mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
6483 lines
217 KiB
6483 lines
217 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
#include <utility>
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/compilation-cache.h"
|
|
#include "src/context-measure.h"
|
|
#include "src/deoptimizer.h"
|
|
#include "src/execution.h"
|
|
#include "src/factory.h"
|
|
#include "src/global-handles.h"
|
|
#include "src/ic/ic.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/snapshot/snapshot.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
using v8::Just;
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Tests that should have access to private methods of {v8::internal::Heap}.
|
|
// Those tests need to be defined using HEAP_TEST(Name) { ... }.
|
|
#define HEAP_TEST_METHODS(V) \
|
|
V(GCFlags)
|
|
|
|
|
|
#define HEAP_TEST(Name) \
|
|
CcTest register_test_##Name(HeapTester::Test##Name, __FILE__, #Name, NULL, \
|
|
true, true); \
|
|
void HeapTester::Test##Name()
|
|
|
|
|
|
class HeapTester {
|
|
public:
|
|
#define DECLARE_STATIC(Name) static void Test##Name();
|
|
|
|
HEAP_TEST_METHODS(DECLARE_STATIC)
|
|
#undef HEAP_TEST_METHODS
|
|
};
|
|
|
|
|
|
static void CheckMap(Map* map, int type, int instance_size) {
|
|
CHECK(map->IsHeapObject());
|
|
#ifdef DEBUG
|
|
CHECK(CcTest::heap()->Contains(map));
|
|
#endif
|
|
CHECK_EQ(CcTest::heap()->meta_map(), map->map());
|
|
CHECK_EQ(type, map->instance_type());
|
|
CHECK_EQ(instance_size, map->instance_size());
|
|
}
|
|
|
|
|
|
TEST(HeapMaps) {
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
CheckMap(heap->meta_map(), MAP_TYPE, Map::kSize);
|
|
CheckMap(heap->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize);
|
|
#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
|
|
CheckMap(heap->type##_map(), SIMD128_VALUE_TYPE, Type::kSize);
|
|
SIMD128_TYPES(SIMD128_TYPE)
|
|
#undef SIMD128_TYPE
|
|
CheckMap(heap->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
CheckMap(heap->string_map(), STRING_TYPE, kVariableSizeSentinel);
|
|
}
|
|
|
|
|
|
static void CheckOddball(Isolate* isolate, Object* obj, const char* string) {
|
|
CHECK(obj->IsOddball());
|
|
Handle<Object> handle(obj, isolate);
|
|
Object* print_string =
|
|
*Execution::ToString(isolate, handle).ToHandleChecked();
|
|
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
|
|
}
|
|
|
|
|
|
static void CheckSmi(Isolate* isolate, int value, const char* string) {
|
|
Handle<Object> handle(Smi::FromInt(value), isolate);
|
|
Object* print_string =
|
|
*Execution::ToString(isolate, handle).ToHandleChecked();
|
|
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
|
|
}
|
|
|
|
|
|
static void CheckNumber(Isolate* isolate, double value, const char* string) {
|
|
Handle<Object> number = isolate->factory()->NewNumber(value);
|
|
CHECK(number->IsNumber());
|
|
Handle<Object> print_string =
|
|
Execution::ToString(isolate, number).ToHandleChecked();
|
|
CHECK(String::cast(*print_string)->IsUtf8EqualTo(CStrVector(string)));
|
|
}
|
|
|
|
|
|
static void CheckFindCodeObject(Isolate* isolate) {
|
|
// Test FindCodeObject
|
|
#define __ assm.
|
|
|
|
Assembler assm(isolate, NULL, 0);
|
|
|
|
__ nop(); // supported on all architectures
|
|
|
|
CodeDesc desc;
|
|
assm.GetCode(&desc);
|
|
Handle<Code> code = isolate->factory()->NewCode(
|
|
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
|
|
CHECK(code->IsCode());
|
|
|
|
HeapObject* obj = HeapObject::cast(*code);
|
|
Address obj_addr = obj->address();
|
|
|
|
for (int i = 0; i < obj->Size(); i += kPointerSize) {
|
|
Object* found = isolate->FindCodeObject(obj_addr + i);
|
|
CHECK_EQ(*code, found);
|
|
}
|
|
|
|
Handle<Code> copy = isolate->factory()->NewCode(
|
|
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
|
|
HeapObject* obj_copy = HeapObject::cast(*copy);
|
|
Object* not_right = isolate->FindCodeObject(obj_copy->address() +
|
|
obj_copy->Size() / 2);
|
|
CHECK(not_right != *code);
|
|
}
|
|
|
|
|
|
TEST(HandleNull) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope outer_scope(isolate);
|
|
LocalContext context;
|
|
Handle<Object> n(static_cast<Object*>(nullptr), isolate);
|
|
CHECK(!n.is_null());
|
|
}
|
|
|
|
|
|
TEST(HeapObjects) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
|
|
HandleScope sc(isolate);
|
|
Handle<Object> value = factory->NewNumber(1.000123);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(1.000123, value->Number());
|
|
|
|
value = factory->NewNumber(1.0);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(1.0, value->Number());
|
|
|
|
value = factory->NewNumberFromInt(1024);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(1024.0, value->Number());
|
|
|
|
value = factory->NewNumberFromInt(Smi::kMinValue);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(Smi::kMinValue, Handle<Smi>::cast(value)->value());
|
|
|
|
value = factory->NewNumberFromInt(Smi::kMaxValue);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(Smi::kMaxValue, Handle<Smi>::cast(value)->value());
|
|
|
|
#if !defined(V8_TARGET_ARCH_64_BIT)
|
|
// TODO(lrn): We need a NumberFromIntptr function in order to test this.
|
|
value = factory->NewNumberFromInt(Smi::kMinValue - 1);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number());
|
|
#endif
|
|
|
|
value = factory->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1),
|
|
value->Number());
|
|
|
|
value = factory->NewNumberFromUint(static_cast<uint32_t>(1) << 31);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(1) << 31),
|
|
value->Number());
|
|
|
|
// nan oddball checks
|
|
CHECK(factory->nan_value()->IsNumber());
|
|
CHECK(std::isnan(factory->nan_value()->Number()));
|
|
|
|
Handle<String> s = factory->NewStringFromStaticChars("fisk hest ");
|
|
CHECK(s->IsString());
|
|
CHECK_EQ(10, s->length());
|
|
|
|
Handle<String> object_string = Handle<String>::cast(factory->Object_string());
|
|
Handle<GlobalObject> global(CcTest::i_isolate()->context()->global_object());
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string));
|
|
|
|
// Check ToString for oddballs
|
|
CheckOddball(isolate, heap->true_value(), "true");
|
|
CheckOddball(isolate, heap->false_value(), "false");
|
|
CheckOddball(isolate, heap->null_value(), "null");
|
|
CheckOddball(isolate, heap->undefined_value(), "undefined");
|
|
|
|
// Check ToString for Smis
|
|
CheckSmi(isolate, 0, "0");
|
|
CheckSmi(isolate, 42, "42");
|
|
CheckSmi(isolate, -42, "-42");
|
|
|
|
// Check ToString for Numbers
|
|
CheckNumber(isolate, 1.1, "1.1");
|
|
|
|
CheckFindCodeObject(isolate);
|
|
}
|
|
|
|
|
|
template <typename T, typename LANE_TYPE, int LANES>
|
|
static void CheckSimdValue(T* value, LANE_TYPE lane_values[LANES],
|
|
LANE_TYPE other_value) {
|
|
// Check against lane_values, and check that all lanes can be set to
|
|
// other_value without disturbing the other lanes.
|
|
for (int i = 0; i < LANES; i++) {
|
|
CHECK_EQ(lane_values[i], value->get_lane(i));
|
|
}
|
|
for (int i = 0; i < LANES; i++) {
|
|
value->set_lane(i, other_value); // change the value
|
|
for (int j = 0; j < LANES; j++) {
|
|
if (i != j)
|
|
CHECK_EQ(lane_values[j], value->get_lane(j));
|
|
else
|
|
CHECK_EQ(other_value, value->get_lane(j));
|
|
}
|
|
value->set_lane(i, lane_values[i]); // restore the lane
|
|
}
|
|
CHECK(value->BooleanValue()); // SIMD values are 'true'.
|
|
}
|
|
|
|
|
|
TEST(SimdObjects) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
HandleScope sc(isolate);
|
|
|
|
// Float32x4
|
|
{
|
|
float lanes[4] = {1, 2, 3, 4};
|
|
float quiet_NaN = std::numeric_limits<float>::quiet_NaN();
|
|
float signaling_NaN = std::numeric_limits<float>::signaling_NaN();
|
|
|
|
Handle<Float32x4> value = factory->NewFloat32x4(lanes);
|
|
CHECK(value->IsFloat32x4());
|
|
CheckSimdValue<Float32x4, float, 4>(*value, lanes, 3.14f);
|
|
|
|
// Check special lane values.
|
|
value->set_lane(1, -0.0);
|
|
CHECK_EQ(-0.0, value->get_lane(1));
|
|
CHECK(std::signbit(value->get_lane(1))); // Sign bit should be preserved.
|
|
value->set_lane(2, quiet_NaN);
|
|
CHECK(std::isnan(value->get_lane(2)));
|
|
value->set_lane(3, signaling_NaN);
|
|
CHECK(std::isnan(value->get_lane(3)));
|
|
|
|
#ifdef OBJECT_PRINT
|
|
// Check value printing.
|
|
{
|
|
value = factory->NewFloat32x4(lanes);
|
|
std::ostringstream os;
|
|
value->Float32x4Print(os);
|
|
CHECK_EQ("1, 2, 3, 4", os.str());
|
|
}
|
|
{
|
|
float special_lanes[4] = {0, -0.0, quiet_NaN, signaling_NaN};
|
|
value = factory->NewFloat32x4(special_lanes);
|
|
std::ostringstream os;
|
|
value->Float32x4Print(os);
|
|
// Value printing doesn't preserve signed zeroes.
|
|
CHECK_EQ("0, 0, NaN, NaN", os.str());
|
|
}
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
// Int32x4
|
|
{
|
|
int32_t lanes[4] = {-1, 0, 1, 2};
|
|
|
|
Handle<Int32x4> value = factory->NewInt32x4(lanes);
|
|
CHECK(value->IsInt32x4());
|
|
CheckSimdValue<Int32x4, int32_t, 4>(*value, lanes, 3);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
std::ostringstream os;
|
|
value->Int32x4Print(os);
|
|
CHECK_EQ("-1, 0, 1, 2", os.str());
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
// Bool32x4
|
|
{
|
|
bool lanes[4] = {true, true, true, false};
|
|
|
|
Handle<Bool32x4> value = factory->NewBool32x4(lanes);
|
|
CHECK(value->IsBool32x4());
|
|
CheckSimdValue<Bool32x4, bool, 4>(*value, lanes, false);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
std::ostringstream os;
|
|
value->Bool32x4Print(os);
|
|
CHECK_EQ("true, true, true, false", os.str());
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
// Int16x8
|
|
{
|
|
int16_t lanes[8] = {-1, 0, 1, 2, 3, 4, 5, -32768};
|
|
|
|
Handle<Int16x8> value = factory->NewInt16x8(lanes);
|
|
CHECK(value->IsInt16x8());
|
|
CheckSimdValue<Int16x8, int16_t, 8>(*value, lanes, 32767);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
std::ostringstream os;
|
|
value->Int16x8Print(os);
|
|
CHECK_EQ("-1, 0, 1, 2, 3, 4, 5, -32768", os.str());
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
// Bool16x8
|
|
{
|
|
bool lanes[8] = {true, true, true, true, true, true, true, false};
|
|
|
|
Handle<Bool16x8> value = factory->NewBool16x8(lanes);
|
|
CHECK(value->IsBool16x8());
|
|
CheckSimdValue<Bool16x8, bool, 8>(*value, lanes, false);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
std::ostringstream os;
|
|
value->Bool16x8Print(os);
|
|
CHECK_EQ("true, true, true, true, true, true, true, false", os.str());
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
// Int8x16
|
|
{
|
|
int8_t lanes[16] = {-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -128};
|
|
|
|
Handle<Int8x16> value = factory->NewInt8x16(lanes);
|
|
CHECK(value->IsInt8x16());
|
|
CheckSimdValue<Int8x16, int8_t, 16>(*value, lanes, 127);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
std::ostringstream os;
|
|
value->Int8x16Print(os);
|
|
CHECK_EQ("-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -128",
|
|
os.str());
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
// Bool8x16
|
|
{
|
|
bool lanes[16] = {true, true, true, true, true, true, true, false,
|
|
true, true, true, true, true, true, true, false};
|
|
|
|
Handle<Bool8x16> value = factory->NewBool8x16(lanes);
|
|
CHECK(value->IsBool8x16());
|
|
CheckSimdValue<Bool8x16, bool, 16>(*value, lanes, false);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
std::ostringstream os;
|
|
value->Bool8x16Print(os);
|
|
CHECK_EQ(
|
|
"true, true, true, true, true, true, true, false, true, true, true, "
|
|
"true, true, true, true, false",
|
|
os.str());
|
|
#endif // OBJECT_PRINT
|
|
}
|
|
}
|
|
|
|
|
|
TEST(Tagging) {
|
|
CcTest::InitializeVM();
|
|
int request = 24;
|
|
CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request)));
|
|
CHECK(Smi::FromInt(42)->IsSmi());
|
|
CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi());
|
|
CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi());
|
|
}
|
|
|
|
|
|
TEST(GarbageCollection) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
|
|
HandleScope sc(isolate);
|
|
// Check GC.
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
Handle<GlobalObject> global(CcTest::i_isolate()->context()->global_object());
|
|
Handle<String> name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<String> prop_namex = factory->InternalizeUtf8String("theSlotx");
|
|
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
|
|
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
// Allocate a function and keep it in global object's property.
|
|
Handle<JSFunction> function = factory->NewFunction(name);
|
|
JSReceiver::SetProperty(global, name, function, SLOPPY).Check();
|
|
// Allocate an object. Unrooted after leaving the scope.
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
|
|
JSReceiver::SetProperty(obj, prop_namex, twenty_four, SLOPPY).Check();
|
|
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(obj, prop_name).ToHandleChecked());
|
|
CHECK_EQ(Smi::FromInt(24),
|
|
*Object::GetProperty(obj, prop_namex).ToHandleChecked());
|
|
}
|
|
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
// Function should be alive.
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name));
|
|
// Check function is retained.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(global, name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
// Allocate another object, make it reachable from global.
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
|
|
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
|
|
}
|
|
|
|
// After gc, it should survive.
