mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
630 lines
20 KiB
630 lines
20 KiB
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_LITHIUM_ALLOCATOR_H_
|
|
#define V8_LITHIUM_ALLOCATOR_H_
|
|
|
|
#include "v8.h"
|
|
|
|
#include "allocation.h"
|
|
#include "lithium.h"
|
|
#include "zone.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Forward declarations.
|
|
class HBasicBlock;
|
|
class HGraph;
|
|
class HInstruction;
|
|
class HPhi;
|
|
class HTracer;
|
|
class HValue;
|
|
class BitVector;
|
|
class StringStream;
|
|
|
|
class LArgument;
|
|
class LChunk;
|
|
class LOperand;
|
|
class LUnallocated;
|
|
class LConstantOperand;
|
|
class LGap;
|
|
class LParallelMove;
|
|
class LPointerMap;
|
|
class LStackSlot;
|
|
class LRegister;
|
|
|
|
|
|
// This class represents a single point of a LOperand's lifetime.
|
|
// For each lithium instruction there are exactly two lifetime positions:
|
|
// the beginning and the end of the instruction. Lifetime positions for
|
|
// different lithium instructions are disjoint.
|
|
class LifetimePosition {
|
|
public:
|
|
// Return the lifetime position that corresponds to the beginning of
|
|
// the instruction with the given index.
|
|
static LifetimePosition FromInstructionIndex(int index) {
|
|
return LifetimePosition(index * kStep);
|
|
}
|
|
|
|
// Returns a numeric representation of this lifetime position.
|
|
int Value() const {
|
|
return value_;
|
|
}
|
|
|
|
// Returns the index of the instruction to which this lifetime position
|
|
// corresponds.
|
|
int InstructionIndex() const {
|
|
ASSERT(IsValid());
|
|
return value_ / kStep;
|
|
}
|
|
|
|
// Returns true if this lifetime position corresponds to the instruction
|
|
// start.
|
|
bool IsInstructionStart() const {
|
|
return (value_ & (kStep - 1)) == 0;
|
|
}
|
|
|
|
// Returns the lifetime position for the start of the instruction which
|
|
// corresponds to this lifetime position.
|
|
LifetimePosition InstructionStart() const {
|
|
ASSERT(IsValid());
|
|
return LifetimePosition(value_ & ~(kStep - 1));
|
|
}
|
|
|
|
// Returns the lifetime position for the end of the instruction which
|
|
// corresponds to this lifetime position.
|
|
LifetimePosition InstructionEnd() const {
|
|
ASSERT(IsValid());
|
|
return LifetimePosition(InstructionStart().Value() + kStep/2);
|
|
}
|
|
|
|
// Returns the lifetime position for the beginning of the next instruction.
|
|
LifetimePosition NextInstruction() const {
|
|
ASSERT(IsValid());
|
|
return LifetimePosition(InstructionStart().Value() + kStep);
|
|
}
|
|
|
|
// Returns the lifetime position for the beginning of the previous
|
|
// instruction.
|
|
LifetimePosition PrevInstruction() const {
|
|
ASSERT(IsValid());
|
|
ASSERT(value_ > 1);
|
|
return LifetimePosition(InstructionStart().Value() - kStep);
|
|
}
|
|
|
|
// Constructs the lifetime position which does not correspond to any
|
|
// instruction.
|
|
LifetimePosition() : value_(-1) {}
|
|
|
|
// Returns true if this lifetime positions corrensponds to some
|
|
// instruction.
|
|
bool IsValid() const { return value_ != -1; }
|
|
|
|
static inline LifetimePosition Invalid() { return LifetimePosition(); }
|
|
|
|
static inline LifetimePosition MaxPosition() {
|
|
// We have to use this kind of getter instead of static member due to
|
|
// crash bug in GDB.
|
|
return LifetimePosition(kMaxInt);
|
|
}
|
|
|
|
private:
|
|
static const int kStep = 2;
|
|
|
|
// Code relies on kStep being a power of two.
