_function == NULL) {
|
|
ScopedLock lock(modulo_function_mutex);
|
|
if (modulo_function == NULL) {
|
|
ModuloFunction temp = CreateModuloFunction();
|
|
MemoryBarrier();
|
|
modulo_function = temp;
|
|
}
|
|
}
|
|
// Note: here we rely on dependent reads being ordered. This is true
|
|
// on all architectures we currently support.
|
|
return (*modulo_function)(x, y);
|
|
}
|
|
#else // Win32
|
|
|
|
double modulo(double x, double y) {
|
|
// Workaround MS fmod bugs. ECMA-262 says:
|
|
// dividend is finite and divisor is an infinity => result equals dividend
|
|
// dividend is a zero and divisor is nonzero finite => result equals dividend
|
|
if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
|
|
!(x == 0 && (y != 0 && isfinite(y)))) {
|
|
x = fmod(x, y);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
#endif // _WIN64
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The Time class represents time on win32. A timestamp is represented as
|
|
// a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
|
|
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
|
|
// January 1, 1970.
|
|
|
|
class Time {
|
|
public:
|
|
// Constructors.
|
|
Time();
|
|
explicit Time(double jstime);
|
|
Time(int year, int mon, int day, int hour, int min, int sec);
|
|
|
|
// Convert timestamp to JavaScript representation.
|
|
double ToJSTime();
|
|
|
|
// Set timestamp to current time.
|
|
void SetToCurrentTime();
|
|
|
|
// Returns the local timezone offset in milliseconds east of UTC. This is
|
|
// the number of milliseconds you must add to UTC to get local time, i.e.
|
|
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
|
|
// routine also takes into account whether daylight saving is effect
|
|
// at the time.
|
|
int64_t LocalOffset();
|
|
|
|
// Returns the daylight savings time offset for the time in milliseconds.
|
|
int64_t DaylightSavingsOffset();
|
|
|
|
// Returns a string identifying the current timezone for the
|
|
// timestamp taking into account daylight saving.
|
|
char* LocalTimezone();
|
|
|
|
private:
|
|
// Constants for time conversion.
|
|
static const int64_t kTimeEpoc = 116444736000000000LL;
|
|
static const int64_t kTimeScaler = 10000;
|
|
static const int64_t kMsPerMinute = 60000;
|
|
|
|
// Constants for timezone information.
|
|
static const int kTzNameSize = 128;
|
|
static const bool kShortTzNames = false;
|
|
|
|
// Timezone information. We need to have static buffers for the
|
|
// timezone names because we return pointers to these in
|
|
// LocalTimezone().
|
|
static bool tz_initialized_;
|
|
static TIME_ZONE_INFORMATION tzinfo_;
|
|
static char std_tz_name_[kTzNameSize];
|
|
static char dst_tz_name_[kTzNameSize];
|
|
|
|
// Initialize the timezone information (if not already done).
|
|
static void TzSet();
|
|
|
|
// Guess the name of the timezone from the bias.
|
|
static const char* GuessTimezoneNameFromBias(int bias);
|
|
|
|
// Return whether or not daylight savings time is in effect at this time.
|
|
bool InDST();
|
|
|
|
// Return the difference (in milliseconds) between this timestamp and
|
|
// another timestamp.
|
|
int64_t Diff(Time* other);
|
|
|
|
// Accessor for FILETIME representation.
|
|
FILETIME& ft() { return time_.ft_; }
|
|
|
|
// Accessor for integer representation.
|
|
int64_t& t() { return time_.t_; }
|
|
|
|
// Although win32 uses 64-bit integers for representing timestamps,
|
|
// these are packed into a FILETIME structure. The FILETIME structure
|
|
// is just a struct representing a 64-bit integer. The TimeStamp union
|
|
// allows access to both a FILETIME and an integer representation of
|
|
// the timestamp.
|
|
union TimeStamp {
|
|
FILETIME ft_;
|
|
int64_t t_;
|
|
};
|
|
|
|
TimeStamp time_;
|
|
};
|
|
|
|
// Static variables.
|
|
bool Time::tz_initialized_ = false;
|
|
TIME_ZONE_INFORMATION Time::tzinfo_;
|
|
char Time::std_tz_name_[kTzNameSize];
|
|
char Time::dst_tz_name_[kTzNameSize];
|
|
|
|
|
|
// Initialize timestamp to start of epoc.
|
|
Time::Time() {
|
|
t() = 0;
|
|
}
|
|
|
|
|
|
// Initialize timestamp from a JavaScript timestamp.
|
|
Time::Time(double jstime) {
|
|
t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
|
|
}
|
|
|
|
|
|
// Initialize timestamp from date/time components.
|
|
Time::Time(int year, int mon, int day, int hour, int min, int sec) {
|
|
SYSTEMTIME st;
|
|
st.wYear = year;
|
|
st.wMonth = mon;
|
|
st.wDay = day;
|
|
st.wHour = hour;
|
|
st.wMinute = min;
|
|
st.wSecond = sec;
|
|
st.wMilliseconds = 0;
|
|
SystemTimeToFileTime(&st, &ft());
|
|
}
|
|
|
|
|
|
// Convert timestamp to JavaScript timestamp.
|
|
double Time::ToJSTime() {
|
|
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
|
|
}
|
|
|
|
|
|
// Guess the name of the timezone from the bias.
|
|
// The guess is very biased towards the northern hemisphere.
|
|
const char* Time::GuessTimezoneNameFromBias(int bias) {
|
|
static const int kHour = 60;
|
|
switch (-bias) {
|
|
case -9*kHour: return "Alaska";
|
|
case -8*kHour: return "Pacific";
|
|
case -7*kHour: return "Mountain";
|
|
case -6*kHour: return "Central";
|
|
case -5*kHour: return "Eastern";
|
|
case -4*kHour: return "Atlantic";
|
|
case 0*kHour: return "GMT";
|
|
case +1*kHour: return "Central Europe";
|
|
case +2*kHour: return "Eastern Europe";
|
|
case +3*kHour: return "Russia";
|
|
case +5*kHour + 30: return "India";
|
|
case +8*kHour: return "China";
|
|
case +9*kHour: return "Japan";
|
|
case +12*kHour: return "New Zealand";
|
|
default: return "Local";
|
|
}
|
|
}
|
|
|
|
|
|
// Initialize timezone information. The timezone information is obtained from
|
|
// windows. If we cannot get the timezone information we fall back to CET.
|
|
// Please notice that this code is not thread-safe.
|
|
void Time::TzSet() {
|
|
// Just return if timezone information has already been initialized.
|
|
if (tz_initialized_) return;
|
|
|
|
// Initialize POSIX time zone data.
|
|
_tzset();
|
|
// Obtain timezone information from operating system.
|
|
memset(&tzinfo_, 0, sizeof(tzinfo_));
|
|
if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
|
|
// If we cannot get timezone information we fall back to CET.
|
|
tzinfo_.Bias = -60;
|
|
tzinfo_.StandardDate.wMonth = 10;
|
|
tzinfo_.StandardDate.wDay = 5;
|
|
tzinfo_.StandardDate.wHour = 3;
|
|
tzinfo_.StandardBias = 0;
|
|
tzinfo_.DaylightDate.wMonth = 3;
|
|
tzinfo_.DaylightDate.wDay = 5;
|
|
tzinfo_.DaylightDate.wHour = 2;
|
|
tzinfo_.DaylightBias = -60;
|
|
}
|
|
|
|
// Make standard and DST timezone names.
|
|
WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
|
|
std_tz_name_, kTzNameSize, NULL, NULL);
|
|
std_tz_name_[kTzNameSize - 1] = '\0';
|
|
WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
|
|
dst_tz_name_, kTzNameSize, NULL, NULL);
|
|
dst_tz_name_[kTzNameSize - 1] = '\0';
|
|
|
|
// If OS returned empty string or resource id (like "@tzres.dll,-211")
|
|
// simply guess the name from the UTC bias of the timezone.