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name));
|
|
Handle<Object> obj =
|
|
Object::GetProperty(global, obj_name).ToHandleChecked();
|
|
CHECK(obj->IsJSObject());
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(obj, prop_name).ToHandleChecked());
|
|
}
|
|
|
|
|
|
static void VerifyStringAllocation(Isolate* isolate, const char* string) {
|
|
HandleScope scope(isolate);
|
|
Handle<String> s = isolate->factory()->NewStringFromUtf8(
|
|
CStrVector(string)).ToHandleChecked();
|
|
CHECK_EQ(StrLength(string), s->length());
|
|
for (int index = 0; index < s->length(); index++) {
|
|
CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(String) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
|
|
|
|
VerifyStringAllocation(isolate, "a");
|
|
VerifyStringAllocation(isolate, "ab");
|
|
VerifyStringAllocation(isolate, "abc");
|
|
VerifyStringAllocation(isolate, "abcd");
|
|
VerifyStringAllocation(isolate, "fiskerdrengen er paa havet");
|
|
}
|
|
|
|
|
|
TEST(LocalHandles) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* name = "Kasper the spunky";
|
|
Handle<String> string = factory->NewStringFromAsciiChecked(name);
|
|
CHECK_EQ(StrLength(name), string->length());
|
|
}
|
|
|
|
|
|
TEST(GlobalHandles) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
Handle<Object> h1;
|
|
Handle<Object> h2;
|
|
Handle<Object> h3;
|
|
Handle<Object> h4;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
Handle<Object> u = factory->NewNumber(1.12344);
|
|
|
|
h1 = global_handles->Create(*i);
|
|
h2 = global_handles->Create(*u);
|
|
h3 = global_handles->Create(*i);
|
|
h4 = global_handles->Create(*u);
|
|
}
|
|
|
|
// after gc, it should survive
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
CHECK((*h1)->IsString());
|
|
CHECK((*h2)->IsHeapNumber());
|
|
CHECK((*h3)->IsString());
|
|
CHECK((*h4)->IsHeapNumber());
|
|
|
|
CHECK_EQ(*h3, *h1);
|
|
GlobalHandles::Destroy(h1.location());
|
|
GlobalHandles::Destroy(h3.location());
|
|
|
|
CHECK_EQ(*h4, *h2);
|
|
GlobalHandles::Destroy(h2.location());
|
|
GlobalHandles::Destroy(h4.location());
|
|
}
|
|
|
|
|
|
static bool WeakPointerCleared = false;
|
|
|
|
static void TestWeakGlobalHandleCallback(
|
|
const v8::WeakCallbackData<v8::Value, void>& data) {
|
|
std::pair<v8::Persistent<v8::Value>*, int>* p =
|
|
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
|
|
data.GetParameter());
|
|
if (p->second == 1234) WeakPointerCleared = true;
|
|
p->first->Reset();
|
|
}
|
|
|
|
|
|
TEST(WeakGlobalHandlesScavenge) {
|
|
i::FLAG_stress_compaction = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
WeakPointerCleared = false;
|
|
|
|
Handle<Object> h1;
|
|
Handle<Object> h2;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
Handle<Object> u = factory->NewNumber(1.12344);
|
|
|
|
h1 = global_handles->Create(*i);
|
|
h2 = global_handles->Create(*u);
|
|
}
|
|
|
|
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
|
|
GlobalHandles::MakeWeak(h2.location(),
|
|
reinterpret_cast<void*>(&handle_and_id),
|
|
&TestWeakGlobalHandleCallback);
|
|
|
|
// Scavenge treats weak pointers as normal roots.
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
CHECK((*h1)->IsString());
|
|
CHECK((*h2)->IsHeapNumber());
|
|
|
|
CHECK(!WeakPointerCleared);
|
|
CHECK(!global_handles->IsNearDeath(h2.location()));
|
|
CHECK(!global_handles->IsNearDeath(h1.location()));
|
|
|
|
GlobalHandles::Destroy(h1.location());
|
|
GlobalHandles::Destroy(h2.location());
|
|
}
|
|
|
|
|
|
TEST(WeakGlobalHandlesMark) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
WeakPointerCleared = false;
|
|
|
|
Handle<Object> h1;
|
|
Handle<Object> h2;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
Handle<Object> u = factory->NewNumber(1.12344);
|
|
|
|
h1 = global_handles->Create(*i);
|
|
h2 = global_handles->Create(*u);
|
|
}
|
|
|
|
// Make sure the objects are promoted.
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2));
|
|
|
|
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
|
|
GlobalHandles::MakeWeak(h2.location(),
|
|
reinterpret_cast<void*>(&handle_and_id),
|
|
&TestWeakGlobalHandleCallback);
|
|
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
|
|
CHECK(!GlobalHandles::IsNearDeath(h2.location()));
|
|
|
|
// Incremental marking potentially marked handles before they turned weak.
|
|
heap->CollectAllGarbage();
|
|
|
|
CHECK((*h1)->IsString());
|
|
|
|
CHECK(WeakPointerCleared);
|
|
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
|
|
|
|
GlobalHandles::Destroy(h1.location());
|
|
}
|
|
|
|
|
|
TEST(DeleteWeakGlobalHandle) {
|
|
i::FLAG_stress_compaction = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
WeakPointerCleared = false;
|
|
|
|
Handle<Object> h;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
h = global_handles->Create(*i);
|
|
}
|
|
|
|
std::pair<Handle<Object>*, int> handle_and_id(&h, 1234);
|
|
GlobalHandles::MakeWeak(h.location(),
|
|
reinterpret_cast<void*>(&handle_and_id),
|
|
&TestWeakGlobalHandleCallback);
|
|
|
|
// Scanvenge does not recognize weak reference.
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
CHECK(!WeakPointerCleared);
|
|
|
|
// Mark-compact treats weak reference properly.
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
|
|
CHECK(WeakPointerCleared);
|
|
}
|
|
|
|
|
|
TEST(BytecodeArray) {
|
|
static const uint8_t kRawBytes[] = {0xc3, 0x7e, 0xa5, 0x5a};
|
|
static const int kRawBytesSize = sizeof(kRawBytes);
|
|
static const int kFrameSize = 32;
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
|
|
// Allocate and initialize BytecodeArray
|
|
Handle<BytecodeArray> array =
|
|
factory->NewBytecodeArray(kRawBytesSize, kRawBytes, kFrameSize);
|
|
|
|
CHECK(array->IsBytecodeArray());
|
|
CHECK_EQ(array->length(), (int)sizeof(kRawBytes));
|
|
CHECK_EQ(array->frame_size(), kFrameSize);
|
|
CHECK_LE(array->address(), array->GetFirstBytecodeAddress());
|
|
CHECK_GE(array->address() + array->BytecodeArraySize(),
|
|
array->GetFirstBytecodeAddress() + array->length());
|
|
for (int i = 0; i < kRawBytesSize; i++) {
|
|
CHECK_EQ(array->GetFirstBytecodeAddress()[i], kRawBytes[i]);
|
|
CHECK_EQ(array->get(i), kRawBytes[i]);
|
|
}
|
|
|
|
// Full garbage collection
|
|
heap->CollectAllGarbage();
|
|
|
|
// BytecodeArray should survive
|
|
CHECK_EQ(array->length(), kRawBytesSize);
|
|
CHECK_EQ(array->frame_size(), kFrameSize);
|
|
|
|
for (int i = 0; i < kRawBytesSize; i++) {
|
|
CHECK_EQ(array->get(i), kRawBytes[i]);
|
|
CHECK_EQ(array->GetFirstBytecodeAddress()[i], kRawBytes[i]);
|
|
}
|
|
}
|
|
|
|
|
|
static const char* not_so_random_string_table[] = {
|
|
"abstract",
|
|
"boolean",
|
|
"break",
|
|
"byte",
|
|
"case",
|
|
"catch",
|
|
"char",
|
|
"class",
|
|
"const",
|
|
"continue",
|
|
"debugger",
|
|
"default",
|
|
"delete",
|
|
"do",
|
|
"double",
|
|
"else",
|
|
"enum",
|
|
"export",
|
|
"extends",
|
|
"false",
|
|
"final",
|
|
"finally",
|
|
"float",
|
|
"for",
|
|
"function",
|
|
"goto",
|
|
"if",
|
|
"implements",
|
|
"import",
|
|
"in",
|
|
"instanceof",
|
|
"int",
|
|
"interface",
|
|
"long",
|
|
"native",
|
|
"new",
|
|
"null",
|
|
"package",
|
|
"private",
|
|
"protected",
|
|
"public",
|
|
"return",
|
|
"short",
|
|
"static",
|
|
"super",
|
|
"switch",
|
|
"synchronized",
|
|
"this",
|
|
"throw",
|
|
"throws",
|
|
"transient",
|
|
"true",
|
|
"try",
|
|
"typeof",
|
|
"var",
|
|
"void",
|
|
"volatile",
|
|
"while",
|
|
"with",
|
|
0
|
|
};
|
|
|
|
|
|
static void CheckInternalizedStrings(const char** strings) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
for (const char* string = *strings; *strings != 0; string = *strings++) {
|
|
HandleScope scope(isolate);
|
|
Handle<String> a =
|
|
isolate->factory()->InternalizeUtf8String(CStrVector(string));
|
|
// InternalizeUtf8String may return a failure if a GC is needed.
|
|
CHECK(a->IsInternalizedString());
|
|
Handle<String> b = factory->InternalizeUtf8String(string);
|
|
CHECK_EQ(*b, *a);
|
|
CHECK(b->IsUtf8EqualTo(CStrVector(string)));
|
|
b = isolate->factory()->InternalizeUtf8String(CStrVector(string));
|
|
CHECK_EQ(*b, *a);
|
|
CHECK(b->IsUtf8EqualTo(CStrVector(string)));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(StringTable) {
|
|
CcTest::InitializeVM();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
CheckInternalizedStrings(not_so_random_string_table);
|
|
CheckInternalizedStrings(not_so_random_string_table);
|
|
}
|
|
|
|
|
|
TEST(FunctionAllocation) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<JSFunction> function = factory->NewFunction(name);
|
|
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
|
|
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(obj, prop_name).ToHandleChecked());
|
|
// Check that we can add properties to function objects.
|
|
JSReceiver::SetProperty(function, prop_name, twenty_four, SLOPPY).Check();
|
|
CHECK_EQ(Smi::FromInt(24),
|
|
*Object::GetProperty(function, prop_name).ToHandleChecked());
|
|
}
|
|
|
|
|
|
TEST(ObjectProperties) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> object_string(String::cast(CcTest::heap()->Object_string()));
|
|
Handle<Object> object = Object::GetProperty(
|
|
CcTest::i_isolate()->global_object(), object_string).ToHandleChecked();
|
|
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
|
|
Handle<JSObject> obj = factory->NewJSObject(constructor);
|
|
Handle<String> first = factory->InternalizeUtf8String("first");
|
|
Handle<String> second = factory->InternalizeUtf8String("second");
|
|
|
|
Handle<Smi> one(Smi::FromInt(1), isolate);
|
|
Handle<Smi> two(Smi::FromInt(2), isolate);
|
|
|
|
// check for empty
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
|
|
// add first
|
|
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
|
|
// delete first
|
|
JSReceiver::DeleteProperty(obj, first, SLOPPY).Check();
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
|
|
// add first and then second
|
|
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
|
|
JSReceiver::SetProperty(obj, second, two, SLOPPY).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// delete first and then second
|
|
JSReceiver::DeleteProperty(obj, first, SLOPPY).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
|
|
JSReceiver::DeleteProperty(obj, second, SLOPPY).Check();
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// add first and then second
|
|
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
|
|
JSReceiver::SetProperty(obj, second, two, SLOPPY).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// delete second and then first
|
|
JSReceiver::DeleteProperty(obj, second, SLOPPY).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
JSReceiver::DeleteProperty(obj, first, SLOPPY).Check();
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// check string and internalized string match
|
|
const char* string1 = "fisk";
|
|
Handle<String> s1 = factory->NewStringFromAsciiChecked(string1);
|
|
JSReceiver::SetProperty(obj, s1, one, SLOPPY).Check();
|
|
Handle<String> s1_string = factory->InternalizeUtf8String(string1);
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string));
|
|
|
|
// check internalized string and string match
|
|
const char* string2 = "fugl";
|
|
Handle<String> s2_string = factory->InternalizeUtf8String(string2);
|
|
JSReceiver::SetProperty(obj, s2_string, one, SLOPPY).Check();
|
|
Handle<String> s2 = factory->NewStringFromAsciiChecked(string2);
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2));
|
|
}
|
|
|
|
|
|
TEST(JSObjectMaps) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<JSFunction> function = factory->NewFunction(name);
|
|
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
Handle<Map> initial_map(function->initial_map());
|
|
|
|
// Set a propery
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(obj, prop_name).ToHandleChecked());
|
|
|
|
// Check the map has changed
|
|
CHECK(*initial_map != obj->map());
|
|
}
|
|
|
|
|
|
TEST(JSArray) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> name = factory->InternalizeUtf8String("Array");
|
|
Handle<Object> fun_obj = Object::GetProperty(
|
|
CcTest::i_isolate()->global_object(), name).ToHandleChecked();
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(fun_obj);
|
|
|
|
// Allocate the object.
|
|
Handle<Object> element;
|
|
Handle<JSObject> object = factory->NewJSObject(function);
|
|
Handle<JSArray> array = Handle<JSArray>::cast(object);
|
|
// We just initialized the VM, no heap allocation failure yet.
|
|
JSArray::Initialize(array, 0);
|
|
|
|
// Set array length to 0.
|
|
JSArray::SetLength(array, 0);
|
|
CHECK_EQ(Smi::FromInt(0), array->length());
|
|
// Must be in fast mode.
|
|
CHECK(array->HasFastSmiOrObjectElements());
|
|
|
|
// array[length] = name.
|
|
JSReceiver::SetElement(isolate, array, 0, name, SLOPPY).Check();
|
|
CHECK_EQ(Smi::FromInt(1), array->length());
|
|
element = i::Object::GetElement(isolate, array, 0).ToHandleChecked();
|
|
CHECK_EQ(*element, *name);
|
|
|
|
// Set array length with larger than smi value.
|
|
JSArray::SetLength(array, static_cast<uint32_t>(Smi::kMaxValue) + 1);
|
|
|
|
uint32_t int_length = 0;
|
|
CHECK(array->length()->ToArrayIndex(&int_length));
|
|
CHECK_EQ(static_cast<uint32_t>(Smi::kMaxValue) + 1, int_length);
|
|
CHECK(array->HasDictionaryElements()); // Must be in slow mode.
|
|
|
|
// array[length] = name.
|
|
JSReceiver::SetElement(isolate, array, int_length, name, SLOPPY).Check();
|
|
uint32_t new_int_length = 0;
|
|
CHECK(array->length()->ToArrayIndex(&new_int_length));
|
|
CHECK_EQ(static_cast<double>(int_length), new_int_length - 1);
|
|
element = Object::GetElement(isolate, array, int_length).ToHandleChecked();
|
|
CHECK_EQ(*element, *name);
|
|
element = Object::GetElement(isolate, array, 0).ToHandleChecked();
|
|
CHECK_EQ(*element, *name);
|
|
}
|
|
|
|
|
|
TEST(JSObjectCopy) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> object_string(String::cast(CcTest::heap()->Object_string()));
|
|
Handle<Object> object = Object::GetProperty(
|
|
CcTest::i_isolate()->global_object(), object_string).ToHandleChecked();
|
|
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
|
|
Handle<JSObject> obj = factory->NewJSObject(constructor);
|
|
Handle<String> first = factory->InternalizeUtf8String("first");
|
|
Handle<String> second = factory->InternalizeUtf8String("second");
|
|
|
|
Handle<Smi> one(Smi::FromInt(1), isolate);
|
|
Handle<Smi> two(Smi::FromInt(2), isolate);
|
|
|
|
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
|
|
JSReceiver::SetProperty(obj, second, two, SLOPPY).Check();
|
|
|
|
JSReceiver::SetElement(isolate, obj, 0, first, SLOPPY).Check();
|
|
JSReceiver::SetElement(isolate, obj, 1, second, SLOPPY).Check();
|
|
|
|
// Make the clone.
|
|
Handle<Object> value1, value2;
|
|
Handle<JSObject> clone = factory->CopyJSObject(obj);
|
|
CHECK(!clone.is_identical_to(obj));
|
|
|
|
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
|
|
value1 = Object::GetProperty(obj, first).ToHandleChecked();
|
|
value2 = Object::GetProperty(clone, first).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetProperty(obj, second).ToHandleChecked();
|
|
value2 = Object::GetProperty(clone, second).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
|
|
// Flip the values.