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
|
|
|
|
explicit LifetimePosition(int value) : value_(value) { }
|
|
|
|
int value_;
|
|
};
|
|
|
|
|
|
enum RegisterKind {
|
|
NONE,
|
|
GENERAL_REGISTERS,
|
|
DOUBLE_REGISTERS
|
|
};
|
|
|
|
|
|
// A register-allocator view of a Lithium instruction. It contains the id of
|
|
// the output operand and a list of input operand uses.
|
|
|
|
class LInstruction;
|
|
class LEnvironment;
|
|
|
|
// Iterator for non-null temp operands.
|
|
class TempIterator BASE_EMBEDDED {
|
|
public:
|
|
inline explicit TempIterator(LInstruction* instr);
|
|
inline bool Done();
|
|
inline LOperand* Current();
|
|
inline void Advance();
|
|
|
|
private:
|
|
inline void SkipUninteresting();
|
|
LInstruction* instr_;
|
|
int limit_;
|
|
int current_;
|
|
};
|
|
|
|
|
|
// Iterator for non-constant input operands.
|
|
class InputIterator BASE_EMBEDDED {
|
|
public:
|
|
inline explicit InputIterator(LInstruction* instr);
|
|
inline bool Done();
|
|
inline LOperand* Current();
|
|
inline void Advance();
|
|
|
|
private:
|
|
inline void SkipUninteresting();
|
|
LInstruction* instr_;
|
|
int limit_;
|
|
int current_;
|
|
};
|
|
|
|
|
|
class UseIterator BASE_EMBEDDED {
|
|
public:
|
|
inline explicit UseIterator(LInstruction* instr);
|
|
inline bool Done();
|
|
inline LOperand* Current();
|
|
inline void Advance();
|
|
|
|
private:
|
|
InputIterator input_iterator_;
|
|
DeepIterator env_iterator_;
|
|
};
|
|
|
|
|
|
// Representation of the non-empty interval [start,end[.
|
|
class UseInterval: public ZoneObject {
|
|
public:
|
|
UseInterval(LifetimePosition start, LifetimePosition end)
|
|
: start_(start), end_(end), next_(NULL) {
|
|
ASSERT(start.Value() < end.Value());
|
|
}
|
|
|
|
LifetimePosition start() const { return start_; }
|
|
LifetimePosition end() const { return end_; }
|
|
UseInterval* next() const { return next_; }
|
|
|
|
// Split this interval at the given position without effecting the
|
|
// live range that owns it. The interval must contain the position.
|
|
void SplitAt(LifetimePosition pos);
|
|
|
|
// If this interval intersects with other return smallest position
|
|
// that belongs to both of them.
|
|
LifetimePosition Intersect(const UseInterval* other) const {
|
|
if (other->start().Value() < start_.Value()) return other->Intersect(this);
|
|
if (other->start().Value() < end_.Value()) return other->start();
|
|
return LifetimePosition::Invalid();
|
|
}
|
|
|
|
bool Contains(LifetimePosition point) const {
|
|
return start_.Value() <= point.Value() && point.Value() < end_.Value();
|
|
}
|
|
|
|
private:
|
|
void set_start(LifetimePosition start) { start_ = start; }
|
|
void set_next(UseInterval* next) { next_ = next; }
|
|
|
|
LifetimePosition start_;
|
|
LifetimePosition end_;
|
|
UseInterval* next_;
|
|
|
|
friend class LiveRange; // Assigns to start_.
|
|
};
|
|
|
|
// Representation of a use position.
|
|
class UsePosition: public ZoneObject {
|
|
public:
|
|
UsePosition(LifetimePosition pos, LOperand* operand);
|
|
|
|
LOperand* operand() const { return operand_; }
|
|
bool HasOperand() const { return operand_ != NULL; }
|
|
|
|
LOperand* hint() const { return hint_; }
|
|
void set_hint(LOperand* hint) { hint_ = hint; }
|
|
bool HasHint() const;
|
|
bool RequiresRegister() const;
|
|
bool RegisterIsBeneficial() const;
|
|
|
|
LifetimePosition pos() const { return pos_; }
|
|
UsePosition* next() const { return next_; }
|
|
|
|
private:
|
|
void set_next(UsePosition* next) { next_ = next; }
|
|
|
|
LOperand* operand_;
|
|
LOperand* hint_;
|
|
LifetimePosition pos_;
|
|
UsePosition* next_;
|
|
bool requires_reg_;
|
|
bool register_beneficial_;
|
|
|
|
friend class LiveRange;
|
|
};
|
|
|
|
// Representation of SSA values' live ranges as a collection of (continuous)
|
|
// intervals over the instruction ordering.