|
|
// To properly resolve the resource identifier requires a library load,
|
|
// which is not possible in a sandbox.
|
|
if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
|
|
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
|
|
"%s Standard Time",
|
|
GuessTimezoneNameFromBias(tzinfo_.Bias));
|
|
}
|
|
if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
|
|
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
|
|
"%s Daylight Time",
|
|
GuessTimezoneNameFromBias(tzinfo_.Bias));
|
|
}
|
|
|
|
// Timezone information initialized.
|
|
tz_initialized_ = true;
|
|
}
|
|
|
|
|
|
// Return the difference in milliseconds between this and another timestamp.
|
|
int64_t Time::Diff(Time* other) {
|
|
return (t() - other->t()) / kTimeScaler;
|
|
}
|
|
|
|
|
|
// Set timestamp to current time.
|
|
void Time::SetToCurrentTime() {
|
|
// The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
|
|
// Because we're fast, we like fast timers which have at least a
|
|
// 1ms resolution.
|
|
//
|
|
// timeGetTime() provides 1ms granularity when combined with
|
|
// timeBeginPeriod(). If the host application for v8 wants fast
|
|
// timers, it can use timeBeginPeriod to increase the resolution.
|
|
//
|
|
// Using timeGetTime() has a drawback because it is a 32bit value
|
|
// and hence rolls-over every ~49days.
|
|
//
|
|
// To use the clock, we use GetSystemTimeAsFileTime as our base;
|
|
// and then use timeGetTime to extrapolate current time from the
|
|
// start time. To deal with rollovers, we resync the clock
|
|
// any time when more than kMaxClockElapsedTime has passed or
|
|
// whenever timeGetTime creates a rollover.
|
|
|
|
static bool initialized = false;
|
|
static TimeStamp init_time;
|
|
static DWORD init_ticks;
|
|
static const int64_t kHundredNanosecondsPerSecond = 10000000;
|
|
static const int64_t kMaxClockElapsedTime =
|
|
60*kHundredNanosecondsPerSecond; // 1 minute
|
|
|
|
// If we are uninitialized, we need to resync the clock.
|
|
bool needs_resync = !initialized;
|
|
|
|
// Get the current time.
|
|
TimeStamp time_now;
|
|
GetSystemTimeAsFileTime(&time_now.ft_);
|
|
DWORD ticks_now = timeGetTime();
|
|
|
|
// Check if we need to resync due to clock rollover.
|
|
needs_resync |= ticks_now < init_ticks;
|
|
|
|
// Check if we need to resync due to elapsed time.
|
|
needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
|
|
|
|
// Resync the clock if necessary.
|
|
if (needs_resync) {
|
|
GetSystemTimeAsFileTime(&init_time.ft_);
|
|
init_ticks = ticks_now = timeGetTime();
|
|
initialized = true;
|
|
}
|
|
|
|
// Finally, compute the actual time. Why is this so hard.
|
|
DWORD elapsed = ticks_now - init_ticks;
|
|
this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
|
|
}
|
|
|
|
|
|
// Return the local timezone offset in milliseconds east of UTC. This
|
|
// takes into account whether daylight saving is in effect at the time.
|
|
// Only times in the 32-bit Unix range may be passed to this function.
|
|
// Also, adding the time-zone offset to the input must not overflow.
|
|
// The function EquivalentTime() in date.js guarantees this.
|
|
int64_t Time::LocalOffset() {
|
|
// Initialize timezone information, if needed.
|
|
TzSet();
|
|
|
|
Time rounded_to_second(*this);
|
|
rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
|
|
1000 * kTimeScaler;
|
|
// Convert to local time using POSIX localtime function.
|
|
// Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
|
|
// very slow. Other browsers use localtime().
|
|
|
|
// Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
|
|
// POSIX seconds past 1/1/1970 0:00:00.
|
|
double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
|
|
if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
|
|
return 0;
|
|
}
|
|
// Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
|
|
time_t posix_time = static_cast<time_t>(unchecked_posix_time);
|
|
|
|
// Convert to local time, as struct with fields for day, hour, year, etc.
|
|
tm posix_local_time_struct;
|
|
if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
|
|
// Convert local time in struct to POSIX time as if it were a UTC time.
|
|
time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
|
|
Time localtime(1000.0 * local_posix_time);
|
|
|
|
return localtime.Diff(&rounded_to_second);
|
|
}
|
|
|
|
|
|
// Return whether or not daylight savings time is in effect at this time.
|
|
bool Time::InDST() {
|
|
// Initialize timezone information, if needed.
|
|
TzSet();
|
|
|
|
// Determine if DST is in effect at the specified time.
|
|
bool in_dst = false;
|
|
if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
|
|
// Get the local timezone offset for the timestamp in milliseconds.
|
|
int64_t offset = LocalOffset();
|
|
|
|
// Compute the offset for DST. The bias parameters in the timezone info
|
|
// are specified in minutes. These must be converted to milliseconds.
|
|
int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
|
|
|
|
// If the local time offset equals the timezone bias plus the daylight
|
|
// bias then DST is in effect.
|
|
in_dst = offset == dstofs;
|
|
}
|
|
|
|
return in_dst;
|
|
}
|
|
|
|
|
|
// Return the daylight savings time offset for this time.
|
|
int64_t Time::DaylightSavingsOffset() {
|
|
return InDST() ? 60 * kMsPerMinute : 0;
|
|
}
|
|
|
|
|
|
// Returns a string identifying the current timezone for the
|
|
// timestamp taking into account daylight saving.
|
|
char* Time::LocalTimezone() {
|
|
// Return the standard or DST time zone name based on whether daylight
|
|
// saving is in effect at the given time.
|
|
return InDST() ? dst_tz_name_ : std_tz_name_;
|
|
}
|
|
|
|
|
|
void OS::SetUp() {
|
|
// Seed the random number generator.
|
|
// Convert the current time to a 64-bit integer first, before converting it
|
|
// to an unsigned. Going directly can cause an overflow and the seed to be
|
|
// set to all ones. The seed will be identical for different instances that
|
|
// call this setup code within the same millisecond.
|
|
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
|
|
srand(static_cast<unsigned int>(seed));
|
|
limit_mutex = CreateMutex();
|
|
}
|
|
|
|
|
|
// Returns the accumulated user time for thread.
|
|
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
|
|
FILETIME dummy;
|
|
uint64_t usertime;
|
|
|
|
// Get the amount of time that the thread has executed in user mode.
|
|
if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
|
|
reinterpret_cast<FILETIME*>(&usertime))) return -1;
|
|
|
|
// Adjust the resolution to micro-seconds.
|
|
usertime /= 10;
|
|
|
|
// Convert to seconds and microseconds
|
|
*secs = static_cast<uint32_t>(usertime / 1000000);
|
|
*usecs = static_cast<uint32_t>(usertime % 1000000);
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Returns current time as the number of milliseconds since
|
|
// 00:00:00 UTC, January 1, 1970.
|
|
double OS::TimeCurrentMillis() {
|
|
Time t;
|
|
t.SetToCurrentTime();
|
|
return t.ToJSTime();
|
|
}
|
|
|
|
// Returns the tickcounter based on timeGetTime.
|
|
int64_t OS::Ticks() {
|
|
return timeGetTime() * 1000; // Convert to microseconds.
|
|
}
|
|
|
|
|
|
// Returns a string identifying the current timezone taking into
|
|
// account daylight saving.
|
|
const char* OS::LocalTimezone(double time) {
|
|
return Time(time).LocalTimezone();
|
|
}
|
|
|
|
|
|
// Returns the local time offset in milliseconds east of UTC without
|
|
// taking daylight savings time into account.