|
|
JSReceiver::SetProperty(clone, first, two, SLOPPY).Check();
|
|
JSReceiver::SetProperty(clone, second, one, SLOPPY).Check();
|
|
|
|
JSReceiver::SetElement(isolate, clone, 0, second, SLOPPY).Check();
|
|
JSReceiver::SetElement(isolate, clone, 1, first, SLOPPY).Check();
|
|
|
|
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
|
|
value1 = Object::GetProperty(obj, second).ToHandleChecked();
|
|
value2 = Object::GetProperty(clone, first).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetProperty(obj, first).ToHandleChecked();
|
|
value2 = Object::GetProperty(clone, second).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
}
|
|
|
|
|
|
TEST(StringAllocation) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 };
|
|
for (int length = 0; length < 100; length++) {
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
char* non_one_byte = NewArray<char>(3 * length + 1);
|
|
char* one_byte = NewArray<char>(length + 1);
|
|
non_one_byte[3 * length] = 0;
|
|
one_byte[length] = 0;
|
|
for (int i = 0; i < length; i++) {
|
|
one_byte[i] = 'a';
|
|
non_one_byte[3 * i] = chars[0];
|
|
non_one_byte[3 * i + 1] = chars[1];
|
|
non_one_byte[3 * i + 2] = chars[2];
|
|
}
|
|
Handle<String> non_one_byte_sym = factory->InternalizeUtf8String(
|
|
Vector<const char>(non_one_byte, 3 * length));
|
|
CHECK_EQ(length, non_one_byte_sym->length());
|
|
Handle<String> one_byte_sym =
|
|
factory->InternalizeOneByteString(OneByteVector(one_byte, length));
|
|
CHECK_EQ(length, one_byte_sym->length());
|
|
Handle<String> non_one_byte_str =
|
|
factory->NewStringFromUtf8(Vector<const char>(non_one_byte, 3 * length))
|
|
.ToHandleChecked();
|
|
non_one_byte_str->Hash();
|
|
CHECK_EQ(length, non_one_byte_str->length());
|
|
Handle<String> one_byte_str =
|
|
factory->NewStringFromUtf8(Vector<const char>(one_byte, length))
|
|
.ToHandleChecked();
|
|
one_byte_str->Hash();
|
|
CHECK_EQ(length, one_byte_str->length());
|
|
DeleteArray(non_one_byte);
|
|
DeleteArray(one_byte);
|
|
}
|
|
}
|
|
|
|
|
|
static int ObjectsFoundInHeap(Heap* heap, Handle<Object> objs[], int size) {
|
|
// Count the number of objects found in the heap.
|
|
int found_count = 0;
|
|
HeapIterator iterator(heap);
|
|
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
|
|
for (int i = 0; i < size; i++) {
|
|
if (*objs[i] == obj) {
|
|
found_count++;
|
|
}
|
|
}
|
|
}
|
|
return found_count;
|
|
}
|
|
|
|
|
|
TEST(Iteration) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Array of objects to scan haep for.
|
|
const int objs_count = 6;
|
|
Handle<Object> objs[objs_count];
|
|
int next_objs_index = 0;
|
|
|
|
// Allocate a JS array to OLD_SPACE and NEW_SPACE
|
|
objs[next_objs_index++] = factory->NewJSArray(10);
|
|
objs[next_objs_index++] =
|
|
factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, Strength::WEAK, TENURED);
|
|
|
|
// Allocate a small string to OLD_DATA_SPACE and NEW_SPACE
|
|
objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij");
|
|
objs[next_objs_index++] =
|
|
factory->NewStringFromStaticChars("abcdefghij", TENURED);
|
|
|
|
// Allocate a large string (for large object space).
|
|
int large_size = Page::kMaxRegularHeapObjectSize + 1;
|
|
char* str = new char[large_size];
|
|
for (int i = 0; i < large_size - 1; ++i) str[i] = 'a';
|
|
str[large_size - 1] = '\0';
|
|
objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED);
|
|
delete[] str;
|
|
|
|
// Add a Map object to look for.
|
|
objs[next_objs_index++] = Handle<Map>(HeapObject::cast(*objs[0])->map());
|
|
|
|
CHECK_EQ(objs_count, next_objs_index);
|
|
CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count));
|
|
}
|
|
|
|
|
|
static int LenFromSize(int size) {
|
|
return (size - FixedArray::kHeaderSize) / kPointerSize;
|
|
}
|
|
|
|
|
|
TEST(Regression39128) {
|
|
// Test case for crbug.com/39128.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
TestHeap* heap = CcTest::test_heap();
|
|
|
|
// Increase the chance of 'bump-the-pointer' allocation in old space.
|
|
heap->CollectAllGarbage();
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// The plan: create JSObject which references objects in new space.
|
|
// Then clone this object (forcing it to go into old space) and check
|
|
// that region dirty marks are updated correctly.
|
|
|
|
// Step 1: prepare a map for the object. We add 1 inobject property to it.
|
|
// Create a map with single inobject property.
|
|
Handle<Map> my_map = Map::Create(CcTest::i_isolate(), 1);
|
|
int n_properties = my_map->GetInObjectProperties();
|
|
CHECK_GT(n_properties, 0);
|
|
|
|
int object_size = my_map->instance_size();
|
|
|
|
// Step 2: allocate a lot of objects so to almost fill new space: we need
|
|
// just enough room to allocate JSObject and thus fill the newspace.
|
|
|
|
int allocation_amount = Min(FixedArray::kMaxSize,
|
|
Page::kMaxRegularHeapObjectSize + kPointerSize);
|
|
int allocation_len = LenFromSize(allocation_amount);
|
|
NewSpace* new_space = heap->new_space();
|
|
Address* top_addr = new_space->allocation_top_address();
|
|
Address* limit_addr = new_space->allocation_limit_address();
|
|
while ((*limit_addr - *top_addr) > allocation_amount) {
|
|
CHECK(!heap->always_allocate());
|
|
Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked();
|
|
CHECK(new_space->Contains(array));
|
|
}
|
|
|
|
// Step 3: now allocate fixed array and JSObject to fill the whole new space.
|
|
int to_fill = static_cast<int>(*limit_addr - *top_addr - object_size);
|
|
int fixed_array_len = LenFromSize(to_fill);
|
|
CHECK(fixed_array_len < FixedArray::kMaxLength);
|
|
|
|
CHECK(!heap->always_allocate());
|
|
Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked();
|
|
CHECK(new_space->Contains(array));
|
|
|
|
Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked();
|
|
CHECK(new_space->Contains(object));
|
|
JSObject* jsobject = JSObject::cast(object);
|
|
CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length());
|
|
CHECK_EQ(0, jsobject->properties()->length());
|
|
// Create a reference to object in new space in jsobject.
|
|
FieldIndex index = FieldIndex::ForInObjectOffset(
|
|
JSObject::kHeaderSize - kPointerSize);
|
|
jsobject->FastPropertyAtPut(index, array);
|
|
|
|
CHECK_EQ(0, static_cast<int>(*limit_addr - *top_addr));
|
|
|
|
// Step 4: clone jsobject, but force always allocate first to create a clone
|
|
// in old pointer space.
|
|
Address old_space_top = heap->old_space()->top();
|
|
AlwaysAllocateScope aa_scope(isolate);
|
|
Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked();
|
|
JSObject* clone = JSObject::cast(clone_obj);
|
|
if (clone->address() != old_space_top) {
|
|
// Alas, got allocated from free list, we cannot do checks.
|
|
return;
|
|
}
|
|
CHECK(heap->old_space()->Contains(clone->address()));
|
|
}
|
|
|
|
|
|
UNINITIALIZED_TEST(TestCodeFlushing) {
|
|
// If we do not flush code this test is invalid.
|
|
if (!FLAG_flush_code) return;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_optimize_for_size = false;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
|
|
isolate->Enter();
|
|
Factory* factory = i_isolate->factory();
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
const char* source =
|
|
"function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
|
|
// This compile will add the code to the compilation cache.
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value = Object::GetProperty(i_isolate->global_object(),
|
|
foo_name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// The code will survive at least two GCs.
|
|
i_isolate->heap()->CollectAllGarbage();
|
|
i_isolate->heap()->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// Simulate several GCs that use full marking.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
i_isolate->heap()->CollectAllGarbage();
|
|
}
|
|
|
|
// foo should no longer be in the compilation cache
|
|
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
|
|
CHECK(!function->is_compiled() || function->IsOptimized());
|
|
// Call foo to get it recompiled.
|
|
CompileRun("foo()");
|
|
CHECK(function->shared()->is_compiled());
|
|
CHECK(function->is_compiled());
|
|
}
|
|
isolate->Exit();
|
|
isolate->Dispose();
|
|
}
|
|
|
|
|
|
TEST(TestCodeFlushingPreAged) {
|
|
// If we do not flush code this test is invalid.
|
|
if (!FLAG_flush_code) return;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_optimize_for_size = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* source = "function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
|
|
// Compile foo, but don't run it.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// The code has been run so will survive at least one GC.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// The code was only run once, so it should be pre-aged and collected on the
|
|
// next GC.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
|
|
|
|
// Execute the function again twice, and ensure it is reset to the young age.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("foo();"
|
|
"foo();");
|
|
}
|
|
|
|
// The code will survive at least two GC now that it is young again.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// Simulate several GCs that use full marking.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
CcTest::heap()->CollectAllGarbage();
|
|
}
|
|
|
|
// foo should no longer be in the compilation cache
|
|
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
|
|
CHECK(!function->is_compiled() || function->IsOptimized());
|
|
// Call foo to get it recompiled.
|
|
CompileRun("foo()");
|
|
CHECK(function->shared()->is_compiled());
|
|
CHECK(function->is_compiled());
|
|
}
|
|
|
|
|
|
TEST(TestCodeFlushingIncremental) {
|
|
// If we do not flush code this test is invalid.
|
|
if (!FLAG_flush_code) return;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_optimize_for_size = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* source = "function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
|
|
// This compile will add the code to the compilation cache.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// The code will survive at least two GCs.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// Simulate several GCs that use incremental marking.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
}
|
|
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
|
|
CHECK(!function->is_compiled() || function->IsOptimized());
|
|
|
|
// This compile will compile the function again.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("foo();");
|
|
}
|
|
|
|
// Simulate several GCs that use incremental marking but make sure
|
|
// the loop breaks once the function is enqueued as a candidate.
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
if (!function->next_function_link()->IsUndefined()) break;
|
|
CcTest::heap()->CollectAllGarbage();
|
|
}
|
|
|
|
// Force optimization while incremental marking is active and while
|
|
// the function is enqueued as a candidate.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("%OptimizeFunctionOnNextCall(foo); foo();");
|
|
}
|
|
|
|
// Simulate one final GC to make sure the candidate queue is sane.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled() || !function->IsOptimized());
|
|
CHECK(function->is_compiled() || !function->IsOptimized());
|
|
}
|
|
|
|
|
|
TEST(TestCodeFlushingIncrementalScavenge) {
|
|
// If we do not flush code this test is invalid.
|
|
if (!FLAG_flush_code) return;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_optimize_for_size = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* source = "var foo = function() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo();"
|
|
"var bar = function() {"
|
|
" var x = 23;"
|
|
"};"
|
|
"bar();";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
Handle<String> bar_name = factory->InternalizeUtf8String("bar");
|
|
|
|
// Perfrom one initial GC to enable code flushing.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
// This compile will add the code to the compilation cache.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check functions are compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared()->is_compiled());
|
|
Handle<Object> func_value2 =
|
|
Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked();
|
|
CHECK(func_value2->IsJSFunction());
|
|
Handle<JSFunction> function2 = Handle<JSFunction>::cast(func_value2);
|
|
CHECK(function2->shared()->is_compiled());
|
|
|
|
// Clear references to functions so that one of them can die.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("foo = 0; bar = 0;");
|
|
}
|
|
|
|
// Bump the code age so that flushing is triggered while the function
|
|
// object is still located in new-space.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
function->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
function2->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
// Simulate incremental marking so that the functions are enqueued as
|
|
// code flushing candidates. Then kill one of the functions. Finally
|
|
// perform a scavenge while incremental marking is still running.
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
*function2.location() = NULL;
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking");
|
|
|
|
// Simulate one final GC to make sure the candidate queue is sane.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
|
|
CHECK(!function->is_compiled() || function->IsOptimized());
|
|
}
|
|
|
|
|
|
TEST(TestCodeFlushingIncrementalAbort) {
|
|
// If we do not flush code this test is invalid.
|
|
if (!FLAG_flush_code) return;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_optimize_for_size = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* source = "function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
|
|
// This compile will add the code to the compilation cache.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// The code will survive at least two GCs.
|
|
heap->CollectAllGarbage();
|
|
heap->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled());
|
|
|
|
// Bump the code age so that flushing is triggered.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
function->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
// Simulate incremental marking so that the function is enqueued as
|
|
// code flushing candidate.
|
|
SimulateIncrementalMarking(heap);
|
|
|
|
// Enable the debugger and add a breakpoint while incremental marking
|
|
// is running so that incremental marking aborts and code flushing is
|
|
// disabled.
|
|
int position = 0;
|
|
Handle<Object> breakpoint_object(Smi::FromInt(0), isolate);
|
|
EnableDebugger();
|
|
isolate->debug()->SetBreakPoint(function, breakpoint_object, &position);
|
|
isolate->debug()->ClearAllBreakPoints();
|
|
DisableDebugger();
|
|
|
|
// Force optimization now that code flushing is disabled.
|
|
{ v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("%OptimizeFunctionOnNextCall(foo); foo();");
|
|
}
|
|
|
|
// Simulate one final GC to make sure the candidate queue is sane.
|
|
heap->CollectAllGarbage();
|
|
CHECK(function->shared()->is_compiled() || !function->IsOptimized());
|
|
CHECK(function->is_compiled() || !function->IsOptimized());
|
|
}
|
|
|
|
|
|
TEST(CompilationCacheCachingBehavior) {
|
|
// If we do not flush code, or have the compilation cache turned off, this
|
|
// test is invalid.
|
|
if (!FLAG_flush_code || !FLAG_compilation_cache) {
|
|
return;
|
|
}
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
CompilationCache* compilation_cache = isolate->compilation_cache();
|
|
LanguageMode language_mode =
|
|
construct_language_mode(FLAG_use_strict, FLAG_use_strong);
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* raw_source =
|
|
"function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> source = factory->InternalizeUtf8String(raw_source);
|
|
Handle<Context> native_context = isolate->native_context();
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(raw_source);
|
|
}
|
|
|
|
// On first compilation, only a hash is inserted in the code cache. We can't
|
|
// find that value.
|
|
MaybeHandle<SharedFunctionInfo> info = compilation_cache->LookupScript(
|
|
source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(false, true, false), native_context,
|
|
language_mode);
|
|
CHECK(info.is_null());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(raw_source);
|
|
}
|
|
|
|
// On second compilation, the hash is replaced by a real cache entry mapping
|
|
// the source to the shared function info containing the code.
|
|
info = compilation_cache->LookupScript(
|
|
source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(false, true, false), native_context,
|
|
language_mode);
|
|
CHECK(!info.is_null());
|
|
|
|
heap->CollectAllGarbage();
|
|
|
|
// On second compilation, the hash is replaced by a real cache entry mapping
|
|
// the source to the shared function info containing the code.
|
|
info = compilation_cache->LookupScript(
|
|
source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(false, true, false), native_context,
|
|
language_mode);
|
|
CHECK(!info.is_null());
|
|
|
|
while (!info.ToHandleChecked()->code()->IsOld()) {
|
|
info.ToHandleChecked()->code()->MakeOlder(NO_MARKING_PARITY);
|
|
}
|
|
|
|
heap->CollectAllGarbage();
|
|
// Ensure code aging cleared the entry from the cache.