|
|
class LiveRange: public ZoneObject {
|
|
public:
|
|
static const int kInvalidAssignment = 0x7fffffff;
|
|
|
|
explicit LiveRange(int id);
|
|
|
|
UseInterval* first_interval() const { return first_interval_; }
|
|
UsePosition* first_pos() const { return first_pos_; }
|
|
LiveRange* parent() const { return parent_; }
|
|
LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
|
|
LiveRange* next() const { return next_; }
|
|
bool IsChild() const { return parent() != NULL; }
|
|
int id() const { return id_; }
|
|
bool IsFixed() const { return id_ < 0; }
|
|
bool IsEmpty() const { return first_interval() == NULL; }
|
|
LOperand* CreateAssignedOperand();
|
|
int assigned_register() const { return assigned_register_; }
|
|
int spill_start_index() const { return spill_start_index_; }
|
|
void set_assigned_register(int reg, RegisterKind register_kind);
|
|
void MakeSpilled();
|
|
|
|
// Returns use position in this live range that follows both start
|
|
// and last processed use position.
|
|
// Modifies internal state of live range!
|
|
UsePosition* NextUsePosition(LifetimePosition start);
|
|
|
|
// Returns use position for which register is required in this live
|
|
// range and which follows both start and last processed use position
|
|
// Modifies internal state of live range!
|
|
UsePosition* NextRegisterPosition(LifetimePosition start);
|
|
|
|
// Returns use position for which register is beneficial in this live
|
|
// range and which follows both start and last processed use position
|
|
// Modifies internal state of live range!
|
|
UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
|
|
|
|
// Can this live range be spilled at this position.
|
|
bool CanBeSpilled(LifetimePosition pos);
|
|
|
|
// Split this live range at the given position which must follow the start of
|
|
// the range.
|
|
// All uses following the given position will be moved from this
|
|
// live range to the result live range.
|
|
void SplitAt(LifetimePosition position, LiveRange* result);
|
|
|
|
bool IsDouble() const { return assigned_register_kind_ == DOUBLE_REGISTERS; }
|
|
bool HasRegisterAssigned() const {
|
|
return assigned_register_ != kInvalidAssignment;
|
|
}
|
|
bool IsSpilled() const { return spilled_; }
|
|
UsePosition* FirstPosWithHint() const;
|
|
|
|
LOperand* FirstHint() const {
|
|
UsePosition* pos = FirstPosWithHint();
|
|
if (pos != NULL) return pos->hint();
|
|
return NULL;
|
|
}
|
|
|
|
LifetimePosition Start() const {
|
|
ASSERT(!IsEmpty());
|
|
return first_interval()->start();
|
|
}
|
|
|
|
LifetimePosition End() const {
|
|
ASSERT(!IsEmpty());
|
|
return last_interval_->end();
|
|
}
|
|
|
|
bool HasAllocatedSpillOperand() const;
|
|
LOperand* GetSpillOperand() const { return spill_operand_; }
|
|
void SetSpillOperand(LOperand* operand);
|
|
|
|
void SetSpillStartIndex(int start) {
|
|
spill_start_index_ = Min(start, spill_start_index_);
|
|
}
|
|
|
|
bool ShouldBeAllocatedBefore(const LiveRange* other) const;
|
|
bool CanCover(LifetimePosition position) const;
|
|
bool Covers(LifetimePosition position);
|
|
LifetimePosition FirstIntersection(LiveRange* other);
|
|
|
|
// Add a new interval or a new use position to this live range.
|
|
void EnsureInterval(LifetimePosition start, LifetimePosition end);
|
|
void AddUseInterval(LifetimePosition start, LifetimePosition end);
|
|
UsePosition* AddUsePosition(LifetimePosition pos, LOperand* operand);
|
|
|
|
// Shorten the most recently added interval by setting a new start.
|
|
void ShortenTo(LifetimePosition start);
|
|
|
|
#ifdef DEBUG
|
|
// True if target overlaps an existing interval.
|
|
bool HasOverlap(UseInterval* target) const;
|
|
void Verify() const;
|
|
#endif
|
|
|
|
private:
|
|
void ConvertOperands();
|
|
UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
|
|
void AdvanceLastProcessedMarker(UseInterval* to_start_of,
|
|
LifetimePosition but_not_past) const;
|
|
|
|
int id_;
|
|
bool spilled_;
|
|
int assigned_register_;
|
|
RegisterKind assigned_register_kind_;
|
|
UseInterval* last_interval_;
|
|
UseInterval* first_interval_;
|
|
UsePosition* first_pos_;
|
|
LiveRange* parent_;
|
|
LiveRange* next_;
|
|
// This is used as a cache, it doesn't affect correctness.