|
|
double OS::LocalTimeOffset() {
|
|
// Use current time, rounded to the millisecond.
|
|
Time t(TimeCurrentMillis());
|
|
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
|
|
return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
|
|
}
|
|
|
|
|
|
// Returns the daylight savings offset in milliseconds for the given
|
|
// time.
|
|
double OS::DaylightSavingsOffset(double time) {
|
|
int64_t offset = Time(time).DaylightSavingsOffset();
|
|
return static_cast<double>(offset);
|
|
}
|
|
|
|
|
|
int OS::GetLastError() {
|
|
return ::GetLastError();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 console output.
|
|
//
|
|
// If a Win32 application is linked as a console application it has a normal
|
|
// standard output and standard error. In this case normal printf works fine
|
|
// for output. However, if the application is linked as a GUI application,
|
|
// the process doesn't have a console, and therefore (debugging) output is lost.
|
|
// This is the case if we are embedded in a windows program (like a browser).
|
|
// In order to be able to get debug output in this case the the debugging
|
|
// facility using OutputDebugString. This output goes to the active debugger
|
|
// for the process (if any). Else the output can be monitored using DBMON.EXE.
|
|
|
|
enum OutputMode {
|
|
UNKNOWN, // Output method has not yet been determined.
|
|
CONSOLE, // Output is written to stdout.
|
|
ODS // Output is written to debug facility.
|
|
};
|
|
|
|
static OutputMode output_mode = UNKNOWN; // Current output mode.
|
|
|
|
|
|
// Determine if the process has a console for output.
|
|
static bool HasConsole() {
|
|
// Only check the first time. Eventual race conditions are not a problem,
|
|
// because all threads will eventually determine the same mode.
|
|
if (output_mode == UNKNOWN) {
|
|
// We cannot just check that the standard output is attached to a console
|
|
// because this would fail if output is redirected to a file. Therefore we
|
|
// say that a process does not have an output console if either the
|
|
// standard output handle is invalid or its file type is unknown.
|
|
if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
|
|
GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
|
|
output_mode = CONSOLE;
|
|
else
|
|
output_mode = ODS;
|
|
}
|
|
return output_mode == CONSOLE;
|
|
}
|
|
|
|
|
|
static void VPrintHelper(FILE* stream, const char* format, va_list args) {
|
|
if (HasConsole()) {
|
|
vfprintf(stream, format, args);
|
|
} else {
|
|
// It is important to use safe print here in order to avoid
|
|
// overflowing the buffer. We might truncate the output, but this
|
|
// does not crash.
|
|
EmbeddedVector<char, 4096> buffer;
|
|
OS::VSNPrintF(buffer, format, args);
|
|
OutputDebugStringA(buffer.start());
|
|
}
|
|
}
|
|
|
|
|
|
FILE* OS::FOpen(const char* path, const char* mode) {
|
|
FILE* result;
|
|
if (fopen_s(&result, path, mode) == 0) {
|
|
return result;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
bool OS::Remove(const char* path) {
|
|
return (DeleteFileA(path) != 0);
|
|
}
|
|
|
|
|
|
FILE* OS::OpenTemporaryFile() {
|
|
// tmpfile_s tries to use the root dir, don't use it.
|
|
char tempPathBuffer[MAX_PATH];
|
|
DWORD path_result = 0;
|
|
path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
|
|
if (path_result > MAX_PATH || path_result == 0) return NULL;
|
|
UINT name_result = 0;
|
|
char tempNameBuffer[MAX_PATH];
|
|
name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
|
|
if (name_result == 0) return NULL;
|
|
FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
|
|
if (result != NULL) {
|
|
Remove(tempNameBuffer); // Delete on close.
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// Open log file in binary mode to avoid /n -> /r/n conversion.
|
|
const char* const OS::LogFileOpenMode = "wb";
|
|
|
|
|
|
// Print (debug) message to console.
|
|
void OS::Print(const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
VPrint(format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
|
|
void OS::VPrint(const char* format, va_list args) {
|
|
VPrintHelper(stdout, format, args);
|
|
}
|
|
|
|
|
|
void OS::FPrint(FILE* out, const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
VFPrint(out, format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
|
|
void OS::VFPrint(FILE* out, const char* format, va_list args) {
|
|
VPrintHelper(out, format, args);
|
|
}
|
|
|
|
|
|
// Print error message to console.
|
|
void OS::PrintError(const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
VPrintError(format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
|
|
void OS::VPrintError(const char* format, va_list args) {
|
|
VPrintHelper(stderr, format, args);
|
|
}
|
|
|
|
|
|
int OS::SNPrintF(Vector<char> str, const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int result = VSNPrintF(str, format, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
|
|
|
|
int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
|
|
int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
|
|
// Make sure to zero-terminate the string if the output was
|
|
// truncated or if there was an error.
|
|
if (n < 0 || n >= str.length()) {
|
|
if (str.length() > 0)
|
|
str[str.length() - 1] = '\0';
|
|
return -1;
|
|
} else {
|
|
return n;
|
|
}
|
|
}
|
|
|
|
|
|
char* OS::StrChr(char* str, int c) {
|
|
return const_cast<char*>(strchr(str, c));
|
|
}
|
|
|
|
|
|
void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
|
|
// Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
|
|
size_t buffer_size = static_cast<size_t>(dest.length());
|
|
if (n + 1 > buffer_size) // count for trailing '\0'
|
|
n = _TRUNCATE;
|
|
int result = strncpy_s(dest.start(), dest.length(), src, n);
|
|
USE(result);
|
|
ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
|
|
}
|
|
|
|
|
|
// We keep the lowest and highest addresses mapped as a quick way of
|
|
// determining that pointers are outside the heap (used mostly in assertions
|
|
// and verification). The estimate is conservative, i.e., not all addresses in
|
|
// 'allocated' space are actually allocated to our heap. The range is
|
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
|
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
|
|
|
|
|
|
static void UpdateAllocatedSpaceLimits(void* address, int size) {
|
|
ASSERT(limit_mutex != NULL);
|
|
ScopedLock lock(limit_mutex);
|
|
|
|
lowest_ever_allocated = Min(lowest_ever_allocated, address);
|
|
highest_ever_allocated =
|
|
Max(highest_ever_allocated,
|
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
|
|
}
|
|
|
|
|
|
bool OS::IsOutsideAllocatedSpace(void* pointer) {
|
|
if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
|
|
return true;
|
|
// Ask the Windows API
|
|
if (IsBadWritePtr(pointer, 1))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
// Get the system's page size used by VirtualAlloc() or the next power
|
|
// of two. The reason for always returning a power of two is that the
|
|
// rounding up in OS::Allocate expects that.
|
|
static size_t GetPageSize() {
|
|
static size_t page_size = 0;
|
|
if (page_size == 0) {
|
|
SYSTEM_INFO info;
|
|
GetSystemInfo(&info);
|
|
page_size = RoundUpToPowerOf2(info.dwPageSize);
|
|
}
|
|
return page_size;
|
|
}
|
|
|
|
|
|
// The allocation alignment is the guaranteed alignment for
|
|
// VirtualAlloc'ed blocks of memory.
|
|
size_t OS::AllocateAlignment() {
|
|
static size_t allocate_alignment = 0;
|
|
if (allocate_alignment == 0) {
|
|
SYSTEM_INFO info;
|
|
GetSystemInfo(&info);
|
|
allocate_alignment = info.dwAllocationGranularity;
|
|
}
|
|
return allocate_alignment;
|
|
}
|
|
|
|
|
|
void* OS::Allocate(const size_t requested,
|
|
size_t* allocated,
|
|
bool is_executable) {
|
|
// The address range used to randomize RWX allocations in OS::Allocate
|
|
// Try not to map pages into the default range that windows loads DLLs
|
|
// Use a multiple of 64k to prevent committing unused memory.