|
|
info = compilation_cache->LookupScript(
|
|
source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(false, true, false), native_context,
|
|
language_mode);
|
|
CHECK(info.is_null());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(raw_source);
|
|
}
|
|
|
|
// On first compilation, only a hash is inserted in the code cache. We can't
|
|
// find that value.
|
|
info = compilation_cache->LookupScript(
|
|
source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(false, true, false), native_context,
|
|
language_mode);
|
|
CHECK(info.is_null());
|
|
|
|
for (int i = 0; i < CompilationCacheTable::kHashGenerations; i++) {
|
|
compilation_cache->MarkCompactPrologue();
|
|
}
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(raw_source);
|
|
}
|
|
|
|
// If we aged the cache before caching the script, ensure that we didn't cache
|
|
// on next compilation.
|
|
info = compilation_cache->LookupScript(
|
|
source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(false, true, false), native_context,
|
|
language_mode);
|
|
CHECK(info.is_null());
|
|
}
|
|
|
|
|
|
static void OptimizeEmptyFunction(const char* name) {
|
|
HandleScope scope(CcTest::i_isolate());
|
|
EmbeddedVector<char, 256> source;
|
|
SNPrintF(source,
|
|
"function %s() { return 0; }"
|
|
"%s(); %s();"
|
|
"%%OptimizeFunctionOnNextCall(%s);"
|
|
"%s();",
|
|
name, name, name, name, name);
|
|
CompileRun(source.start());
|
|
}
|
|
|
|
|
|
// Count the number of native contexts in the weak list of native contexts.
|
|
int CountNativeContexts() {
|
|
int count = 0;
|
|
Object* object = CcTest::heap()->native_contexts_list();
|
|
while (!object->IsUndefined()) {
|
|
count++;
|
|
object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
// Subtract one to compensate for the code stub context that is always present
|
|
return count - 1;
|
|
}
|
|
|
|
|
|
// Count the number of user functions in the weak list of optimized
|
|
// functions attached to a native context.
|
|
static int CountOptimizedUserFunctions(v8::Handle<v8::Context> context) {
|
|
int count = 0;
|
|
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
|
|
Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST);
|
|
while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) {
|
|
count++;
|
|
object = JSFunction::cast(object)->next_function_link();
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
TEST(TestInternalWeakLists) {
|
|
FLAG_always_opt = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::V8::Initialize();
|
|
|
|
// Some flags turn Scavenge collections into Mark-sweep collections
|
|
// and hence are incompatible with this test case.
|
|
if (FLAG_gc_global || FLAG_stress_compaction) return;
|
|
FLAG_retain_maps_for_n_gc = 0;
|
|
|
|
static const int kNumTestContexts = 10;
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
v8::Handle<v8::Context> ctx[kNumTestContexts];
|
|
if (!isolate->use_crankshaft()) return;
|
|
|
|
CHECK_EQ(0, CountNativeContexts());
|
|
|
|
// Create a number of global contests which gets linked together.
|
|
for (int i = 0; i < kNumTestContexts; i++) {
|
|
ctx[i] = v8::Context::New(CcTest::isolate());
|
|
|
|
// Collect garbage that might have been created by one of the
|
|
// installed extensions.
|
|
isolate->compilation_cache()->Clear();
|
|
heap->CollectAllGarbage();
|
|
|
|
CHECK_EQ(i + 1, CountNativeContexts());
|
|
|
|
ctx[i]->Enter();
|
|
|
|
// Create a handle scope so no function objects get stuck in the outer
|
|
// handle scope.
|
|
HandleScope scope(isolate);
|
|
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i]));
|
|
OptimizeEmptyFunction("f1");
|
|
CHECK_EQ(1, CountOptimizedUserFunctions(ctx[i]));
|
|
OptimizeEmptyFunction("f2");
|
|
CHECK_EQ(2, CountOptimizedUserFunctions(ctx[i]));
|
|
OptimizeEmptyFunction("f3");
|
|
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i]));
|
|
OptimizeEmptyFunction("f4");
|
|
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i]));
|
|
OptimizeEmptyFunction("f5");
|
|
CHECK_EQ(5, CountOptimizedUserFunctions(ctx[i]));
|
|
|
|
// Remove function f1, and
|
|
CompileRun("f1=null");
|
|
|
|
// Scavenge treats these references as strong.
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE);
|
|
CHECK_EQ(5, CountOptimizedUserFunctions(ctx[i]));
|
|
}
|
|
|
|
// Mark compact handles the weak references.
|
|
isolate->compilation_cache()->Clear();
|
|
heap->CollectAllGarbage();
|
|
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i]));
|
|
|
|
// Get rid of f3 and f5 in the same way.
|
|
CompileRun("f3=null");
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE);
|
|
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i]));
|
|
}
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i]));
|
|
CompileRun("f5=null");
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE);
|
|
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i]));
|
|
}
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK_EQ(2, CountOptimizedUserFunctions(ctx[i]));
|
|
|
|
ctx[i]->Exit();
|
|
}
|
|
|
|
// Force compilation cache cleanup.
|
|
CcTest::heap()->NotifyContextDisposed(true);
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
// Dispose the native contexts one by one.
|
|
for (int i = 0; i < kNumTestContexts; i++) {
|
|
// TODO(dcarney): is there a better way to do this?
|
|
i::Object** unsafe = reinterpret_cast<i::Object**>(*ctx[i]);
|
|
*unsafe = CcTest::heap()->undefined_value();
|
|
ctx[i].Clear();
|
|
|
|
// Scavenge treats these references as strong.
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::heap()->CollectGarbage(i::NEW_SPACE);
|
|
CHECK_EQ(kNumTestContexts - i, CountNativeContexts());
|
|
}
|
|
|
|
// Mark compact handles the weak references.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts());
|
|
}
|
|
|
|
CHECK_EQ(0, CountNativeContexts());
|
|
}
|
|
|
|
|
|
// Count the number of native contexts in the weak list of native contexts
|
|
// causing a GC after the specified number of elements.
|
|
static int CountNativeContextsWithGC(Isolate* isolate, int n) {
|
|
Heap* heap = isolate->heap();
|
|
int count = 0;
|
|
Handle<Object> object(heap->native_contexts_list(), isolate);
|
|
while (!object->IsUndefined()) {
|
|
count++;
|
|
if (count == n) heap->CollectAllGarbage();
|
|
object =
|
|
Handle<Object>(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK),
|
|
isolate);
|
|
}
|
|
// Subtract one to compensate for the code stub context that is always present
|
|
return count - 1;
|
|
}
|
|
|
|
|
|
// Count the number of user functions in the weak list of optimized
|
|
// functions attached to a native context causing a GC after the
|
|
// specified number of elements.
|
|
static int CountOptimizedUserFunctionsWithGC(v8::Handle<v8::Context> context,
|
|
int n) {
|
|
int count = 0;
|
|
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
|
|
Isolate* isolate = icontext->GetIsolate();
|
|
Handle<Object> object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST),
|
|
isolate);
|
|
while (object->IsJSFunction() &&
|
|
!Handle<JSFunction>::cast(object)->IsBuiltin()) {
|
|
count++;
|
|
if (count == n) isolate->heap()->CollectAllGarbage();
|
|
object = Handle<Object>(
|
|
Object::cast(JSFunction::cast(*object)->next_function_link()),
|
|
isolate);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
TEST(TestInternalWeakListsTraverseWithGC) {
|
|
FLAG_always_opt = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::V8::Initialize();
|
|
|
|
static const int kNumTestContexts = 10;
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
v8::Handle<v8::Context> ctx[kNumTestContexts];
|
|
if (!isolate->use_crankshaft()) return;
|
|
|
|
CHECK_EQ(0, CountNativeContexts());
|
|
|
|
// Create an number of contexts and check the length of the weak list both
|
|
// with and without GCs while iterating the list.
|
|
for (int i = 0; i < kNumTestContexts; i++) {
|
|
ctx[i] = v8::Context::New(CcTest::isolate());
|
|
CHECK_EQ(i + 1, CountNativeContexts());
|
|
CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1));
|
|
}
|
|
|
|
ctx[0]->Enter();
|
|
|
|
// Compile a number of functions the length of the weak list of optimized
|
|
// functions both with and without GCs while iterating the list.
|
|
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0]));
|
|
OptimizeEmptyFunction("f1");
|
|
CHECK_EQ(1, CountOptimizedUserFunctions(ctx[0]));
|
|
CHECK_EQ(1, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
|
|
OptimizeEmptyFunction("f2");
|
|
CHECK_EQ(2, CountOptimizedUserFunctions(ctx[0]));
|
|
CHECK_EQ(2, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
|
|
OptimizeEmptyFunction("f3");
|
|
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[0]));
|
|
CHECK_EQ(3, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
|
|
OptimizeEmptyFunction("f4");
|
|
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[0]));
|
|
CHECK_EQ(4, CountOptimizedUserFunctionsWithGC(ctx[0], 2));
|
|
OptimizeEmptyFunction("f5");
|
|
CHECK_EQ(5, CountOptimizedUserFunctions(ctx[0]));
|
|
CHECK_EQ(5, CountOptimizedUserFunctionsWithGC(ctx[0], 4));
|
|
|
|
ctx[0]->Exit();
|
|
}
|
|
|
|
|
|
TEST(TestSizeOfRegExpCode) {
|
|
if (!FLAG_regexp_optimization) return;
|
|
|
|
v8::V8::Initialize();
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
|
|
LocalContext context;
|
|
|
|
// Adjust source below and this check to match
|
|
// RegExpImple::kRegExpTooLargeToOptimize.
|
|
DCHECK_EQ(i::RegExpImpl::kRegExpTooLargeToOptimize, 20 * KB);
|
|
|
|
// Compile a regexp that is much larger if we are using regexp optimizations.
|
|
CompileRun(
|
|
"var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';"
|
|
"var half_size_reg_exp;"
|
|
"while (reg_exp_source.length < 20 * 1024) {"
|
|
" half_size_reg_exp = reg_exp_source;"
|
|
" reg_exp_source = reg_exp_source + reg_exp_source;"
|
|
"}"
|
|
// Flatten string.
|
|
"reg_exp_source.match(/f/);");
|
|
|
|
// Get initial heap size after several full GCs, which will stabilize
|
|
// the heap size and return with sweeping finished completely.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
CompileRun("'foo'.match(reg_exp_source);");
|
|
CcTest::heap()->CollectAllGarbage();
|
|
int size_with_regexp = static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
CompileRun("'foo'.match(half_size_reg_exp);");
|
|
CcTest::heap()->CollectAllGarbage();
|
|
int size_with_optimized_regexp =
|
|
static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
int size_of_regexp_code = size_with_regexp - initial_size;
|
|
|
|
// On some platforms the debug-code flag causes huge amounts of regexp code
|
|
// to be emitted, breaking this test.
|
|
if (!FLAG_debug_code) {
|
|
CHECK_LE(size_of_regexp_code, 1 * MB);
|
|
}
|
|
|
|
// Small regexp is half the size, but compiles to more than twice the code
|
|
// due to the optimization steps.
|
|
CHECK_GE(size_with_optimized_regexp,
|
|
size_with_regexp + size_of_regexp_code * 2);
|
|
}
|
|
|
|
|
|
TEST(TestSizeOfObjects) {
|
|
v8::V8::Initialize();
|
|
|
|
// Get initial heap size after several full GCs, which will stabilize
|
|
// the heap size and return with sweeping finished completely.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
{
|
|
// Allocate objects on several different old-space pages so that
|
|
// concurrent sweeper threads will be busy sweeping the old space on
|
|
// subsequent GC runs.
|
|
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
|
|
int filler_size = static_cast<int>(FixedArray::SizeFor(8192));
|
|
for (int i = 1; i <= 100; i++) {
|
|
CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked();
|
|
CHECK_EQ(initial_size + i * filler_size,
|
|
static_cast<int>(CcTest::heap()->SizeOfObjects()));
|
|
}
|
|
}
|
|
|
|
// The heap size should go back to initial size after a full GC, even
|
|
// though sweeping didn't finish yet.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
// Normally sweeping would not be complete here, but no guarantees.
|
|
|
|
CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects()));
|
|
|
|
// Waiting for sweeper threads should not change heap size.
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects()));
|
|
}
|
|
|
|
|
|
TEST(TestAlignmentCalculations) {
|
|
// Maximum fill amounts are consistent.
|
|
int maximum_double_misalignment = kDoubleSize - kPointerSize;
|
|
int maximum_simd128_misalignment = kSimd128Size - kPointerSize;
|
|
int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
|
|
CHECK_EQ(0, max_word_fill);
|
|
int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
|
|
CHECK_EQ(maximum_double_misalignment, max_double_fill);
|
|
int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
|
|
CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
|
|
int max_simd128_unaligned_fill =
|
|
Heap::GetMaximumFillToAlign(kSimd128Unaligned);
|
|
CHECK_EQ(maximum_simd128_misalignment, max_simd128_unaligned_fill);
|
|
|
|
Address base = static_cast<Address>(NULL);
|
|
int fill = 0;
|
|
|
|
// Word alignment never requires fill.
|
|
fill = Heap::GetFillToAlign(base, kWordAligned);
|
|
CHECK_EQ(0, fill);
|
|
fill = Heap::GetFillToAlign(base + kPointerSize, kWordAligned);
|
|
CHECK_EQ(0, fill);
|
|
|
|
// No fill is required when address is double aligned.
|
|
fill = Heap::GetFillToAlign(base, kDoubleAligned);
|
|
CHECK_EQ(0, fill);
|
|
// Fill is required if address is not double aligned.
|
|
fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleAligned);
|
|
CHECK_EQ(maximum_double_misalignment, fill);
|
|
// kDoubleUnaligned has the opposite fill amounts.
|
|
fill = Heap::GetFillToAlign(base, kDoubleUnaligned);
|
|
CHECK_EQ(maximum_double_misalignment, fill);
|
|
fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleUnaligned);
|
|
CHECK_EQ(0, fill);
|
|
|
|
// 128 bit SIMD types have 2 or 4 possible alignments, depending on platform.
|
|
fill = Heap::GetFillToAlign(base, kSimd128Unaligned);
|
|
CHECK_EQ((3 * kPointerSize) & kSimd128AlignmentMask, fill);
|
|
fill = Heap::GetFillToAlign(base + kPointerSize, kSimd128Unaligned);
|
|
CHECK_EQ((2 * kPointerSize) & kSimd128AlignmentMask, fill);
|
|
fill = Heap::GetFillToAlign(base + 2 * kPointerSize, kSimd128Unaligned);
|
|
CHECK_EQ(kPointerSize, fill);
|
|
fill = Heap::GetFillToAlign(base + 3 * kPointerSize, kSimd128Unaligned);
|
|
CHECK_EQ(0, fill);
|
|
}
|
|
|
|
|
|
static HeapObject* NewSpaceAllocateAligned(int size,
|
|
AllocationAlignment alignment) {
|
|
Heap* heap = CcTest::heap();
|
|
AllocationResult allocation =
|
|
heap->new_space()->AllocateRawAligned(size, alignment);
|
|
HeapObject* obj = NULL;
|
|
allocation.To(&obj);
|
|
heap->CreateFillerObjectAt(obj->address(), size);
|
|
return obj;
|
|
}
|
|
|
|
|
|
// Get new space allocation into the desired alignment.
