You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

309 lines
8.9 KiB

// Copyright 2014 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/v8.h"
#include "src/base/atomicops.h"
#include "test/cctest/cctest.h"
using namespace v8::base;
using namespace v8::internal;
#define CHECK_EQU(v1, v2) \
CHECK_EQ(static_cast<int64_t>(v1), static_cast<int64_t>(v2))
#define NUM_BITS(T) (sizeof(T) * 8)
template <class AtomicType>
static void TestAtomicIncrement() {
// For now, we just test the single-threaded execution.
// Use a guard value to make sure that NoBarrier_AtomicIncrement doesn't
// go outside the expected address bounds. This is to test that the
// 32-bit NoBarrier_AtomicIncrement doesn't do the wrong thing on 64-bit
// machines.
struct {
AtomicType prev_word;
AtomicType count;
AtomicType next_word;
} s;
AtomicType prev_word_value, next_word_value;
memset(&prev_word_value, 0xFF, sizeof(AtomicType));
memset(&next_word_value, 0xEE, sizeof(AtomicType));
s.prev_word = prev_word_value;
s.count = 0;
s.next_word = next_word_value;
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, 1), 1);
CHECK_EQU(s.count, 1);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, 2), 3);
CHECK_EQU(s.count, 3);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, 3), 6);
CHECK_EQU(s.count, 6);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, -3), 3);
CHECK_EQU(s.count, 3);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, -2), 1);
CHECK_EQU(s.count, 1);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, -1), 0);
CHECK_EQU(s.count, 0);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, -1), -1);
CHECK_EQU(s.count, -1);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, -4), -5);
CHECK_EQU(s.count, -5);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
CHECK_EQU(NoBarrier_AtomicIncrement(&s.count, 5), 0);
CHECK_EQU(s.count, 0);
CHECK_EQU(s.prev_word, prev_word_value);
CHECK_EQU(s.next_word, next_word_value);
}
template <class AtomicType>
static void TestCompareAndSwap() {
AtomicType value = 0;
AtomicType prev = NoBarrier_CompareAndSwap(&value, 0, 1);
CHECK_EQU(1, value);
CHECK_EQU(0, prev);
// Use a test value that has non-zero bits in both halves, for testing
// the 64-bit implementation on 32-bit platforms.
const AtomicType k_test_val =
(static_cast<AtomicType>(1) << (NUM_BITS(AtomicType) - 2)) + 11;
value = k_test_val;
prev = NoBarrier_CompareAndSwap(&value, 0, 5);
CHECK_EQU(k_test_val, value);
CHECK_EQU(k_test_val, prev);
value = k_test_val;
prev = NoBarrier_CompareAndSwap(&value, k_test_val, 5);
CHECK_EQU(5, value);
CHECK_EQU(k_test_val, prev);
}
template <class AtomicType>
static void TestAtomicExchange() {
AtomicType value = 0;
AtomicType new_value = NoBarrier_AtomicExchange(&value, 1);
CHECK_EQU(1, value);
CHECK_EQU(0, new_value);
// Use a test value that has non-zero bits in both halves, for testing
// the 64-bit implementation on 32-bit platforms.
const AtomicType k_test_val =
(static_cast<AtomicType>(1) << (NUM_BITS(AtomicType) - 2)) + 11;
value = k_test_val;
new_value = NoBarrier_AtomicExchange(&value, k_test_val);
CHECK_EQU(k_test_val, value);
CHECK_EQU(k_test_val, new_value);
value = k_test_val;
new_value = NoBarrier_AtomicExchange(&value, 5);
CHECK_EQU(5, value);
CHECK_EQU(k_test_val, new_value);
}
template <class AtomicType>
static void TestAtomicIncrementBounds() {
// Test at rollover boundary between int_max and int_min.