|
|
// Note: This does not guarantee RWX regions will be within the
|
|
// range kAllocationRandomAddressMin to kAllocationRandomAddressMax
|
|
#ifdef V8_HOST_ARCH_64_BIT
|
|
static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
|
|
static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
|
|
#else
|
|
static const intptr_t kAllocationRandomAddressMin = 0x04000000;
|
|
static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
|
|
#endif
|
|
|
|
// VirtualAlloc rounds allocated size to page size automatically.
|
|
size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
|
|
intptr_t address = 0;
|
|
|
|
// Windows XP SP2 allows Data Excution Prevention (DEP).
|
|
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
|
|
|
// For exectutable pages try and randomize the allocation address
|
|
if (prot == PAGE_EXECUTE_READWRITE &&
|
|
msize >= static_cast<size_t>(Page::kPageSize)) {
|
|
address = (V8::RandomPrivate(Isolate::Current()) << kPageSizeBits)
|
|
| kAllocationRandomAddressMin;
|
|
address &= kAllocationRandomAddressMax;
|
|
}
|
|
|
|
LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address),
|
|
msize,
|
|
MEM_COMMIT | MEM_RESERVE,
|
|
prot);
|
|
if (mbase == NULL && address != 0)
|
|
mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
|
|
|
|
if (mbase == NULL) {
|
|
LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
|
|
return NULL;
|
|
}
|
|
|
|
ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
|
|
|
|
*allocated = msize;
|
|
UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
|
|
return mbase;
|
|
}
|
|
|
|
|
|
void OS::Free(void* address, const size_t size) {
|
|
// TODO(1240712): VirtualFree has a return value which is ignored here.
|
|
VirtualFree(address, 0, MEM_RELEASE);
|
|
USE(size);
|
|
}
|
|
|
|
|
|
intptr_t OS::CommitPageSize() {
|
|
return 4096;
|
|
}
|
|
|
|
|
|
void OS::ProtectCode(void* address, const size_t size) {
|
|
DWORD old_protect;
|
|
VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
|
|
}
|
|
|
|
|
|
void OS::Guard(void* address, const size_t size) {
|
|
DWORD oldprotect;
|
|
VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
|
|
}
|
|
|
|
|
|
void OS::Sleep(int milliseconds) {
|
|
::Sleep(milliseconds);
|
|
}
|
|
|
|
|
|
void OS::Abort() {
|
|
if (!IsDebuggerPresent()) {
|
|
#ifdef _MSC_VER
|
|
// Make the MSVCRT do a silent abort.
|
|
_set_abort_behavior(0, _WRITE_ABORT_MSG);
|
|
_set_abort_behavior(0, _CALL_REPORTFAULT);
|
|
#endif // _MSC_VER
|
|
abort();
|
|
} else {
|
|
DebugBreak();
|
|
}
|
|
}
|
|
|
|
|
|
void OS::DebugBreak() {
|
|
#ifdef _MSC_VER
|
|
__debugbreak();
|
|
#else
|
|
::DebugBreak();
|
|
#endif
|
|
}
|
|
|
|
|
|
class Win32MemoryMappedFile : public OS::MemoryMappedFile {
|
|
public:
|
|
Win32MemoryMappedFile(HANDLE file,
|
|
HANDLE file_mapping,
|
|
void* memory,
|
|
int size)
|
|
: file_(file),
|
|
file_mapping_(file_mapping),
|
|
memory_(memory),
|
|
size_(size) { }
|
|
virtual ~Win32MemoryMappedFile();
|
|
virtual void* memory() { return memory_; }
|
|
virtual int size() { return size_; }
|
|
private:
|
|
HANDLE file_;
|
|
HANDLE file_mapping_;
|
|
void* memory_;
|
|
int size_;
|
|
};
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
|
|
// Open a physical file
|
|
HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
|
|
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
|
|
if (file == INVALID_HANDLE_VALUE) return NULL;
|
|
|
|
int size = static_cast<int>(GetFileSize(file, NULL));
|
|
|
|
// Create a file mapping for the physical file
|
|
HANDLE file_mapping = CreateFileMapping(file, NULL,
|
|
PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
|
|
if (file_mapping == NULL) return NULL;
|
|
|
|
// Map a view of the file into memory
|
|
void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
|
|
return new Win32MemoryMappedFile(file, file_mapping, memory, size);
|
|
}
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
|
void* initial) {
|
|
// Open a physical file
|
|
HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
|
|
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
|
|
if (file == NULL) return NULL;
|
|
// Create a file mapping for the physical file
|
|
HANDLE file_mapping = CreateFileMapping(file, NULL,
|
|
PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
|
|
if (file_mapping == NULL) return NULL;
|
|
// Map a view of the file into memory
|
|
void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
|
|
if (memory) memmove(memory, initial, size);
|
|
return new Win32MemoryMappedFile(file, file_mapping, memory, size);
|
|
}
|
|
|
|
|
|
Win32MemoryMappedFile::~Win32MemoryMappedFile() {
|
|
if (memory_ != NULL)
|
|
UnmapViewOfFile(memory_);
|
|
CloseHandle(file_mapping_);
|
|
CloseHandle(file_);
|
|
}
|
|
|
|
|
|
// The following code loads functions defined in DbhHelp.h and TlHelp32.h
|
|
// dynamically. This is to avoid being depending on dbghelp.dll and
|
|
// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
|
|
// kernel32.dll at some point so loading functions defines in TlHelp32.h
|
|
// dynamically might not be necessary any more - for some versions of Windows?).
|
|
|
|
// Function pointers to functions dynamically loaded from dbghelp.dll.
|
|
#define DBGHELP_FUNCTION_LIST(V) \
|
|
V(SymInitialize) \
|
|
V(SymGetOptions) \
|
|
V(SymSetOptions) \
|
|
V(SymGetSearchPath) \
|
|
V(SymLoadModule64) \
|
|
V(StackWalk64) \
|
|
V(SymGetSymFromAddr64) \
|
|
V(SymGetLineFromAddr64) \
|
|
V(SymFunctionTableAccess64) \
|
|
V(SymGetModuleBase64)
|
|
|
|
// Function pointers to functions dynamically loaded from dbghelp.dll.
|
|
#define TLHELP32_FUNCTION_LIST(V) \
|
|
V(CreateToolhelp32Snapshot) \
|
|
V(Module32FirstW) \
|
|
V(Module32NextW)
|
|
|
|
// Define the decoration to use for the type and variable name used for
|
|
// dynamically loaded DLL function..
|
|
#define DLL_FUNC_TYPE(name) _##name##_
|
|
#define DLL_FUNC_VAR(name) _##name
|
|
|
|
// Define the type for each dynamically loaded DLL function. The function
|
|
// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
|
|
// from the Windows include files are redefined here to have the function
|
|
// definitions to be as close to the ones in the original .h files as possible.
|
|
#ifndef IN
|
|
#define IN
|
|
#endif
|
|
#ifndef VOID
|
|
#define VOID void
|
|
#endif
|
|
|
|
// DbgHelp isn't supported on MinGW yet
|
|
#ifndef __MINGW32__
|
|
// DbgHelp.h functions.