|
|
static Address AlignNewSpace(AllocationAlignment alignment, int offset) {
|
|
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
|
|
int fill = Heap::GetFillToAlign(*top_addr, alignment);
|
|
if (fill) {
|
|
NewSpaceAllocateAligned(fill + offset, kWordAligned);
|
|
}
|
|
return *top_addr;
|
|
}
|
|
|
|
|
|
TEST(TestAlignedAllocation) {
|
|
// Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
|
|
const intptr_t double_misalignment = kDoubleSize - kPointerSize;
|
|
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
|
|
Address start;
|
|
HeapObject* obj;
|
|
HeapObject* filler;
|
|
if (double_misalignment) {
|
|
// Allocate a pointer sized object that must be double aligned at an
|
|
// aligned address.
|
|
start = AlignNewSpace(kDoubleAligned, 0);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
|
|
// There is no filler.
|
|
CHECK_EQ(kPointerSize, *top_addr - start);
|
|
|
|
// Allocate a second pointer sized object that must be double aligned at an
|
|
// unaligned address.
|
|
start = AlignNewSpace(kDoubleAligned, kPointerSize);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler->IsFiller() &&
|
|
filler->Size() == kPointerSize);
|
|
CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start);
|
|
|
|
// Similarly for kDoubleUnaligned.
|
|
start = AlignNewSpace(kDoubleUnaligned, 0);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
|
|
CHECK_EQ(kPointerSize, *top_addr - start);
|
|
start = AlignNewSpace(kDoubleUnaligned, kPointerSize);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler->IsFiller() &&
|
|
filler->Size() == kPointerSize);
|
|
CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start);
|
|
}
|
|
|
|
// Now test SIMD alignment. There are 2 or 4 possible alignments, depending
|
|
// on platform.
|
|
start = AlignNewSpace(kSimd128Unaligned, 0);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There is no filler.
|
|
CHECK_EQ(kPointerSize, *top_addr - start);
|
|
start = AlignNewSpace(kSimd128Unaligned, kPointerSize);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler->IsFiller() &&
|
|
filler->Size() == kSimd128Size - kPointerSize);
|
|
CHECK_EQ(kPointerSize + kSimd128Size - kPointerSize, *top_addr - start);
|
|
|
|
if (double_misalignment) {
|
|
// Test the 2 other alignments possible on 32 bit platforms.
|
|
start = AlignNewSpace(kSimd128Unaligned, 2 * kPointerSize);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler->IsFiller() &&
|
|
filler->Size() == 2 * kPointerSize);
|
|
CHECK_EQ(kPointerSize + 2 * kPointerSize, *top_addr - start);
|
|
start = AlignNewSpace(kSimd128Unaligned, 3 * kPointerSize);
|
|
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler->IsFiller() &&
|
|
filler->Size() == kPointerSize);
|
|
CHECK_EQ(kPointerSize + kPointerSize, *top_addr - start);
|
|
}
|
|
}
|
|
|
|
|
|
static HeapObject* OldSpaceAllocateAligned(int size,
|
|
AllocationAlignment alignment) {
|
|
Heap* heap = CcTest::heap();
|
|
AllocationResult allocation =
|
|
heap->old_space()->AllocateRawAligned(size, alignment);
|
|
HeapObject* obj = NULL;
|
|
allocation.To(&obj);
|
|
heap->CreateFillerObjectAt(obj->address(), size);
|
|
return obj;
|
|
}
|
|
|
|
|
|
// Get old space allocation into the desired alignment.
|
|
static Address AlignOldSpace(AllocationAlignment alignment, int offset) {
|
|
Address* top_addr = CcTest::heap()->old_space()->allocation_top_address();
|
|
int fill = Heap::GetFillToAlign(*top_addr, alignment);
|
|
int allocation = fill + offset;
|
|
if (allocation) {
|
|
OldSpaceAllocateAligned(allocation, kWordAligned);
|
|
}
|
|
Address top = *top_addr;
|
|
// Now force the remaining allocation onto the free list.
|
|
CcTest::heap()->old_space()->EmptyAllocationInfo();
|
|
return top;
|
|
}
|
|
|
|
|
|
// Test the case where allocation must be done from the free list, so filler
|
|
// may precede or follow the object.
|
|
TEST(TestAlignedOverAllocation) {
|
|
// Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
|
|
const intptr_t double_misalignment = kDoubleSize - kPointerSize;
|
|
Address start;
|
|
HeapObject* obj;
|
|
HeapObject* filler1;
|
|
HeapObject* filler2;
|
|
if (double_misalignment) {
|
|
start = AlignOldSpace(kDoubleAligned, 0);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
|
// The object is aligned, and a filler object is created after.
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
|
|
filler1 = HeapObject::FromAddress(start + kPointerSize);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kPointerSize);
|
|
// Try the opposite alignment case.
|
|
start = AlignOldSpace(kDoubleAligned, kPointerSize);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
|
|
filler1 = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler1);
|
|
CHECK(filler1->IsFiller());
|
|
CHECK(filler1->Size() == kPointerSize);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kPointerSize);
|
|
|
|
// Similarly for kDoubleUnaligned.
|
|
start = AlignOldSpace(kDoubleUnaligned, 0);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
|
// The object is aligned, and a filler object is created after.
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
|
|
filler1 = HeapObject::FromAddress(start + kPointerSize);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kPointerSize);
|
|
// Try the opposite alignment case.
|
|
start = AlignOldSpace(kDoubleUnaligned, kPointerSize);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
|
|
filler1 = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kPointerSize);
|
|
}
|
|
|
|
// Now test SIMD alignment. There are 2 or 4 possible alignments, depending
|
|
// on platform.
|
|
start = AlignOldSpace(kSimd128Unaligned, 0);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There is a filler object after the object.
|
|
filler1 = HeapObject::FromAddress(start + kPointerSize);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kSimd128Size - kPointerSize);
|
|
start = AlignOldSpace(kSimd128Unaligned, kPointerSize);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There is a filler object before the object.
|
|
filler1 = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kSimd128Size - kPointerSize);
|
|
|
|
if (double_misalignment) {
|
|
// Test the 2 other alignments possible on 32 bit platforms.
|
|
start = AlignOldSpace(kSimd128Unaligned, 2 * kPointerSize);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There are filler objects before and after the object.
|
|
filler1 = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == 2 * kPointerSize);
|
|
filler2 = HeapObject::FromAddress(start + 3 * kPointerSize);
|
|
CHECK(obj != filler2 && filler2->IsFiller() &&
|
|
filler2->Size() == kPointerSize);
|
|
start = AlignOldSpace(kSimd128Unaligned, 3 * kPointerSize);
|
|
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
|
|
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
|
|
// There are filler objects before and after the object.
|
|
filler1 = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler1 && filler1->IsFiller() &&
|
|
filler1->Size() == kPointerSize);
|
|
filler2 = HeapObject::FromAddress(start + 2 * kPointerSize);
|
|
CHECK(obj != filler2 && filler2->IsFiller() &&
|
|
filler2->Size() == 2 * kPointerSize);
|
|
}
|
|
}
|
|
|
|
|
|
TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
|
|
CcTest::InitializeVM();
|
|
HeapIterator iterator(CcTest::heap());
|
|
intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects();
|
|
intptr_t size_of_objects_2 = 0;
|
|
for (HeapObject* obj = iterator.next();
|
|
obj != NULL;
|
|
obj = iterator.next()) {
|
|
if (!obj->IsFreeSpace()) {
|
|
size_of_objects_2 += obj->Size();
|
|
}
|
|
}
|
|
// Delta must be within 5% of the larger result.
|
|
// TODO(gc): Tighten this up by distinguishing between byte
|
|
// arrays that are real and those that merely mark free space
|
|
// on the heap.
|
|
if (size_of_objects_1 > size_of_objects_2) {
|
|
intptr_t delta = size_of_objects_1 - size_of_objects_2;
|
|
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
|
|
"Iterator: %" V8_PTR_PREFIX "d, "
|
|
"delta: %" V8_PTR_PREFIX "d\n",
|
|
size_of_objects_1, size_of_objects_2, delta);
|
|
CHECK_GT(size_of_objects_1 / 20, delta);
|
|
} else {
|
|
intptr_t delta = size_of_objects_2 - size_of_objects_1;
|
|
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
|
|
"Iterator: %" V8_PTR_PREFIX "d, "
|
|
"delta: %" V8_PTR_PREFIX "d\n",
|
|
size_of_objects_1, size_of_objects_2, delta);
|
|
CHECK_GT(size_of_objects_2 / 20, delta);
|
|
}
|
|
}
|
|
|
|
|
|
static void FillUpNewSpace(NewSpace* new_space) {
|
|
// Fill up new space to the point that it is completely full. Make sure
|
|
// that the scavenger does not undo the filling.
|
|
Heap* heap = new_space->heap();
|
|
Isolate* isolate = heap->isolate();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
AlwaysAllocateScope always_allocate(isolate);
|
|
intptr_t available = new_space->Capacity() - new_space->Size();
|
|
intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1;
|
|
for (intptr_t i = 0; i < number_of_fillers; i++) {
|
|
CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED)));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(GrowAndShrinkNewSpace) {
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
NewSpace* new_space = heap->new_space();
|
|
|
|
if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() ||
|
|
heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
|
|
// The max size cannot exceed the reserved size, since semispaces must be
|
|
// always within the reserved space. We can't test new space growing and
|
|
// shrinking if the reserved size is the same as the minimum (initial) size.
|
|
return;
|
|
}
|
|
|
|
// Explicitly growing should double the space capacity.
|
|
intptr_t old_capacity, new_capacity;
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Grow();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(2 * old_capacity == new_capacity);
|
|
|
|
old_capacity = new_space->TotalCapacity();
|
|
FillUpNewSpace(new_space);
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(old_capacity == new_capacity);
|
|
|
|
// Explicitly shrinking should not affect space capacity.
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Shrink();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(old_capacity == new_capacity);
|
|
|
|
// Let the scavenger empty the new space.
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
CHECK_LE(new_space->Size(), old_capacity);
|
|
|
|
// Explicitly shrinking should halve the space capacity.
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Shrink();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(old_capacity == 2 * new_capacity);
|
|
|
|
// Consecutive shrinking should not affect space capacity.
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Shrink();
|
|
new_space->Shrink();
|
|
new_space->Shrink();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(old_capacity == new_capacity);
|
|
}
|
|
|
|
|
|
TEST(CollectingAllAvailableGarbageShrinksNewSpace) {
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() ||
|
|
heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
|
|
// The max size cannot exceed the reserved size, since semispaces must be
|
|
// always within the reserved space. We can't test new space growing and
|
|
// shrinking if the reserved size is the same as the minimum (initial) size.
|
|
return;
|
|
}
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
NewSpace* new_space = heap->new_space();
|
|
intptr_t old_capacity, new_capacity;
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Grow();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(2 * old_capacity == new_capacity);
|
|
FillUpNewSpace(new_space);
|
|
heap->CollectAllAvailableGarbage();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK(old_capacity == new_capacity);
|
|
}
|
|
|
|
|
|
static int NumberOfGlobalObjects() {
|
|
int count = 0;
|
|
HeapIterator iterator(CcTest::heap());
|
|
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
|
|
if (obj->IsGlobalObject()) count++;
|
|
}
|
|
// Subtract two to compensate for the two global objects (not global
|
|
// JSObjects, of which there would only be one) that are part of the code stub
|
|
// context, which is always present.
|
|
return count - 2;
|
|
}
|
|
|
|
|
|
// Test that we don't embed maps from foreign contexts into
|
|
// optimized code.
|
|
TEST(LeakNativeContextViaMap) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(4, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = {x: 42}");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
|
|
ctx2->Enter();
|
|
ctx2->Global()->Set(v8_str("o"), v);
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() { return o.x; }"
|
|
"for (var i = 0; i < 10; ++i) f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(42, res->Int32Value());
|
|
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
|
|
ctx2->Exit();
|
|
v8::Local<v8::Context>::New(isolate, ctx1)->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
// Test that we don't embed functions from foreign contexts into
|
|
// optimized code.
|
|
TEST(LeakNativeContextViaFunction) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(4, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = function() { return 42; }");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
|
|
ctx2->Enter();
|
|
ctx2->Global()->Set(v8_str("o"), v);
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f(x) { return x(); }"
|
|
"for (var i = 0; i < 10; ++i) f(o);"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(o);");
|
|
CHECK_EQ(42, res->Int32Value());
|
|
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
|
|
ctx2->Exit();
|
|
ctx1->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
TEST(LeakNativeContextViaMapKeyed) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(4, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = [42, 43]");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
|
|
ctx2->Enter();
|
|
ctx2->Global()->Set(v8_str("o"), v);
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() { return o[0]; }"
|
|
"for (var i = 0; i < 10; ++i) f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(42, res->Int32Value());
|
|
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
|
|
ctx2->Exit();
|
|
ctx1->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
TEST(LeakNativeContextViaMapProto) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(4, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = { y: 42}");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
|
|
ctx2->Enter();
|
|
ctx2->Global()->Set(v8_str("o"), v);
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() {"
|
|
" var p = {x: 42};"
|
|
" p.__proto__ = o;"
|
|
" return p.x;"
|
|
"}"
|
|
"for (var i = 0; i < 10; ++i) f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(42, res->Int32Value());
|
|
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
|
|
ctx2->Exit();
|
|
ctx1->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::heap()->CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
TEST(InstanceOfStubWriteBarrier) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
#ifdef VERIFY_HEAP
|
|
i::FLAG_verify_heap = true;
|
|
#endif
|
|
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft()) return;
|
|
if (i::FLAG_force_marking_deque_overflows) return;
|
|
v8::HandleScope outer_scope(CcTest::isolate());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function foo () { }"
|
|
"function mkbar () { return new (new Function(\"\")) (); }"
|
|
"function f (x) { return (x instanceof foo); }"
|
|
"function g () { f(mkbar()); }"
|
|
"f(new foo()); f(new foo());"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(new foo()); g();");
|
|
}
|
|
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
marking->Start(Heap::kNoGCFlags);
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
|
|
CHECK(f->IsOptimized());
|
|
|
|
while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) &&
|
|
!marking->IsStopped()) {
|
|
// Discard any pending GC requests otherwise we will get GC when we enter
|
|
// code below.
|
|
marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
|
}
|
|
|
|
CHECK(marking->IsMarking());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Handle<v8::Object> global = CcTest::global();
|
|
v8::Handle<v8::Function> g =
|
|
v8::Handle<v8::Function>::Cast(global->Get(v8_str("g")));
|
|
g->Call(global, 0, NULL);
|
|
}
|
|
|
|
CcTest::heap()->incremental_marking()->set_should_hurry(true);
|
|
CcTest::heap()->CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
|
|
static int NumberOfProtoTransitions(Map* map) {
|
|
return TransitionArray::NumberOfPrototypeTransitions(
|
|
TransitionArray::GetPrototypeTransitions(map));
|
|
}
|
|
|
|
|
|
TEST(PrototypeTransitionClearing) {
|
|
if (FLAG_never_compact) return;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
CompileRun("var base = {};");
|
|
Handle<JSObject> baseObject =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Object>::Cast(
|
|
CcTest::global()->Get(v8_str("base"))));
|
|
int initialTransitions = NumberOfProtoTransitions(baseObject->map());
|
|
|
|
CompileRun(
|
|
"var live = [];"
|
|
"for (var i = 0; i < 10; i++) {"
|
|
" var object = {};"
|
|
" var prototype = {};"
|
|
" object.__proto__ = prototype;"
|
|
" if (i >= 3) live.push(object, prototype);"
|
|
"}");
|
|
|
|
// Verify that only dead prototype transitions are cleared.
|
|
CHECK_EQ(initialTransitions + 10,
|
|
NumberOfProtoTransitions(baseObject->map()));
|
|
CcTest::heap()->CollectAllGarbage();
|
|
const int transitions = 10 - 3;
|
|
CHECK_EQ(initialTransitions + transitions,
|
|
NumberOfProtoTransitions(baseObject->map()));
|
|
|
|
// Verify that prototype transitions array was compacted.
|
|
FixedArray* trans =
|
|
TransitionArray::GetPrototypeTransitions(baseObject->map());
|
|
for (int i = initialTransitions; i < initialTransitions + transitions; i++) {
|
|
int j = TransitionArray::kProtoTransitionHeaderSize + i;
|
|
CHECK(trans->get(j)->IsWeakCell());
|
|
CHECK(WeakCell::cast(trans->get(j))->value()->IsMap());
|
|
}
|
|
|
|
// Make sure next prototype is placed on an old-space evacuation candidate.
|
|
Handle<JSObject> prototype;
|
|
PagedSpace* space = CcTest::heap()->old_space();
|
|
{
|
|
AlwaysAllocateScope always_allocate(isolate);
|
|
SimulateFullSpace(space);
|
|
prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS,
|
|
Strength::WEAK, TENURED);
|
|
}
|
|
|
|
// Add a prototype on an evacuation candidate and verify that transition
|
|
// clearing correctly records slots in prototype transition array.
|
|
i::FLAG_always_compact = true;
|
|
Handle<Map> map(baseObject->map());
|
|
CHECK(!space->LastPage()->Contains(
|
|
TransitionArray::GetPrototypeTransitions(*map)->address()));
|
|
CHECK(space->LastPage()->Contains(prototype->address()));
|
|
}
|
|
|
|
|
|
TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
#ifdef VERIFY_HEAP
|
|
i::FLAG_verify_heap = true;
|
|
#endif
|
|
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft()) return;
|
|
v8::HandleScope outer_scope(CcTest::isolate());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function f () {"
|
|
" var s = 0;"
|
|
" for (var i = 0; i < 100; i++) s += i;"
|
|
" return s;"
|
|
"}"
|
|
"f(); f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
}
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->IsOptimized());
|
|
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
marking->Start(Heap::kNoGCFlags);
|
|
// The following calls will increment CcTest::heap()->global_ic_age().