AtomicType test_val =
static_cast<AtomicType>(1) << (NUM_BITS(AtomicType) - 1);
AtomicType value = -1 ^ test_val;
AtomicType new_value = NoBarrier_AtomicIncrement(&value, 1);
CHECK_EQU(test_val, value);
CHECK_EQU(value, new_value);
NoBarrier_AtomicIncrement(&value, -1);
CHECK_EQU(-1 ^ test_val, value);
// Test at 32-bit boundary for 64-bit atomic type.
test_val = static_cast<AtomicType>(1) << (NUM_BITS(AtomicType) / 2);
value = test_val - 1;
new_value = NoBarrier_AtomicIncrement(&value, 1);
CHECK_EQU(test_val, value);
CHECK_EQU(value, new_value);
NoBarrier_AtomicIncrement(&value, -1);
CHECK_EQU(test_val - 1, value);
}
// Return an AtomicType with the value 0xa5a5a5..
template <class AtomicType>
static AtomicType TestFillValue() {
AtomicType val = 0;
memset(&val, 0xa5, sizeof(AtomicType));
return val;
}
// This is a simple sanity check to ensure that values are correct.
// Not testing atomicity.
template <class AtomicType>
static void TestStore() {
const AtomicType kVal1 = TestFillValue<AtomicType>();
const AtomicType kVal2 = static_cast<AtomicType>(-1);
AtomicType value;
NoBarrier_Store(&value, kVal1);
CHECK_EQU(kVal1, value);
NoBarrier_Store(&value, kVal2);
CHECK_EQU(kVal2, value);
Acquire_Store(&value, kVal1);
CHECK_EQU(kVal1, value);
Acquire_Store(&value, kVal2);
CHECK_EQU(kVal2, value);
Release_Store(&value, kVal1);
CHECK_EQU(kVal1, value);
Release_Store(&value, kVal2);
CHECK_EQU(kVal2, value);
}
// Merge this test with TestStore as soon as we have Atomic8 acquire
// and release stores.
static void TestStoreAtomic8() {
const Atomic8 kVal1 = TestFillValue<Atomic8>();
const Atomic8 kVal2 = static_cast<Atomic8>(-1);
Atomic8 value;
NoBarrier_Store(&value, kVal1);
CHECK_EQU(kVal1, value);
NoBarrier_Store(&value, kVal2);
CHECK_EQU(kVal2, value);
}
// This is a simple sanity check to ensure that values are correct.
// Not testing atomicity.
template <class AtomicType>
static void TestLoad() {
const AtomicType kVal1 = TestFillValue<AtomicType>();
const AtomicType kVal2 = static_cast<AtomicType>(-1);
AtomicType value;
value = kVal1;
CHECK_EQU(kVal1, NoBarrier_Load(&value));
value = kVal2;
CHECK_EQU(kVal2, NoBarrier_Load(&value));
value = kVal1;
CHECK_EQU(kVal1, Acquire_Load(&value));
value = kVal2;
CHECK_EQU(kVal2, Acquire_Load(&value));
value = kVal1;
CHECK_EQU(kVal1, Release_Load(&value));
value = kVal2;
CHECK_EQU(kVal2, Release_Load(&value));
}
// Merge this test with TestLoad as soon as we have Atomic8 acquire
// and release loads.
static void TestLoadAtomic8() {
const Atomic8 kVal1 = TestFillValue<Atomic8>();
const Atomic8 kVal2 = static_cast<Atomic8>(-1);
Atomic8 value;
value = kVal1;
CHECK_EQU(kVal1, NoBarrier_Load(&value));
value = kVal2;
CHECK_EQU(kVal2, NoBarrier_Load(&value));
}
TEST(AtomicIncrement) {
TestAtomicIncrement<Atomic32>();
TestAtomicIncrement<AtomicWord>();
}
TEST(CompareAndSwap) {
TestCompareAndSwap<Atomic32>();
TestCompareAndSwap<AtomicWord>();
}
TEST(AtomicExchange) {
TestAtomicExchange<Atomic32>();
TestAtomicExchange<AtomicWord>();
}
TEST(AtomicIncrementBounds) {
TestAtomicIncrementBounds<Atomic32>();
TestAtomicIncrementBounds<AtomicWord>();
}
TEST(Store) {
TestStoreAtomic8();
TestStore<Atomic32>();
TestStore<AtomicWord>();
}
TEST(Load) {
TestLoadAtomic8();
TestLoad<Atomic32>();
TestLoad<AtomicWord>();
}