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
|
|
IN PSTR UserSearchPath,
|
|
IN BOOL fInvadeProcess);
|
|
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
|
|
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
|
|
IN HANDLE hProcess,
|
|
OUT PSTR SearchPath,
|
|
IN DWORD SearchPathLength);
|
|
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
|
|
IN HANDLE hProcess,
|
|
IN HANDLE hFile,
|
|
IN PSTR ImageName,
|
|
IN PSTR ModuleName,
|
|
IN DWORD64 BaseOfDll,
|
|
IN DWORD SizeOfDll);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
|
|
DWORD MachineType,
|
|
HANDLE hProcess,
|
|
HANDLE hThread,
|
|
LPSTACKFRAME64 StackFrame,
|
|
PVOID ContextRecord,
|
|
PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
|
|
PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
|
|
PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
|
|
PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
|
|
IN HANDLE hProcess,
|
|
IN DWORD64 qwAddr,
|
|
OUT PDWORD64 pdwDisplacement,
|
|
OUT PIMAGEHLP_SYMBOL64 Symbol);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
|
|
IN HANDLE hProcess,
|
|
IN DWORD64 qwAddr,
|
|
OUT PDWORD pdwDisplacement,
|
|
OUT PIMAGEHLP_LINE64 Line64);
|
|
// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
|
|
typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
|
|
HANDLE hProcess,
|
|
DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
|
|
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
|
|
HANDLE hProcess,
|
|
DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
|
|
|
|
// TlHelp32.h functions.
|
|
typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
|
|
DWORD dwFlags,
|
|
DWORD th32ProcessID);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
|
|
LPMODULEENTRY32W lpme);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
|
|
LPMODULEENTRY32W lpme);
|
|
|
|
#undef IN
|
|
#undef VOID
|
|
|
|
// Declare a variable for each dynamically loaded DLL function.
|
|
#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
|
|
DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
|
|
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
|
|
#undef DEF_DLL_FUNCTION
|
|
|
|
// Load the functions. This function has a lot of "ugly" macros in order to
|
|
// keep down code duplication.
|
|
|
|
static bool LoadDbgHelpAndTlHelp32() {
|
|
static bool dbghelp_loaded = false;
|
|
|
|
if (dbghelp_loaded) return true;
|
|
|
|
HMODULE module;
|
|
|
|
// Load functions from the dbghelp.dll module.
|
|
module = LoadLibrary(TEXT("dbghelp.dll"));
|
|
if (module == NULL) {
|
|
return false;
|
|
}
|
|
|
|
#define LOAD_DLL_FUNC(name) \
|
|
DLL_FUNC_VAR(name) = \
|
|
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
|
|
|
|
DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
|
|
|
|
#undef LOAD_DLL_FUNC
|
|
|
|
// Load functions from the kernel32.dll module (the TlHelp32.h function used
|
|
// to be in tlhelp32.dll but are now moved to kernel32.dll).
|
|
module = LoadLibrary(TEXT("kernel32.dll"));
|
|
if (module == NULL) {
|
|
return false;
|
|
}
|
|
|
|
#define LOAD_DLL_FUNC(name) \
|
|
DLL_FUNC_VAR(name) = \
|
|
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
|
|
|
|
TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
|
|
|
|
#undef LOAD_DLL_FUNC
|
|
|
|
// Check that all functions where loaded.
|
|
bool result =
|
|
#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
|
|
|
|
DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
|
|
TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
|
|
|
|
#undef DLL_FUNC_LOADED
|
|
true;
|
|
|
|
dbghelp_loaded = result;
|
|
return result;
|
|
// NOTE: The modules are never unloaded and will stay around until the
|
|
// application is closed.
|
|
}
|
|
|
|
|
|
// Load the symbols for generating stack traces.
|
|
static bool LoadSymbols(HANDLE process_handle) {
|
|
static bool symbols_loaded = false;
|
|
|
|
if (symbols_loaded) return true;
|
|
|
|
BOOL ok;
|
|
|
|
// Initialize the symbol engine.
|
|
ok = _SymInitialize(process_handle, // hProcess
|
|
NULL, // UserSearchPath
|
|
false); // fInvadeProcess
|
|
if (!ok) return false;
|
|
|
|
DWORD options = _SymGetOptions();
|
|
options |= SYMOPT_LOAD_LINES;
|
|
options |= SYMOPT_FAIL_CRITICAL_ERRORS;
|
|
options = _SymSetOptions(options);
|
|
|
|
char buf[OS::kStackWalkMaxNameLen] = {0};
|
|
ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
|
|
if (!ok) {
|
|
int err = GetLastError();
|
|
PrintF("%d\n", err);
|
|
return false;
|
|
}
|
|
|
|
HANDLE snapshot = _CreateToolhelp32Snapshot(
|
|
TH32CS_SNAPMODULE, // dwFlags
|
|
GetCurrentProcessId()); // th32ProcessId
|
|
if (snapshot == INVALID_HANDLE_VALUE) return false;
|
|
MODULEENTRY32W module_entry;
|
|
module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
|
|
BOOL cont = _Module32FirstW(snapshot, &module_entry);
|
|
while (cont) {
|
|
DWORD64 base;
|
|
// NOTE the SymLoadModule64 function has the peculiarity of accepting a
|
|
// both unicode and ASCII strings even though the parameter is PSTR.
|
|
base = _SymLoadModule64(
|
|
process_handle, // hProcess
|
|
0, // hFile
|
|
reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
|
|
reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
|
|
reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
|
|
module_entry.modBaseSize); // SizeOfDll
|
|
if (base == 0) {
|
|
int err = GetLastError();
|
|
if (err != ERROR_MOD_NOT_FOUND &&
|
|
err != ERROR_INVALID_HANDLE) return false;
|
|
}
|
|
LOG(i::Isolate::Current(),
|
|
SharedLibraryEvent(
|
|
module_entry.szExePath,
|
|
reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
|
|
reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
|
|
module_entry.modBaseSize)));
|
|
cont = _Module32NextW(snapshot, &module_entry);
|
|
}
|
|
CloseHandle(snapshot);
|
|
|
|
symbols_loaded = true;
|
|
return true;
|
|
}
|
|
|
|
|
|
void OS::LogSharedLibraryAddresses() {
|
|
// SharedLibraryEvents are logged when loading symbol information.
|
|
// Only the shared libraries loaded at the time of the call to
|
|
// LogSharedLibraryAddresses are logged. DLLs loaded after
|
|
// initialization are not accounted for.
|
|
if (!LoadDbgHelpAndTlHelp32()) return;
|
|
HANDLE process_handle = GetCurrentProcess();
|
|
LoadSymbols(process_handle);
|
|
}
|
|
|
|
|
|
void OS::SignalCodeMovingGC() {
|
|
}
|
|
|
|
|
|
// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
|
|
|
|
// Switch off warning 4748 (/GS can not protect parameters and local variables
|
|
// from local buffer overrun because optimizations are disabled in function) as
|
|
// it is triggered by the use of inline assembler.
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4748)
|
|
int OS::StackWalk(Vector<OS::StackFrame> frames) {
|
|
BOOL ok;
|
|
|
|
// Load the required functions from DLL's.
|
|
if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
|
|
|
|
// Get the process and thread handles.
|
|
HANDLE process_handle = GetCurrentProcess();
|
|
HANDLE thread_handle = GetCurrentThread();
|
|
|
|
// Read the symbols.
|
|
if (!LoadSymbols(process_handle)) return kStackWalkError;
|
|
|
|
// Capture current context.
|
|
CONTEXT context;
|
|
RtlCaptureContext(&context);
|
|
|
|
// Initialize the stack walking
|
|
STACKFRAME64 stack_frame;
|
|
memset(&stack_frame, 0, sizeof(stack_frame));
|
|
#ifdef _WIN64
|
|
stack_frame.AddrPC.Offset = context.Rip;
|
|
stack_frame.AddrFrame.Offset = context.Rbp;
|
|
stack_frame.AddrStack.Offset = context.Rsp;
|
|
#else
|
|
stack_frame.AddrPC.Offset = context.Eip;
|
|
stack_frame.AddrFrame.Offset = context.Ebp;
|
|
stack_frame.AddrStack.Offset = context.Esp;
|
|
#endif
|
|
stack_frame.AddrPC.Mode = AddrModeFlat;
|
|
stack_frame.AddrFrame.Mode = AddrModeFlat;
|
|
stack_frame.AddrStack.Mode = AddrModeFlat;
|
|
int frames_count = 0;
|
|
|
|
// Collect stack frames.