|
|
mutable UseInterval* current_interval_;
|
|
UsePosition* last_processed_use_;
|
|
LOperand* spill_operand_;
|
|
int spill_start_index_;
|
|
};
|
|
|
|
|
|
class GrowableBitVector BASE_EMBEDDED {
|
|
public:
|
|
GrowableBitVector() : bits_(NULL) { }
|
|
|
|
bool Contains(int value) const {
|
|
if (!InBitsRange(value)) return false;
|
|
return bits_->Contains(value);
|
|
}
|
|
|
|
void Add(int value) {
|
|
EnsureCapacity(value);
|
|
bits_->Add(value);
|
|
}
|
|
|
|
private:
|
|
static const int kInitialLength = 1024;
|
|
|
|
bool InBitsRange(int value) const {
|
|
return bits_ != NULL && bits_->length() > value;
|
|
}
|
|
|
|
void EnsureCapacity(int value) {
|
|
if (InBitsRange(value)) return;
|
|
int new_length = bits_ == NULL ? kInitialLength : bits_->length();
|
|
while (new_length <= value) new_length *= 2;
|
|
BitVector* new_bits = new BitVector(new_length);
|
|
if (bits_ != NULL) new_bits->CopyFrom(*bits_);
|
|
bits_ = new_bits;
|
|
}
|
|
|
|
BitVector* bits_;
|
|
};
|
|
|
|
|
|
class LAllocator BASE_EMBEDDED {
|
|
public:
|
|
LAllocator(int first_virtual_register, HGraph* graph);
|
|
|
|
static void TraceAlloc(const char* msg, ...);
|
|
|
|
// Lithium translation support.
|
|
// Record a use of an input operand in the current instruction.
|
|
void RecordUse(HValue* value, LUnallocated* operand);
|
|
// Record the definition of the output operand.
|
|
void RecordDefinition(HInstruction* instr, LUnallocated* operand);
|
|
// Record a temporary operand.
|
|
void RecordTemporary(LUnallocated* operand);
|
|
|
|
// Checks whether the value of a given virtual register is tagged.
|
|
bool HasTaggedValue(int virtual_register) const;
|
|
|
|
// Returns the register kind required by the given virtual register.
|
|
RegisterKind RequiredRegisterKind(int virtual_register) const;
|
|
|
|
// Control max function size.
|
|
static int max_initial_value_ids();
|
|
|
|
void Allocate(LChunk* chunk);
|
|
|
|
const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
|
|
const Vector<LiveRange*>* fixed_live_ranges() const {
|
|
return &fixed_live_ranges_;
|
|
}
|
|
const Vector<LiveRange*>* fixed_double_live_ranges() const {
|
|
return &fixed_double_live_ranges_;
|
|
}
|
|
|
|
LChunk* chunk() const { return chunk_; }
|
|
HGraph* graph() const { return graph_; }
|
|
|
|
void MarkAsOsrEntry() {
|
|
// There can be only one.
|
|
ASSERT(!has_osr_entry_);
|
|
// Simply set a flag to find and process instruction later.
|
|
has_osr_entry_ = true;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void Verify() const;
|
|
#endif
|
|
|
|
private:
|
|
void MeetRegisterConstraints();
|
|
void ResolvePhis();
|
|
void BuildLiveRanges();
|
|
void AllocateGeneralRegisters();
|
|
void AllocateDoubleRegisters();
|
|
void ConnectRanges();
|
|
void ResolveControlFlow();
|
|
void PopulatePointerMaps();
|
|
void ProcessOsrEntry();
|
|
void AllocateRegisters();
|
|
bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
|
|
inline bool SafePointsAreInOrder() const;
|
|
|
|
// Liveness analysis support.
|
|
void InitializeLivenessAnalysis();
|
|
BitVector* ComputeLiveOut(HBasicBlock* block);
|
|
void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
|
|
void ProcessInstructions(HBasicBlock* block, BitVector* live);
|
|
void MeetRegisterConstraints(HBasicBlock* block);
|
|
void MeetConstraintsBetween(LInstruction* first,
|
|
LInstruction* second,
|
|
int gap_index);
|
|
void ResolvePhis(HBasicBlock* block);
|
|
|
|
// Helper methods for building intervals.
|
|
LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
|
|
LiveRange* LiveRangeFor(LOperand* operand);
|
|
void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
|
|
void Use(LifetimePosition block_start,
|
|
LifetimePosition position,
|
|
LOperand* operand,
|
|
LOperand* hint);
|
|
void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
|
|
|
|
// Helper methods for updating the life range lists.