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age());
|
|
CHECK_EQ(0, f->shared()->opt_count());
|
|
CHECK_EQ(0, f->shared()->code()->profiler_ticks());
|
|
}
|
|
|
|
|
|
TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
#ifdef VERIFY_HEAP
|
|
i::FLAG_verify_heap = true;
|
|
#endif
|
|
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft()) return;
|
|
v8::HandleScope outer_scope(CcTest::isolate());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function f () {"
|
|
" var s = 0;"
|
|
" for (var i = 0; i < 100; i++) s += i;"
|
|
" return s;"
|
|
"}"
|
|
"f(); f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
}
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->IsOptimized());
|
|
|
|
CcTest::heap()->incremental_marking()->Stop();
|
|
|
|
// The following two calls will increment CcTest::heap()->global_ic_age().
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age());
|
|
CHECK_EQ(0, f->shared()->opt_count());
|
|
CHECK_EQ(0, f->shared()->code()->profiler_ticks());
|
|
}
|
|
|
|
|
|
HEAP_TEST(GCFlags) {
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
|
|
heap->set_current_gc_flags(Heap::kNoGCFlags);
|
|
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags());
|
|
|
|
// Set the flags to check whether we appropriately resets them after the GC.
|
|
heap->set_current_gc_flags(Heap::kAbortIncrementalMarkingMask);
|
|
heap->CollectAllGarbage(Heap::kReduceMemoryFootprintMask);
|
|
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags());
|
|
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
|
|
IncrementalMarking* marking = heap->incremental_marking();
|
|
marking->Stop();
|
|
marking->Start(Heap::kReduceMemoryFootprintMask);
|
|
CHECK_NE(0, heap->current_gc_flags() & Heap::kReduceMemoryFootprintMask);
|
|
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
// NewSpace scavenges should not overwrite the flags.
|
|
CHECK_NE(0, heap->current_gc_flags() & Heap::kReduceMemoryFootprintMask);
|
|
|
|
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
|
|
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags());
|
|
}
|
|
|
|
|
|
TEST(IdleNotificationFinishMarking) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
SimulateFullSpace(CcTest::heap()->old_space());
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
marking->Start(Heap::kNoGCFlags);
|
|
|
|
CHECK_EQ(CcTest::heap()->gc_count(), 0);
|
|
|
|
// TODO(hpayer): We cannot write proper unit test right now for heap.
|
|
// The ideal test would call kMaxIdleMarkingDelayCounter to test the
|
|
// marking delay counter.
|
|
|
|
// Perform a huge incremental marking step but don't complete marking.
|
|
intptr_t bytes_processed = 0;
|
|
do {
|
|
bytes_processed =
|
|
marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
IncrementalMarking::FORCE_MARKING,
|
|
IncrementalMarking::DO_NOT_FORCE_COMPLETION);
|
|
CHECK(!marking->IsIdleMarkingDelayCounterLimitReached());
|
|
} while (bytes_processed);
|
|
|
|
// The next invocations of incremental marking are not going to complete
|
|
// marking
|
|
// since the completion threshold is not reached
|
|
for (size_t i = 0; i < IncrementalMarking::kMaxIdleMarkingDelayCounter - 2;
|
|
i++) {
|
|
marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
IncrementalMarking::FORCE_MARKING,
|
|
IncrementalMarking::DO_NOT_FORCE_COMPLETION);
|
|
CHECK(!marking->IsIdleMarkingDelayCounterLimitReached());
|
|
}
|
|
|
|
marking->SetWeakClosureWasOverApproximatedForTesting(true);
|
|
|
|
// The next idle notification has to finish incremental marking.
|
|
const double kLongIdleTime = 1000.0;
|
|
CcTest::isolate()->IdleNotificationDeadline(
|
|
(v8::base::TimeTicks::HighResolutionNow().ToInternalValue() /
|
|
static_cast<double>(v8::base::Time::kMicrosecondsPerSecond)) +
|
|
kLongIdleTime);
|
|
CHECK_EQ(CcTest::heap()->gc_count(), 1);
|
|
}
|
|
|
|
|
|
// Test that HAllocateObject will always return an object in new-space.
|
|
TEST(OptimizedAllocationAlwaysInNewSpace) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
SimulateFullSpace(CcTest::heap()->new_space());
|
|
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function c(x) {"
|
|
" this.x = x;"
|
|
" for (var i = 0; i < 32; i++) {"
|
|
" this['x' + i] = x;"
|
|
" }"
|
|
"}"
|
|
"function f(x) { return new c(x); };"
|
|
"f(1); f(2); f(3);"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(4);");
|
|
CHECK_EQ(
|
|
4, res.As<v8::Object>()->GetRealNamedProperty(v8_str("x"))->Int32Value());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InNewSpace(*o));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringAllocationFolding) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array();"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[{}], [1.1]];"
|
|
" }"
|
|
" return elements[number_elements-1]"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
v8::Local<v8::Value> int_array = v8::Object::Cast(*res)->Get(v8_str("0"));
|
|
Handle<JSObject> int_array_handle =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array));
|
|
v8::Local<v8::Value> double_array = v8::Object::Cast(*res)->Get(v8_str("1"));
|
|
Handle<JSObject> double_array_handle =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array));
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringObjectArrayLiterals) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [{}, {}, {}];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(o->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringMixedInObjectProperties) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0);
|
|
FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1);
|
|
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1)));
|
|
if (!o->IsUnboxedDoubleField(idx2)) {
|
|
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2)));
|
|
} else {
|
|
CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2));
|
|
}
|
|
|
|
JSObject* inner_object =
|
|
reinterpret_cast<JSObject*>(o->RawFastPropertyAt(idx1));
|
|
CHECK(CcTest::heap()->InOldSpace(inner_object));
|
|
if (!inner_object->IsUnboxedDoubleField(idx1)) {
|
|
CHECK(CcTest::heap()->InOldSpace(inner_object->RawFastPropertyAt(idx1)));
|
|
} else {
|
|
CHECK_EQ(2.2, inner_object->RawFastDoublePropertyAt(idx1));
|
|
}
|
|
CHECK(CcTest::heap()->InOldSpace(inner_object->RawFastPropertyAt(idx2)));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringDoubleArrayProperties) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = {a: 1.1, b: 2.2};"
|
|
" }"
|
|
" return elements[i - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(o->properties()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringdoubleArrayLiterals) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [1.1, 2.2, 3.3];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(o->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringNestedMixedArrayLiterals) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = 100;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
v8::Local<v8::Value> int_array = v8::Object::Cast(*res)->Get(v8_str("0"));
|
|
Handle<JSObject> int_array_handle =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array));
|
|
v8::Local<v8::Value> double_array = v8::Object::Cast(*res)->Get(v8_str("1"));
|
|
Handle<JSObject> double_array_handle =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array));
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringNestedObjectLiterals) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[{}, {}, {}],[{}, {}, {}]];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
v8::Local<v8::Value> int_array_1 = v8::Object::Cast(*res)->Get(v8_str("0"));
|
|
Handle<JSObject> int_array_handle_1 =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array_1));
|
|
v8::Local<v8::Value> int_array_2 = v8::Object::Cast(*res)->Get(v8_str("1"));
|
|
Handle<JSObject> int_array_handle_2 =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array_2));
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_1));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle_1->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_2));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle_2->elements()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringNestedDoubleLiterals) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
v8::Local<v8::Value> double_array_1 =
|
|
v8::Object::Cast(*res)->Get(v8_str("0"));
|
|
Handle<JSObject> double_array_handle_1 =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array_1));
|
|
v8::Local<v8::Value> double_array_2 =
|
|
v8::Object::Cast(*res)->Get(v8_str("1"));
|
|
Handle<JSObject> double_array_handle_2 =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array_2));
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_1));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle_1->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_2));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle_2->elements()));
|
|
}
|
|
|
|
|
|
// Make sure pretenuring feedback is gathered for constructed objects as well
|
|
// as for literals.
|
|
TEST(OptimizedPretenuringConstructorCalls) {
|
|
if (!i::FLAG_pretenuring_call_new) {
|
|
// FLAG_pretenuring_call_new needs to be synced with the snapshot.
|
|
return;
|
|
}
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
// Call new is doing slack tracking for the first
|
|
// JSFunction::kGenerousAllocationCount allocations, and we can't find
|
|
// mementos during that time.
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function foo() {"
|
|
" this.a = 3;"
|
|
" this.b = {};"
|
|
"}"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = new foo();"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated +
|
|
JSFunction::kGenerousAllocationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringCallNew) {
|
|
if (!i::FLAG_pretenuring_call_new) {
|
|
// FLAG_pretenuring_call_new needs to be synced with the snapshot.
|
|
return;
|
|
}
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
// Call new is doing slack tracking for the first
|
|
// JSFunction::kGenerousAllocationCount allocations, and we can't find
|
|
// mementos during that time.
|
|
i::SNPrintF(
|
|
source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function g() { this.a = 0; }"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = new g();"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
AllocationSite::kPretenureMinimumCreated +
|
|
JSFunction::kGenerousAllocationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.start());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
}
|
|
|
|
|
|
// Test regular array literals allocation.
|
|
TEST(OptimizedAllocationArrayLiterals) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
|
|
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() {"
|
|
" var numbers = new Array(1, 2, 3);"
|
|
" numbers[0] = 3.14;"
|
|
" return numbers;"
|
|
"};"
|
|
"f(); f(); f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(static_cast<int>(3.14),
|
|
v8::Object::Cast(*res)->Get(v8_str("0"))->Int32Value());
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
|
|
CHECK(CcTest::heap()->InNewSpace(o->elements()));
|
|
}
|
|
|
|
|
|
static int CountMapTransitions(Map* map) {
|
|
return TransitionArray::NumberOfTransitions(map->raw_transitions());
|
|
}
|
|
|
|
|
|
// Test that map transitions are cleared and maps are collected with
|
|
// incremental marking as well.
|
|
TEST(Regress1465) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_trace_incremental_marking = true;
|
|
i::FLAG_retain_maps_for_n_gc = 0;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 256;
|
|
|
|
CompileRun("function F() {}");
|
|
{
|
|
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
|
|
for (int i = 0; i < transitions_count; i++) {
|
|
EmbeddedVector<char, 64> buffer;
|
|
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
|
|
CompileRun(buffer.start());
|
|
}
|
|
CompileRun("var root = new F;");
|
|
}
|
|
|
|
Handle<JSObject> root =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Object>::Cast(
|
|
CcTest::global()->Get(v8_str("root"))));
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(root->map());
|
|
CompileRun("%DebugPrint(root);");
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after = CountMapTransitions(root->map());
|
|
CompileRun("%DebugPrint(root);");
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
static void AddTransitions(int transitions_count) {
|
|
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
|
|
for (int i = 0; i < transitions_count; i++) {
|
|
EmbeddedVector<char, 64> buffer;
|
|
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
|
|
CompileRun(buffer.start());
|
|
}
|
|
}
|
|
|
|
|
|
static Handle<JSObject> GetByName(const char* name) {
|
|
return v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Object>::Cast(
|
|
CcTest::global()->Get(v8_str(name))));
|
|
}
|
|
|
|
|
|
static void AddPropertyTo(
|
|
int gc_count, Handle<JSObject> object, const char* property_name) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Handle<String> prop_name = factory->InternalizeUtf8String(property_name);
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
i::FLAG_gc_interval = gc_count;
|
|
i::FLAG_gc_global = true;
|
|
i::FLAG_retain_maps_for_n_gc = 0;
|
|
CcTest::heap()->set_allocation_timeout(gc_count);
|
|
JSReceiver::SetProperty(object, prop_name, twenty_three, SLOPPY).Check();
|
|
}
|
|
|
|
|
|
TEST(TransitionArrayShrinksDuringAllocToZero) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 10;
|
|
CompileRun("function F() { }");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
// Get rid of o
|
|
CompileRun("o = new F;"
|
|
"root = new F");
|
|
root = GetByName("root");
|
|
AddPropertyTo(2, root, "funny");
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE);
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after = CountMapTransitions(
|
|
Map::cast(root->map()->GetBackPointer()));
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
|
|
|
|
TEST(TransitionArrayShrinksDuringAllocToOne) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 10;
|
|
CompileRun("function F() {}");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
root = GetByName("root");
|
|
AddPropertyTo(2, root, "funny");
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE);
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after = CountMapTransitions(
|
|
Map::cast(root->map()->GetBackPointer()));
|
|
CHECK_EQ(2, transitions_after);
|
|
}
|
|
|
|
|
|
TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 10;
|
|
CompileRun("function F() {}");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
root = GetByName("root");
|
|
AddPropertyTo(0, root, "prop9");
|
|
CcTest::i_isolate()->heap()->CollectGarbage(OLD_SPACE);
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after = CountMapTransitions(
|
|
Map::cast(root->map()->GetBackPointer()));
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
|
|
|
|
TEST(TransitionArraySimpleToFull) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 1;
|
|
CompileRun("function F() {}");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
CompileRun("o = new F;"
|
|
"root = new F");
|
|
root = GetByName("root");
|
|
DCHECK(TransitionArray::IsSimpleTransition(root->map()->raw_transitions()));
|
|
AddPropertyTo(2, root, "happy");
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after = CountMapTransitions(
|
|
Map::cast(root->map()->GetBackPointer()));
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
TEST(Regress2143a) {
|
|
i::FLAG_incremental_marking = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Prepare a map transition from the root object together with a yet
|
|
// untransitioned root object.
|
|
CompileRun("var root = new Object;"
|
|
"root.foo = 0;"
|
|
"root = new Object;");
|
|
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
|
|
// Compile a StoreIC that performs the prepared map transition. This
|
|
// will restart incremental marking and should make sure the root is
|
|
// marked grey again.