|
|
int frames_size = frames.length();
|
|
while (frames_count < frames_size) {
|
|
ok = _StackWalk64(
|
|
IMAGE_FILE_MACHINE_I386, // MachineType
|
|
process_handle, // hProcess
|
|
thread_handle, // hThread
|
|
&stack_frame, // StackFrame
|
|
&context, // ContextRecord
|
|
NULL, // ReadMemoryRoutine
|
|
_SymFunctionTableAccess64, // FunctionTableAccessRoutine
|
|
_SymGetModuleBase64, // GetModuleBaseRoutine
|
|
NULL); // TranslateAddress
|
|
if (!ok) break;
|
|
|
|
// Store the address.
|
|
ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
|
|
frames[frames_count].address =
|
|
reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
|
|
|
|
// Try to locate a symbol for this frame.
|
|
DWORD64 symbol_displacement;
|
|
SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol(
|
|
NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
|
|
if (symbol.is_empty()) return kStackWalkError; // Out of memory.
|
|
memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
|
|
(*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
|
|
(*symbol)->MaxNameLength = kStackWalkMaxNameLen;
|
|
ok = _SymGetSymFromAddr64(process_handle, // hProcess
|
|
stack_frame.AddrPC.Offset, // Address
|
|
&symbol_displacement, // Displacement
|
|
*symbol); // Symbol
|
|
if (ok) {
|
|
// Try to locate more source information for the symbol.
|
|
IMAGEHLP_LINE64 Line;
|
|
memset(&Line, 0, sizeof(Line));
|
|
Line.SizeOfStruct = sizeof(Line);
|
|
DWORD line_displacement;
|
|
ok = _SymGetLineFromAddr64(
|
|
process_handle, // hProcess
|
|
stack_frame.AddrPC.Offset, // dwAddr
|
|
&line_displacement, // pdwDisplacement
|
|
&Line); // Line
|
|
// Format a text representation of the frame based on the information
|
|
// available.
|
|
if (ok) {
|
|
SNPrintF(MutableCStrVector(frames[frames_count].text,
|
|
kStackWalkMaxTextLen),
|
|
"%s %s:%d:%d",
|
|
(*symbol)->Name, Line.FileName, Line.LineNumber,
|
|
line_displacement);
|
|
} else {
|
|
SNPrintF(MutableCStrVector(frames[frames_count].text,
|
|
kStackWalkMaxTextLen),
|
|
"%s",
|
|
(*symbol)->Name);
|
|
}
|
|
// Make sure line termination is in place.
|
|
frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
|
|
} else {
|
|
// No text representation of this frame
|
|
frames[frames_count].text[0] = '\0';
|
|
|
|
// Continue if we are just missing a module (for non C/C++ frames a
|
|
// module will never be found).
|
|
int err = GetLastError();
|
|
if (err != ERROR_MOD_NOT_FOUND) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
frames_count++;
|
|
}
|
|
|
|
// Return the number of frames filled in.
|
|
return frames_count;
|
|
}
|
|
|
|
// Restore warnings to previous settings.
|
|
#pragma warning(pop)
|
|
|
|
#else // __MINGW32__
|
|
void OS::LogSharedLibraryAddresses() { }
|
|
void OS::SignalCodeMovingGC() { }
|
|
int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
|
|
#endif // __MINGW32__
|
|
|
|
|
|
uint64_t OS::CpuFeaturesImpliedByPlatform() {
|
|
return 0; // Windows runs on anything.
|
|
}
|
|
|
|
|
|
double OS::nan_value() {
|
|
#ifdef _MSC_VER
|
|
// Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
|
|
// in mask set, so value equals mask.
|
|
static const __int64 nanval = kQuietNaNMask;
|
|
return *reinterpret_cast<const double*>(&nanval);
|
|
#else // _MSC_VER
|
|
return NAN;
|
|
#endif // _MSC_VER
|
|
}
|
|
|
|
|
|
int OS::ActivationFrameAlignment() {
|
|
#ifdef _WIN64
|
|
return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
|
|
#else
|
|
return 8; // Floating-point math runs faster with 8-byte alignment.
|
|
#endif
|
|
}
|
|
|
|
|
|
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
|
|
MemoryBarrier();
|
|
*ptr = value;
|
|
}
|
|
|
|
|
|
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size)
|
|
: address_(ReserveRegion(size)), size_(size) { }
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
|
|
: address_(NULL), size_(0) {
|
|
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
|
|
size_t request_size = RoundUp(size + alignment,
|
|
static_cast<intptr_t>(OS::AllocateAlignment()));
|
|
void* address = ReserveRegion(request_size);
|
|
if (address == NULL) return;
|
|
Address base = RoundUp(static_cast<Address>(address), alignment);
|
|
// Try reducing the size by freeing and then reallocating a specific area.
|
|
bool result = ReleaseRegion(address, request_size);
|
|
USE(result);
|
|
ASSERT(result);
|
|
address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
|
|
if (address != NULL) {
|
|
request_size = size;
|
|
ASSERT(base == static_cast<Address>(address));
|
|
} else {
|
|
// Resizing failed, just go with a bigger area.
|
|
address = ReserveRegion(request_size);
|
|
if (address == NULL) return;
|
|
}
|
|
address_ = address;
|
|
size_ = request_size;
|
|
}
|
|
|
|
|
|
VirtualMemory::~VirtualMemory() {
|
|
if (IsReserved()) {
|
|
bool result = ReleaseRegion(address_, size_);
|
|
ASSERT(result);
|
|
USE(result);
|
|
}
|
|
}
|
|
|
|
|
|
bool VirtualMemory::IsReserved() {
|
|
return address_ != NULL;
|
|
}
|
|
|
|
|
|
void VirtualMemory::Reset() {
|
|
address_ = NULL;
|
|
size_ = 0;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
|
|
if (CommitRegion(address, size, is_executable)) {
|
|
UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Uncommit(void* address, size_t size) {
|
|
ASSERT(IsReserved());
|
|
return UncommitRegion(address, size);
|
|
}
|
|
|
|
|
|
void* VirtualMemory::ReserveRegion(size_t size) {
|
|
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
|
}
|
|
|
|
|
|
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
|
|
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
|
if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
|
|
return false;
|
|
}
|
|
|
|
UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
|
|
return true;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
|
|
return VirtualFree(base, size, MEM_DECOMMIT) != 0;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
|
|
return VirtualFree(base, 0, MEM_RELEASE) != 0;
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 thread support.
|
|
|
|
// Definition of invalid thread handle and id.
|
|
static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
|
|
|
|
// Entry point for threads. The supplied argument is a pointer to the thread
|
|
// object. The entry function dispatches to the run method in the thread
|
|
// object. It is important that this function has __stdcall calling
|
|
// convention.
|
|
static unsigned int __stdcall ThreadEntry(void* arg) {
|
|
Thread* thread = reinterpret_cast<Thread*>(arg);
|
|
thread->Run();
|
|
return 0;
|
|
}
|
|
|
|
|
|
class Thread::PlatformData : public Malloced {
|
|
public:
|
|
explicit PlatformData(HANDLE thread) : thread_(thread) {}
|
|
HANDLE thread_;
|
|
unsigned thread_id_;
|
|
};
|
|
|
|
|
|
// Initialize a Win32 thread object. The thread has an invalid thread
|
|
// handle until it is started.