|
|
void AddToActive(LiveRange* range);
|
|
void AddToInactive(LiveRange* range);
|
|
void AddToUnhandledSorted(LiveRange* range);
|
|
void AddToUnhandledUnsorted(LiveRange* range);
|
|
void SortUnhandled();
|
|
bool UnhandledIsSorted();
|
|
void ActiveToHandled(LiveRange* range);
|
|
void ActiveToInactive(LiveRange* range);
|
|
void InactiveToHandled(LiveRange* range);
|
|
void InactiveToActive(LiveRange* range);
|
|
void FreeSpillSlot(LiveRange* range);
|
|
LOperand* TryReuseSpillSlot(LiveRange* range);
|
|
|
|
// Helper methods for allocating registers.
|
|
bool TryAllocateFreeReg(LiveRange* range);
|
|
void AllocateBlockedReg(LiveRange* range);
|
|
|
|
// Live range splitting helpers.
|
|
|
|
// Split the given range at the given position.
|
|
// If range starts at or after the given position then the
|
|
// original range is returned.
|
|
// Otherwise returns the live range that starts at pos and contains
|
|
// all uses from the original range that follow pos. Uses at pos will
|
|
// still be owned by the original range after splitting.
|
|
LiveRange* SplitAt(LiveRange* range, LifetimePosition pos);
|
|
|
|
// Split the given range in a position from the interval [start, end].
|
|
LiveRange* SplitBetween(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition end);
|
|
|
|
// Find a lifetime position in the interval [start, end] which
|
|
// is optimal for splitting: it is either header of the outermost
|
|
// loop covered by this interval or the latest possible position.
|
|
LifetimePosition FindOptimalSplitPos(LifetimePosition start,
|
|
LifetimePosition end);
|
|
|
|
// Spill the given life range after position pos.
|
|
void SpillAfter(LiveRange* range, LifetimePosition pos);
|
|
|
|
// Spill the given life range after position start and up to position end.
|
|
void SpillBetween(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition end);
|
|
|
|
void SplitAndSpillIntersecting(LiveRange* range);
|
|
|
|
void Spill(LiveRange* range);
|
|
bool IsBlockBoundary(LifetimePosition pos);
|
|
|
|
// Helper methods for resolving control flow.
|
|
void ResolveControlFlow(LiveRange* range,
|
|
HBasicBlock* block,
|
|
HBasicBlock* pred);
|
|
|
|
// Return parallel move that should be used to connect ranges split at the
|
|
// given position.
|
|
LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
|
|
|
|
// Return the block which contains give lifetime position.
|
|
HBasicBlock* GetBlock(LifetimePosition pos);
|
|
|
|
// Helper methods for the fixed registers.
|
|
int RegisterCount() const;
|
|
static int FixedLiveRangeID(int index) { return -index - 1; }
|
|
static int FixedDoubleLiveRangeID(int index);
|
|
LiveRange* FixedLiveRangeFor(int index);
|
|
LiveRange* FixedDoubleLiveRangeFor(int index);
|
|
LiveRange* LiveRangeFor(int index);
|
|
HPhi* LookupPhi(LOperand* operand) const;
|
|
LGap* GetLastGap(HBasicBlock* block);
|
|
|
|
const char* RegisterName(int allocation_index);
|
|
|
|
inline bool IsGapAt(int index);
|
|
|
|
inline LInstruction* InstructionAt(int index);
|
|
|
|
inline LGap* GapAt(int index);
|
|
|
|
LChunk* chunk_;
|
|
|
|
// During liveness analysis keep a mapping from block id to live_in sets
|
|
// for blocks already analyzed.
|
|
ZoneList<BitVector*> live_in_sets_;
|
|
|
|
// Liveness analysis results.
|
|
ZoneList<LiveRange*> live_ranges_;
|
|
|
|
// Lists of live ranges
|
|
EmbeddedVector<LiveRange*, Register::kNumAllocatableRegisters>
|
|
fixed_live_ranges_;
|
|
EmbeddedVector<LiveRange*, DoubleRegister::kNumAllocatableRegisters>
|
|
fixed_double_live_ranges_;
|
|
ZoneList<LiveRange*> unhandled_live_ranges_;
|
|
ZoneList<LiveRange*> active_live_ranges_;
|
|
ZoneList<LiveRange*> inactive_live_ranges_;
|
|
ZoneList<LiveRange*> reusable_slots_;
|
|
|
|
// Next virtual register number to be assigned to temporaries.
|
|
int next_virtual_register_;
|
|
int first_artificial_register_;
|
|
GrowableBitVector double_artificial_registers_;
|
|
|
|
RegisterKind mode_;
|
|
int num_registers_;
|
|
|
|
HGraph* graph_;
|
|
|
|
bool has_osr_entry_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LAllocator);
|
|
};
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_LITHIUM_ALLOCATOR_H_
|
|
|