|
|
CompileRun("function f(o) {"
|
|
" o.foo = 0;"
|
|
"}"
|
|
"f(new Object);"
|
|
"f(root);");
|
|
|
|
// This bug only triggers with aggressive IC clearing.
|
|
CcTest::heap()->AgeInlineCaches();
|
|
|
|
// Explicitly request GC to perform final marking step and sweeping.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
Handle<JSObject> root =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Object>::Cast(
|
|
CcTest::global()->Get(v8_str("root"))));
|
|
|
|
// The root object should be in a sane state.
|
|
CHECK(root->IsJSObject());
|
|
CHECK(root->map()->IsMap());
|
|
}
|
|
|
|
|
|
TEST(Regress2143b) {
|
|
i::FLAG_incremental_marking = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Prepare a map transition from the root object together with a yet
|
|
// untransitioned root object.
|
|
CompileRun("var root = new Object;"
|
|
"root.foo = 0;"
|
|
"root = new Object;");
|
|
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
|
|
// Compile an optimized LStoreNamedField that performs the prepared
|
|
// map transition. This will restart incremental marking and should
|
|
// make sure the root is marked grey again.
|
|
CompileRun("function f(o) {"
|
|
" o.foo = 0;"
|
|
"}"
|
|
"f(new Object);"
|
|
"f(new Object);"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(root);"
|
|
"%DeoptimizeFunction(f);");
|
|
|
|
// This bug only triggers with aggressive IC clearing.
|
|
CcTest::heap()->AgeInlineCaches();
|
|
|
|
// Explicitly request GC to perform final marking step and sweeping.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
Handle<JSObject> root =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Object>::Cast(
|
|
CcTest::global()->Get(v8_str("root"))));
|
|
|
|
// The root object should be in a sane state.
|
|
CHECK(root->IsJSObject());
|
|
CHECK(root->map()->IsMap());
|
|
}
|
|
|
|
|
|
TEST(ReleaseOverReservedPages) {
|
|
if (FLAG_never_compact) return;
|
|
i::FLAG_trace_gc = true;
|
|
// The optimizer can allocate stuff, messing up the test.
|
|
i::FLAG_crankshaft = false;
|
|
i::FLAG_always_opt = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int number_of_test_pages = 20;
|
|
|
|
// Prepare many pages with low live-bytes count.
|
|
PagedSpace* old_space = heap->old_space();
|
|
CHECK_EQ(1, old_space->CountTotalPages());
|
|
for (int i = 0; i < number_of_test_pages; i++) {
|
|
AlwaysAllocateScope always_allocate(isolate);
|
|
SimulateFullSpace(old_space);
|
|
factory->NewFixedArray(1, TENURED);
|
|
}
|
|
CHECK_EQ(number_of_test_pages + 1, old_space->CountTotalPages());
|
|
|
|
// Triggering one GC will cause a lot of garbage to be discovered but
|
|
// even spread across all allocated pages.
|
|
heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
|
|
"triggered for preparation");
|
|
CHECK_GE(number_of_test_pages + 1, old_space->CountTotalPages());
|
|
|
|
// Triggering subsequent GCs should cause at least half of the pages
|
|
// to be released to the OS after at most two cycles.
|
|
heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
|
|
"triggered by test 1");
|
|
CHECK_GE(number_of_test_pages + 1, old_space->CountTotalPages());
|
|
heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
|
|
"triggered by test 2");
|
|
CHECK_GE(number_of_test_pages + 1, old_space->CountTotalPages() * 2);
|
|
|
|
// Triggering a last-resort GC should cause all pages to be released to the
|
|
// OS so that other processes can seize the memory. If we get a failure here
|
|
// where there are 2 pages left instead of 1, then we should increase the
|
|
// size of the first page a little in SizeOfFirstPage in spaces.cc. The
|
|
// first page should be small in order to reduce memory used when the VM
|
|
// boots, but if the 20 small arrays don't fit on the first page then that's
|
|
// an indication that it is too small.
|
|
heap->CollectAllAvailableGarbage("triggered really hard");
|
|
CHECK_EQ(1, old_space->CountTotalPages());
|
|
}
|
|
|
|
static int forced_gc_counter = 0;
|
|
|
|
void MockUseCounterCallback(v8::Isolate* isolate,
|
|
v8::Isolate::UseCounterFeature feature) {
|
|
isolate->GetCallingContext();
|
|
if (feature == v8::Isolate::kForcedGC) {
|
|
forced_gc_counter++;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(CountForcedGC) {
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
isolate->SetUseCounterCallback(MockUseCounterCallback);
|
|
|
|
forced_gc_counter = 0;
|
|
const char* source = "gc();";
|
|
CompileRun(source);
|
|
CHECK_GT(forced_gc_counter, 0);
|
|
}
|
|
|
|
|
|
TEST(Regress2237) {
|
|
i::FLAG_stress_compaction = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Handle<String> slice(CcTest::heap()->empty_string());
|
|
|
|
{
|
|
// Generate a parent that lives in new-space.
|
|
v8::HandleScope inner_scope(CcTest::isolate());
|
|
const char* c = "This text is long enough to trigger sliced strings.";
|
|
Handle<String> s = factory->NewStringFromAsciiChecked(c);
|
|
CHECK(s->IsSeqOneByteString());
|
|
CHECK(CcTest::heap()->InNewSpace(*s));
|
|
|
|
// Generate a sliced string that is based on the above parent and
|
|
// lives in old-space.
|
|
SimulateFullSpace(CcTest::heap()->new_space());
|
|
AlwaysAllocateScope always_allocate(isolate);
|
|
Handle<String> t = factory->NewProperSubString(s, 5, 35);
|
|
CHECK(t->IsSlicedString());
|
|
CHECK(!CcTest::heap()->InNewSpace(*t));
|
|
*slice.location() = *t.location();
|
|
}
|
|
|
|
CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString());
|
|
}
|
|
|
|
|
|
#ifdef OBJECT_PRINT
|
|
TEST(PrintSharedFunctionInfo) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* source = "f = function() { return 987654321; }\n"
|
|
"g = function() { return 123456789; }\n";
|
|
CompileRun(source);
|
|
Handle<JSFunction> g =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("g"))));
|
|
|
|
OFStream os(stdout);
|
|
g->shared()->Print(os);
|
|
os << std::endl;
|
|
}
|
|
#endif // OBJECT_PRINT
|
|
|
|
|
|
TEST(IncrementalMarkingPreservesMonomorphicCallIC) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> fun1, fun2;
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() {};");
|
|
fun1 = env->Global()->Get(v8_str("fun"));
|
|
}
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() {};");
|
|
fun2 = env->Global()->Get(v8_str("fun"));
|
|
}
|
|
|
|
// Prepare function f that contains type feedback for closures
|
|
// originating from two different native contexts.
|
|
CcTest::global()->Set(v8_str("fun1"), fun1);
|
|
CcTest::global()->Set(v8_str("fun2"), fun2);
|
|
CompileRun("function f(a, b) { a(); b(); } f(fun1, fun2);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
|
|
Handle<TypeFeedbackVector> feedback_vector(f->shared()->feedback_vector());
|
|
|
|
int expected_slots = 2;
|
|
CHECK_EQ(expected_slots, feedback_vector->ICSlots());
|
|
int slot1 = 0;
|
|
int slot2 = 1;
|
|
CHECK(feedback_vector->Get(FeedbackVectorICSlot(slot1))->IsWeakCell());
|
|
CHECK(feedback_vector->Get(FeedbackVectorICSlot(slot2))->IsWeakCell());
|
|
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
CHECK(!WeakCell::cast(feedback_vector->Get(FeedbackVectorICSlot(slot1)))
|
|
->cleared());
|
|
CHECK(!WeakCell::cast(feedback_vector->Get(FeedbackVectorICSlot(slot2)))
|
|
->cleared());
|
|
}
|
|
|
|
|
|
static Code* FindFirstIC(Code* code, Code::Kind kind) {
|
|
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
|
|
RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) |
|
|
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
|
|
for (RelocIterator it(code, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Code* target = Code::GetCodeFromTargetAddress(info->target_address());
|
|
if (target->is_inline_cache_stub() && target->kind() == kind) {
|
|
return target;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static void CheckVectorIC(Handle<JSFunction> f, int ic_slot_index,
|
|
InlineCacheState desired_state) {
|
|
Handle<TypeFeedbackVector> vector =
|
|
Handle<TypeFeedbackVector>(f->shared()->feedback_vector());
|
|
FeedbackVectorICSlot slot(ic_slot_index);
|
|
if (vector->GetKind(slot) == Code::LOAD_IC) {
|
|
LoadICNexus nexus(vector, slot);
|
|
CHECK(nexus.StateFromFeedback() == desired_state);
|
|
} else {
|
|
CHECK(vector->GetKind(slot) == Code::KEYED_LOAD_IC);
|
|
KeyedLoadICNexus nexus(vector, slot);
|
|
CHECK(nexus.StateFromFeedback() == desired_state);
|
|
}
|
|
}
|
|
|
|
|
|
static void CheckVectorICCleared(Handle<JSFunction> f, int ic_slot_index) {
|
|
Handle<TypeFeedbackVector> vector =
|
|
Handle<TypeFeedbackVector>(f->shared()->feedback_vector());
|
|
FeedbackVectorICSlot slot(ic_slot_index);
|
|
LoadICNexus nexus(vector, slot);
|
|
CHECK(IC::IsCleared(&nexus));
|
|
}
|
|
|
|
|
|
TEST(ICInBuiltInIsClearedAppropriately) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
Handle<JSFunction> apply;
|
|
{
|
|
LocalContext env;
|
|
v8::Local<v8::Value> res = CompileRun("Function.apply");
|
|
Handle<JSObject> maybe_apply =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
|
|
apply = Handle<JSFunction>::cast(maybe_apply);
|
|
TypeFeedbackVector* vector = apply->shared()->feedback_vector();
|
|
CHECK(vector->ICSlots() == 1);
|
|
CheckVectorIC(apply, 0, UNINITIALIZED);
|
|
CompileRun(
|
|
"function b(a1, a2, a3) { return a1 + a2 + a3; }"
|
|
"function fun(bar) { bar.apply({}, [1, 2, 3]); };"
|
|
"fun(b); fun(b)");
|
|
CheckVectorIC(apply, 0, MONOMORPHIC);
|
|
}
|
|
|
|
// Fire context dispose notification.
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
// The IC in apply has been cleared, ready to learn again.
|
|
CheckVectorIC(apply, 0, PREMONOMORPHIC);
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingPreservesMonomorphicConstructor) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Prepare function f that contains a monomorphic IC for object
|
|
// originating from the same native context.
|
|
CompileRun(
|
|
"function fun() { this.x = 1; };"
|
|
"function f(o) { return new o(); } f(fun); f(fun);");
|
|
Handle<JSFunction> f = v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
|
|
|
|
|
|
Handle<TypeFeedbackVector> vector(f->shared()->feedback_vector());
|
|
CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell());
|
|
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell());
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingClearsMonomorphicConstructor) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> fun1;
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 1; };");
|
|
fun1 = env->Global()->Get(v8_str("fun"));
|
|
}
|
|
|
|
// Prepare function f that contains a monomorphic constructor for object
|
|
// originating from a different native context.
|
|
CcTest::global()->Set(v8_str("fun1"), fun1);
|
|
CompileRun(
|
|
"function fun() { this.x = 1; };"
|
|
"function f(o) { return new o(); } f(fun1); f(fun1);");
|
|
Handle<JSFunction> f = v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
|
|
|
|
|
|
Handle<TypeFeedbackVector> vector(f->shared()->feedback_vector());
|
|
CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell());
|
|
|
|
// Fire context dispose notification.
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
CHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(isolate),
|
|
vector->Get(FeedbackVectorSlot(0)));
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingPreservesMonomorphicIC) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Prepare function f that contains a monomorphic IC for object
|
|
// originating from the same native context.
|
|
CompileRun("function fun() { this.x = 1; }; var obj = new fun();"
|
|
"function f(o) { return o.x; } f(obj); f(obj);");
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
|
|
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorIC(f, 0, MONOMORPHIC);
|
|
CHECK(ic_before->ic_state() == DEFAULT);
|
|
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorIC(f, 0, MONOMORPHIC);
|
|
CHECK(ic_after->ic_state() == DEFAULT);
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingClearsMonomorphicIC) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> obj1;
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
|
|
obj1 = env->Global()->Get(v8_str("obj"));
|
|
}
|
|
|
|
// Prepare function f that contains a monomorphic IC for object
|
|
// originating from a different native context.
|
|
CcTest::global()->Set(v8_str("obj1"), obj1);
|
|
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1);");
|
|
Handle<JSFunction> f = v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
|
|
|
|
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorIC(f, 0, MONOMORPHIC);
|
|
CHECK(ic_before->ic_state() == DEFAULT);
|
|
|
|
// Fire context dispose notification.
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorICCleared(f, 0);
|
|
CHECK(ic_after->ic_state() == DEFAULT);
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingPreservesPolymorphicIC) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> obj1, obj2;
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
|
|
obj1 = env->Global()->Get(v8_str("obj"));
|
|
}
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
|
|
obj2 = env->Global()->Get(v8_str("obj"));
|
|
}
|
|
|
|
// Prepare function f that contains a polymorphic IC for objects
|
|
// originating from two different native contexts.
|
|
CcTest::global()->Set(v8_str("obj1"), obj1);
|
|
CcTest::global()->Set(v8_str("obj2"), obj2);
|
|
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);");
|
|
Handle<JSFunction> f = v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
|
|
|
|
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
CHECK(ic_before->ic_state() == DEFAULT);
|
|
|
|
// Fire context dispose notification.
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
CHECK(ic_after->ic_state() == DEFAULT);
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingClearsPolymorphicIC) {
|
|
if (i::FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> obj1, obj2;
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
|
|
obj1 = env->Global()->Get(v8_str("obj"));
|
|
}
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
|
|
obj2 = env->Global()->Get(v8_str("obj"));
|
|
}
|
|
|
|
// Prepare function f that contains a polymorphic IC for objects
|
|
// originating from two different native contexts.
|
|
CcTest::global()->Set(v8_str("obj1"), obj1);
|
|
CcTest::global()->Set(v8_str("obj2"), obj2);
|
|
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);");
|
|
Handle<JSFunction> f = v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
|
|
|
|
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
CHECK(ic_before->ic_state() == DEFAULT);
|
|
|
|
// Fire context dispose notification.