|
|
|
|
Thread::Thread(const Options& options)
|
|
: stack_size_(options.stack_size()) {
|
|
data_ = new PlatformData(kNoThread);
|
|
set_name(options.name());
|
|
}
|
|
|
|
|
|
void Thread::set_name(const char* name) {
|
|
OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
|
|
name_[sizeof(name_) - 1] = '\0';
|
|
}
|
|
|
|
|
|
// Close our own handle for the thread.
|
|
Thread::~Thread() {
|
|
if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
|
|
delete data_;
|
|
}
|
|
|
|
|
|
// Create a new thread. It is important to use _beginthreadex() instead of
|
|
// the Win32 function CreateThread(), because the CreateThread() does not
|
|
// initialize thread specific structures in the C runtime library.
|
|
void Thread::Start() {
|
|
data_->thread_ = reinterpret_cast<HANDLE>(
|
|
_beginthreadex(NULL,
|
|
static_cast<unsigned>(stack_size_),
|
|
ThreadEntry,
|
|
this,
|
|
0,
|
|
&data_->thread_id_));
|
|
}
|
|
|
|
|
|
// Wait for thread to terminate.
|
|
void Thread::Join() {
|
|
if (data_->thread_id_ != GetCurrentThreadId()) {
|
|
WaitForSingleObject(data_->thread_, INFINITE);
|
|
}
|
|
}
|
|
|
|
|
|
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
|
|
DWORD result = TlsAlloc();
|
|
ASSERT(result != TLS_OUT_OF_INDEXES);
|
|
return static_cast<LocalStorageKey>(result);
|
|
}
|
|
|
|
|
|
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
|
|
BOOL result = TlsFree(static_cast<DWORD>(key));
|
|
USE(result);
|
|
ASSERT(result);
|
|
}
|
|
|
|
|
|
void* Thread::GetThreadLocal(LocalStorageKey key) {
|
|
return TlsGetValue(static_cast<DWORD>(key));
|
|
}
|
|
|
|
|
|
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
|
|
BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
|
|
USE(result);
|
|
ASSERT(result);
|
|
}
|
|
|
|
|
|
|
|
void Thread::YieldCPU() {
|
|
Sleep(0);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 mutex support.
|
|
//
|
|
// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
|
|
// faster than Win32 Mutex objects because they are implemented using user mode
|
|
// atomic instructions. Therefore we only do ring transitions if there is lock
|
|
// contention.
|
|
|
|
class Win32Mutex : public Mutex {
|
|
public:
|
|
Win32Mutex() { InitializeCriticalSection(&cs_); }
|
|
|
|
virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
|
|
|
|
virtual int Lock() {
|
|
EnterCriticalSection(&cs_);
|
|
return 0;
|
|
}
|
|
|
|
virtual int Unlock() {
|
|
LeaveCriticalSection(&cs_);
|
|
return 0;
|
|
}
|
|
|
|
|
|
virtual bool TryLock() {
|
|
// Returns non-zero if critical section is entered successfully entered.
|
|
return TryEnterCriticalSection(&cs_);
|
|
}
|
|
|
|
private:
|
|
CRITICAL_SECTION cs_; // Critical section used for mutex
|
|
};
|
|
|
|
|
|
Mutex* OS::CreateMutex() {
|
|
return new Win32Mutex();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 semaphore support.
|
|
//
|
|
// On Win32 semaphores are implemented using Win32 Semaphore objects. The
|
|
// semaphores are anonymous. Also, the semaphores are initialized to have
|
|
// no upper limit on count.
|
|
|
|
|
|
class Win32Semaphore : public Semaphore {
|
|
public:
|
|
explicit Win32Semaphore(int count) {
|
|
sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
|
|
}
|
|
|
|
~Win32Semaphore() {
|
|
CloseHandle(sem);
|
|
}
|
|
|
|
void Wait() {
|
|
WaitForSingleObject(sem, INFINITE);
|
|
}
|
|
|
|
bool Wait(int timeout) {
|
|
// Timeout in Windows API is in milliseconds.
|
|
DWORD millis_timeout = timeout / 1000;
|
|
return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
|
|
}
|
|
|
|
void Signal() {
|
|
LONG dummy;
|
|
ReleaseSemaphore(sem, 1, &dummy);
|
|
}
|
|
|
|
private:
|
|
HANDLE sem;
|
|
};
|
|
|
|
|
|
Semaphore* OS::CreateSemaphore(int count) {
|
|
return new Win32Semaphore(count);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 socket support.
|
|
//
|
|
|
|
class Win32Socket : public Socket {
|
|
public:
|
|
explicit Win32Socket() {
|
|
// Create the socket.
|
|
socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
|
|
}
|
|
explicit Win32Socket(SOCKET socket): socket_(socket) { }
|
|
virtual ~Win32Socket() { Shutdown(); }
|
|
|
|
// Server initialization.
|
|
bool Bind(const int port);
|
|
bool Listen(int backlog) const;
|
|
Socket* Accept() const;
|
|
|
|
// Client initialization.
|
|
bool Connect(const char* host, const char* port);
|
|
|
|
// Shutdown socket for both read and write.
|
|
bool Shutdown();
|
|
|
|
// Data Transimission
|
|
int Send(const char* data, int len) const;
|
|
int Receive(char* data, int len) const;
|
|
|
|
bool SetReuseAddress(bool reuse_address);
|
|
|
|
bool IsValid() const { return socket_ != INVALID_SOCKET; }
|
|
|
|
private:
|
|
SOCKET socket_;
|
|
};
|
|
|
|
|
|
bool Win32Socket::Bind(const int port) {
|
|
if (!IsValid()) {
|
|
return false;
|
|
}
|
|
|
|
sockaddr_in addr;
|
|
memset(&addr, 0, sizeof(addr));
|
|
addr.sin_family = AF_INET;
|
|
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
addr.sin_port = htons(port);
|
|
int status = bind(socket_,
|
|
reinterpret_cast<struct sockaddr *>(&addr),
|
|
sizeof(addr));
|
|
return status == 0;
|
|
}
|
|
|
|
|
|
bool Win32Socket::Listen(int backlog) const {
|
|
if (!IsValid()) {
|
|
return false;
|
|
}
|
|
|
|
int status = listen(socket_, backlog);
|
|
return status == 0;
|
|
}
|
|
|
|
|
|
Socket* Win32Socket::Accept() const {
|
|
if (!IsValid()) {
|
|
return NULL;
|
|
}
|
|
|
|
SOCKET socket = accept(socket_, NULL, NULL);
|
|
if (socket == INVALID_SOCKET) {
|
|
return NULL;
|
|
} else {
|
|
return new Win32Socket(socket);
|
|
}
|
|
}
|
|
|
|
|
|
bool Win32Socket::Connect(const char* host, const char* port) {
|
|
if (!IsValid()) {
|
|
return false;
|
|
}
|
|
|
|
// Lookup host and port.
|
|
struct addrinfo *result = NULL;
|
|
struct addrinfo hints;
|
|
memset(&hints, 0, sizeof(addrinfo));
|
|
hints.ai_family = AF_INET;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = IPPROTO_TCP;
|
|
int status = getaddrinfo(host, port, &hints, &result);
|
|
if (status != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Connect.
|
|
status = connect(socket_,
|
|
result->ai_addr,
|
|
static_cast<int>(result->ai_addrlen));
|
|
freeaddrinfo(result);
|
|
return status == 0;
|
|
}
|
|
|
|
|
|
bool Win32Socket::Shutdown() {
|
|
if (IsValid()) {
|
|
// Shutdown socket for both read and write.
|
|
int status = shutdown(socket_, SD_BOTH);
|
|
closesocket(socket_);
|
|
socket_ = INVALID_SOCKET;
|
|
return status == SOCKET_ERROR;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int Win32Socket::Send(const char* data, int len) const {
|
|
int status = send(socket_, data, len, 0);
|
|
return status;
|
|
}
|
|
|
|
|
|
int Win32Socket::Receive(char* data, int len) const {
|
|
int status = recv(socket_, data, len, 0);
|
|
return status;
|
|
}
|
|
|
|
|
|
bool Win32Socket::SetReuseAddress(bool reuse_address) {
|
|
BOOL on = reuse_address ? true : false;
|
|
int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
|
|
reinterpret_cast<char*>(&on), sizeof(on));
|
|
return status == SOCKET_ERROR;
|
|
}
|
|
|
|
|
|
bool Socket::SetUp() {
|
|
// Initialize Winsock32
|
|
int err;
|
|
WSADATA winsock_data;
|
|
WORD version_requested = MAKEWORD(1, 0);
|
|
err = WSAStartup(version_requested, &winsock_data);
|
|
if (err != 0) {
|
|
PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
|
|
}
|
|
|
|
return err == 0;
|
|
}
|
|
|
|
|
|
int Socket::LastError() {
|
|
return WSAGetLastError();
|
|
}
|
|
|
|
|
|
uint16_t Socket::HToN(uint16_t value) {
|
|
return htons(value);
|
|
}
|
|
|
|
|
|
uint16_t Socket::NToH(uint16_t value) {
|
|
return ntohs(value);
|
|
}
|
|
|
|
|
|
uint32_t Socket::HToN(uint32_t value) {
|
|
return htonl(value);
|
|
}
|
|
|
|
|
|
uint32_t Socket::NToH(uint32_t value) {
|
|
return ntohl(value);
|
|
}
|
|
|
|
|
|
Socket* OS::CreateSocket() {
|
|
return new Win32Socket();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 profiler support.
|
|
|
|
class Sampler::PlatformData : public Malloced {
|
|
public:
|
|
// Get a handle to the calling thread. This is the thread that we are
|
|
// going to profile. We need to make a copy of the handle because we are
|
|
// going to use it in the sampler thread. Using GetThreadHandle() will
|
|
// not work in this case. We're using OpenThread because DuplicateHandle
|
|
// for some reason doesn't work in Chrome's sandbox.
|
|
PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
|
|
THREAD_SUSPEND_RESUME |
|
|
THREAD_QUERY_INFORMATION,
|
|
false,
|
|
GetCurrentThreadId())) {}
|
|
|
|
~PlatformData() {
|
|
if (profiled_thread_ != NULL) {
|
|
CloseHandle(profiled_thread_);
|
|
profiled_thread_ = NULL;
|
|
}
|
|
}
|
|
|
|
HANDLE profiled_thread() { return profiled_thread_; }
|
|
|
|
private:
|
|
HANDLE profiled_thread_;
|
|
};
|
|
|
|
|
|
class SamplerThread : public Thread {
|
|
public:
|
|
static const int kSamplerThreadStackSize = 64 * KB;
|
|
|
|
explicit SamplerThread(int interval)
|
|
: Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)),
|
|
interval_(interval) {}
|
|
|
|
static void AddActiveSampler(Sampler* sampler) {
|
|
ScopedLock lock(mutex_);
|
|
SamplerRegistry::AddActiveSampler(sampler);
|
|
if (instance_ == NULL) {
|
|
instance_ = new SamplerThread(sampler->interval());
|
|
instance_->Start();
|
|
} else {
|
|
ASSERT(instance_->interval_ == sampler->interval());
|
|
}
|
|
}
|
|
|
|
static void RemoveActiveSampler(Sampler* sampler) {
|
|
ScopedLock lock(mutex_);
|
|
SamplerRegistry::RemoveActiveSampler(sampler);
|
|
if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
|
|
RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
|
|
delete instance_;
|
|
instance_ = NULL;
|
|
}
|
|
}
|
|
|
|
// Implement Thread::Run().
|
|
virtual void Run() {
|
|
SamplerRegistry::State state;
|
|
while ((state = SamplerRegistry::GetState()) !=
|
|
SamplerRegistry::HAS_NO_SAMPLERS) {
|
|
bool cpu_profiling_enabled =
|
|
(state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
|
|
bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
|
|
// When CPU profiling is enabled both JavaScript and C++ code is
|
|
// profiled. We must not suspend.
|
|
if (!cpu_profiling_enabled) {
|
|
if (rate_limiter_.SuspendIfNecessary()) continue;
|
|
}
|
|
if (cpu_profiling_enabled) {
|
|
if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
|
|
return;
|
|
}
|
|
}
|
|
if (runtime_profiler_enabled) {
|
|
if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
|
|
return;
|
|
}
|
|
}
|
|
OS::Sleep(interval_);
|
|
}
|
|
}
|
|
|
|
static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
|
|
if (!sampler->isolate()->IsInitialized()) return;
|
|
if (!sampler->IsProfiling()) return;
|
|
SamplerThread* sampler_thread =
|
|
reinterpret_cast<SamplerThread*>(raw_sampler_thread);
|
|
sampler_thread->SampleContext(sampler);
|
|
}
|
|
|
|
static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
|
|
if (!sampler->isolate()->IsInitialized()) return;
|
|
sampler->isolate()->runtime_profiler()->NotifyTick();
|
|
}
|
|
|
|
void SampleContext(Sampler* sampler) {
|
|
HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
|
|
if (profiled_thread == NULL) return;
|
|
|
|
// Context used for sampling the register state of the profiled thread.
|
|
CONTEXT context;
|
|
memset(&context, 0, sizeof(context));
|
|
|
|
TickSample sample_obj;
|
|
TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
|
|
if (sample == NULL) sample = &sample_obj;
|
|
|
|
static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
|
|
if (SuspendThread(profiled_thread) == kSuspendFailed) return;
|
|
sample->state = sampler->isolate()->current_vm_state();
|
|
|
|
context.ContextFlags = CONTEXT_FULL;
|
|
if (GetThreadContext(profiled_thread, &context) != 0) {
|
|
#if V8_HOST_ARCH_X64
|
|
sample->pc = reinterpret_cast<Address>(context.Rip);
|
|
sample->sp = reinterpret_cast<Address>(context.Rsp);
|
|
sample->fp = reinterpret_cast<Address>(context.Rbp);
|
|
#else
|
|
sample->pc = reinterpret_cast<Address>(context.Eip);
|
|
sample->sp = reinterpret_cast<Address>(context.Esp);
|
|
sample->fp = reinterpret_cast<Address>(context.Ebp);
|
|
#endif
|
|
sampler->SampleStack(sample);
|
|
sampler->Tick(sample);
|
|
}
|
|
ResumeThread(profiled_thread);
|
|
}
|
|
|
|
const int interval_;
|
|
RuntimeProfilerRateLimiter rate_limiter_;
|
|
|
|
// Protects the process wide state below.
|
|
static Mutex* mutex_;
|
|
static SamplerThread* instance_;
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(SamplerThread);
|
|
};
|
|
|
|
|
|
Mutex* SamplerThread::mutex_ = OS::CreateMutex();
|
|
SamplerThread* SamplerThread::instance_ = NULL;
|
|
|
|
|
|
Sampler::Sampler(Isolate* isolate, int interval)
|
|
: isolate_(isolate),
|
|
interval_(interval),
|
|
profiling_(false),
|
|
active_(false),
|
|
samples_taken_(0) {
|
|
data_ = new PlatformData;
|
|
}
|
|
|
|
|
|
Sampler::~Sampler() {
|
|
ASSERT(!IsActive());
|
|
delete data_;
|
|
}
|
|
|
|
|
|
void Sampler::Start() {
|
|
ASSERT(!IsActive());
|
|
SetActive(true);
|
|
SamplerThread::AddActiveSampler(this);
|
|
}
|
|
|
|
|
|
void Sampler::Stop() {
|
|
ASSERT(IsActive());
|
|
SamplerThread::RemoveActiveSampler(this);
|
|
SetActive(false);
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|