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
CheckVectorICCleared(f, 0);
|
|
CHECK(ic_before->ic_state() == DEFAULT);
|
|
}
|
|
|
|
|
|
class SourceResource : public v8::String::ExternalOneByteStringResource {
|
|
public:
|
|
explicit SourceResource(const char* data)
|
|
: data_(data), length_(strlen(data)) { }
|
|
|
|
virtual void Dispose() {
|
|
i::DeleteArray(data_);
|
|
data_ = NULL;
|
|
}
|
|
|
|
const char* data() const { return data_; }
|
|
|
|
size_t length() const { return length_; }
|
|
|
|
bool IsDisposed() { return data_ == NULL; }
|
|
|
|
private:
|
|
const char* data_;
|
|
size_t length_;
|
|
};
|
|
|
|
|
|
void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source,
|
|
const char* accessor) {
|
|
// Test that the data retained by the Error.stack accessor is released
|
|
// after the first time the accessor is fired. We use external string
|
|
// to check whether the data is being released since the external string
|
|
// resource's callback is fired when the external string is GC'ed.
|
|
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
|
|
v8::HandleScope scope(isolate);
|
|
SourceResource* resource = new SourceResource(i::StrDup(source));
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
v8::Handle<v8::String> source_string =
|
|
v8::String::NewExternal(isolate, resource);
|
|
i_isolate->heap()->CollectAllAvailableGarbage();
|
|
v8::Script::Compile(source_string)->Run();
|
|
CHECK(!resource->IsDisposed());
|
|
}
|
|
// i_isolate->heap()->CollectAllAvailableGarbage();
|
|
CHECK(!resource->IsDisposed());
|
|
|
|
CompileRun(accessor);
|
|
i_isolate->heap()->CollectAllAvailableGarbage();
|
|
|
|
// External source has been released.
|
|
CHECK(resource->IsDisposed());
|
|
delete resource;
|
|
}
|
|
|
|
|
|
UNINITIALIZED_TEST(ReleaseStackTraceData) {
|
|
if (i::FLAG_always_opt) {
|
|
// TODO(ulan): Remove this once the memory leak via code_next_link is fixed.
|
|
// See: https://codereview.chromium.org/181833004/
|
|
return;
|
|
}
|
|
FLAG_use_ic = false; // ICs retain objects.
|
|
FLAG_concurrent_recompilation = false;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
{
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
static const char* source1 = "var error = null; "
|
|
/* Normal Error */ "try { "
|
|
" throw new Error(); "
|
|
"} catch (e) { "
|
|
" error = e; "
|
|
"} ";
|
|
static const char* source2 = "var error = null; "
|
|
/* Stack overflow */ "try { "
|
|
" (function f() { f(); })(); "
|
|
"} catch (e) { "
|
|
" error = e; "
|
|
"} ";
|
|
static const char* source3 = "var error = null; "
|
|
/* Normal Error */ "try { "
|
|
/* as prototype */ " throw new Error(); "
|
|
"} catch (e) { "
|
|
" error = {}; "
|
|
" error.__proto__ = e; "
|
|
"} ";
|
|
static const char* source4 = "var error = null; "
|
|
/* Stack overflow */ "try { "
|
|
/* as prototype */ " (function f() { f(); })(); "
|
|
"} catch (e) { "
|
|
" error = {}; "
|
|
" error.__proto__ = e; "
|
|
"} ";
|
|
static const char* getter = "error.stack";
|
|
static const char* setter = "error.stack = 0";
|
|
|
|
ReleaseStackTraceDataTest(isolate, source1, setter);
|
|
ReleaseStackTraceDataTest(isolate, source2, setter);
|
|
// We do not test source3 and source4 with setter, since the setter is
|
|
// supposed to (untypically) write to the receiver, not the holder. This is
|
|
// to emulate the behavior of a data property.
|
|
|
|
ReleaseStackTraceDataTest(isolate, source1, getter);
|
|
ReleaseStackTraceDataTest(isolate, source2, getter);
|
|
ReleaseStackTraceDataTest(isolate, source3, getter);
|
|
ReleaseStackTraceDataTest(isolate, source4, getter);
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
|
|
TEST(Regress159140) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Perform one initial GC to enable code flushing.
|
|
heap->CollectAllGarbage();
|
|
|
|
// Prepare several closures that are all eligible for code flushing
|
|
// because all reachable ones are not optimized. Make sure that the
|
|
// optimized code object is directly reachable through a handle so
|
|
// that it is marked black during incremental marking.
|
|
Handle<Code> code;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function h(x) {}"
|
|
"function mkClosure() {"
|
|
" return function(x) { return x + 1; };"
|
|
"}"
|
|
"var f = mkClosure();"
|
|
"var g = mkClosure();"
|
|
"f(1); f(2);"
|
|
"g(1); g(2);"
|
|
"h(1); h(2);"
|
|
"%OptimizeFunctionOnNextCall(f); f(3);"
|
|
"%OptimizeFunctionOnNextCall(h); h(3);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->is_compiled());
|
|
CompileRun("f = null;");
|
|
|
|
Handle<JSFunction> g =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("g"))));
|
|
CHECK(g->is_compiled());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
g->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
code = inner_scope.CloseAndEscape(Handle<Code>(f->code()));
|
|
}
|
|
|
|
// Simulate incremental marking so that the functions are enqueued as
|
|
// code flushing candidates. Then optimize one function. Finally
|
|
// finish the GC to complete code flushing.
|
|
SimulateIncrementalMarking(heap);
|
|
CompileRun("%OptimizeFunctionOnNextCall(g); g(3);");
|
|
heap->CollectAllGarbage();
|
|
|
|
// Unoptimized code is missing and the deoptimizer will go ballistic.
|
|
CompileRun("g('bozo');");
|
|
}
|
|
|
|
|
|
TEST(Regress165495) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Perform one initial GC to enable code flushing.
|
|
heap->CollectAllGarbage();
|
|
|
|
// Prepare an optimized closure that the optimized code map will get
|
|
// populated. Then age the unoptimized code to trigger code flushing
|
|
// but make sure the optimized code is unreachable.
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function mkClosure() {"
|
|
" return function(x) { return x + 1; };"
|
|
"}"
|
|
"var f = mkClosure();"
|
|
"f(1); f(2);"
|
|
"%OptimizeFunctionOnNextCall(f); f(3);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->is_compiled());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
CompileRun("f = null;");
|
|
}
|
|
|
|
// Simulate incremental marking so that unoptimized code is flushed
|
|
// even though it still is cached in the optimized code map.
|
|
SimulateIncrementalMarking(heap);
|
|
heap->CollectAllGarbage();
|
|
|
|
// Make a new closure that will get code installed from the code map.
|
|
// Unoptimized code is missing and the deoptimizer will go ballistic.
|
|
CompileRun("var g = mkClosure(); g('bozo');");
|
|
}
|
|
|
|
|
|
TEST(Regress169209) {
|
|
i::FLAG_stress_compaction = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Perform one initial GC to enable code flushing.
|
|
heap->CollectAllGarbage();
|
|
|
|
// Prepare a shared function info eligible for code flushing for which
|
|
// the unoptimized code will be replaced during optimization.
|
|
Handle<SharedFunctionInfo> shared1;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function f() { return 'foobar'; }"
|
|
"function g(x) { if (x) f(); }"
|
|
"f();"
|
|
"g(false);"
|
|
"g(false);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->is_compiled());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
shared1 = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
|
|
}
|
|
|
|
// Prepare a shared function info eligible for code flushing that will
|
|
// represent the dangling tail of the candidate list.
|
|
Handle<SharedFunctionInfo> shared2;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function flushMe() { return 0; }"
|
|
"flushMe(1);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("flushMe"))));
|
|
CHECK(f->is_compiled());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
shared2 = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
|
|
}
|
|
|
|
// Simulate incremental marking and collect code flushing candidates.
|
|
SimulateIncrementalMarking(heap);
|
|
CHECK(shared1->code()->gc_metadata() != NULL);
|
|
|
|
// Optimize function and make sure the unoptimized code is replaced.
|
|
#ifdef DEBUG
|
|
FLAG_stop_at = "f";
|
|
#endif
|
|
CompileRun("%OptimizeFunctionOnNextCall(g);"
|
|
"g(false);");
|
|
|
|
// Finish garbage collection cycle.
|
|
heap->CollectAllGarbage();
|
|
CHECK(shared1->code()->gc_metadata() == NULL);
|
|
}
|
|
|
|
|
|
TEST(Regress169928) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_crankshaft = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Some flags turn Scavenge collections into Mark-sweep collections
|
|
// and hence are incompatible with this test case.
|
|
if (FLAG_gc_global || FLAG_stress_compaction) return;
|
|
|
|
// Prepare the environment
|
|
CompileRun("function fastliteralcase(literal, value) {"
|
|
" literal[0] = value;"
|
|
" return literal;"
|
|
"}"
|
|
"function get_standard_literal() {"
|
|
" var literal = [1, 2, 3];"
|
|
" return literal;"
|
|
"}"
|
|
"obj = fastliteralcase(get_standard_literal(), 1);"
|
|
"obj = fastliteralcase(get_standard_literal(), 1.5);"
|
|
"obj = fastliteralcase(get_standard_literal(), 2);");
|
|
|
|
// prepare the heap
|
|
v8::Local<v8::String> mote_code_string =
|
|
v8_str("fastliteralcase(mote, 2.5);");
|
|
|
|
v8::Local<v8::String> array_name = v8_str("mote");
|
|
CcTest::global()->Set(array_name, v8::Int32::New(CcTest::isolate(), 0));
|
|
|
|
// First make sure we flip spaces
|
|
CcTest::heap()->CollectGarbage(NEW_SPACE);
|
|
|
|
// Allocate the object.
|
|
Handle<FixedArray> array_data = factory->NewFixedArray(2, NOT_TENURED);
|
|
array_data->set(0, Smi::FromInt(1));
|
|
array_data->set(1, Smi::FromInt(2));
|
|
|
|
AllocateAllButNBytes(CcTest::heap()->new_space(),
|
|
JSArray::kSize + AllocationMemento::kSize +
|
|
kPointerSize);
|
|
|
|
Handle<JSArray> array =
|
|
factory->NewJSArrayWithElements(array_data, FAST_SMI_ELEMENTS);
|
|
|
|
CHECK_EQ(Smi::FromInt(2), array->length());
|
|
CHECK(array->HasFastSmiOrObjectElements());
|
|
|
|
// We need filler the size of AllocationMemento object, plus an extra
|
|
// fill pointer value.
|
|
HeapObject* obj = NULL;
|
|
AllocationResult allocation =
|
|
CcTest::heap()->new_space()->AllocateRawUnaligned(
|
|
AllocationMemento::kSize + kPointerSize);
|
|
CHECK(allocation.To(&obj));
|
|
Address addr_obj = obj->address();
|
|
CcTest::heap()->CreateFillerObjectAt(
|
|
addr_obj, AllocationMemento::kSize + kPointerSize);
|
|
|
|
// Give the array a name, making sure not to allocate strings.
|
|
v8::Handle<v8::Object> array_obj = v8::Utils::ToLocal(array);
|
|
CcTest::global()->Set(array_name, array_obj);
|
|
|
|
// This should crash with a protection violation if we are running a build
|
|
// with the bug.
|
|
AlwaysAllocateScope aa_scope(isolate);
|
|
v8::Script::Compile(mote_code_string)->Run();
|
|
}
|
|
|
|
|
|
TEST(Regress168801) {
|
|
if (i::FLAG_never_compact) return;
|
|
i::FLAG_always_compact = true;
|
|
i::FLAG_cache_optimized_code = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Perform one initial GC to enable code flushing.
|
|
heap->CollectAllGarbage();
|
|
|
|
// Ensure the code ends up on an evacuation candidate.
|
|
SimulateFullSpace(heap->code_space());
|
|
|
|
// Prepare an unoptimized function that is eligible for code flushing.
|
|
Handle<JSFunction> function;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function mkClosure() {"
|
|
" return function(x) { return x + 1; };"
|
|
"}"
|
|
"var f = mkClosure();"
|
|
"f(1); f(2);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->is_compiled());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
function = inner_scope.CloseAndEscape(handle(*f, isolate));
|
|
}
|
|
|
|
// Simulate incremental marking so that unoptimized function is enqueued as a
|
|
// candidate for code flushing. The shared function info however will not be
|
|
// explicitly enqueued.
|
|
SimulateIncrementalMarking(heap);
|
|
|
|
// Now optimize the function so that it is taken off the candidate list.
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("%OptimizeFunctionOnNextCall(f); f(3);");
|
|
}
|
|
|
|
// This cycle will bust the heap and subsequent cycles will go ballistic.
|
|
heap->CollectAllGarbage();
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
|
|
TEST(Regress173458) {
|
|
if (i::FLAG_never_compact) return;
|
|
i::FLAG_always_compact = true;
|
|
i::FLAG_cache_optimized_code = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Perform one initial GC to enable code flushing.
|
|
heap->CollectAllGarbage();
|
|
|
|
// Ensure the code ends up on an evacuation candidate.
|
|
SimulateFullSpace(heap->code_space());
|
|
|
|
// Prepare an unoptimized function that is eligible for code flushing.
|
|
Handle<JSFunction> function;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function mkClosure() {"
|
|
" return function(x) { return x + 1; };"
|
|
"}"
|
|
"var f = mkClosure();"
|
|
"f(1); f(2);");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
CHECK(f->is_compiled());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
|
|
}
|
|
|
|
function = inner_scope.CloseAndEscape(handle(*f, isolate));
|
|
}
|
|
|
|
// Simulate incremental marking so that unoptimized function is enqueued as a
|
|
// candidate for code flushing. The shared function info however will not be
|
|
// explicitly enqueued.
|
|
SimulateIncrementalMarking(heap);
|
|
|
|
// Now enable the debugger which in turn will disable code flushing.
|
|
CHECK(isolate->debug()->Load());
|
|
|
|
// This cycle will bust the heap and subsequent cycles will go ballistic.
|
|
heap->CollectAllGarbage();
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
TEST(Regress513507) {
|
|
i::FLAG_flush_optimized_code_cache = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_gc_global = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Prepare function whose optimized code map we can use.
|
|
Handle<SharedFunctionInfo> shared;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function f() { return 1 }"
|
|
"f(); %OptimizeFunctionOnNextCall(f); f();");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
shared = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
|
|
CompileRun("f = null");
|
|
}
|
|
|
|
// Prepare optimized code that we can use.
|
|
Handle<Code> code;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function g() { return 2 }"
|
|
"g(); %OptimizeFunctionOnNextCall(g); g();");
|
|
|
|
Handle<JSFunction> g =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("g"))));
|
|
code = inner_scope.CloseAndEscape(handle(g->code(), isolate));
|
|
if (!code->is_optimized_code()) return;
|
|
}
|
|
|
|
Handle<FixedArray> lit = isolate->factory()->empty_fixed_array();
|
|
Handle<Context> context(isolate->context());
|
|
|
|
// Add the new code several times to the optimized code map and also set an
|
|
// allocation timeout so that expanding the code map will trigger a GC.
|
|
heap->set_allocation_timeout(5);
|
|
FLAG_gc_interval = 1000;
|
|
for (int i = 0; i < 10; ++i) {
|
|
BailoutId id = BailoutId(i);
|
|
SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id);
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
TEST(Regress514122) {
|
|
i::FLAG_flush_optimized_code_cache = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Perfrom one initial GC to enable code flushing.
|
|
CcTest::heap()->CollectAllGarbage();
|
|
|
|
// Prepare function whose optimized code map we can use.
|
|
Handle<SharedFunctionInfo> shared;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function f() { return 1 }"
|
|
"f(); %OptimizeFunctionOnNextCall(f); f();");
|
|
|
|
Handle<JSFunction> f =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("f"))));
|
|
shared = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
|
|
CompileRun("f = null");
|
|
}
|
|
|
|
// Prepare optimized code that we can use.
|
|
Handle<Code> code;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
CompileRun("function g() { return 2 }"
|
|
"g(); %OptimizeFunctionOnNextCall(g); g();");
|
|
|
|
Handle<JSFunction> g =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("g"))));
|
|
code = inner_scope.CloseAndEscape(handle(g->code(), isolate));
|
|
if (!code->is_optimized_code()) return;
|
|
}
|
|
|
|
Handle<FixedArray> lit = isolate->factory()->empty_fixed_array();
|
|
Handle<Context> context(isolate->context());
|
|
|
|
// Add the code several times to the optimized code map.
|
|
for (int i = 0; i < 3; ++i) {
|
|
HandleScope inner_scope(isolate);
|
|
BailoutId id = BailoutId(i);
|
|
SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id);
|
|
}
|
|
shared->optimized_code_map()->Print();
|
|
|
|
// Add the code with a literals array to be evacuated.
|
|
Page* evac_page;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
AlwaysAllocateScope always_allocate(isolate);
|
|
// Make sure literal is placed on an old-space evacuation candidate.
|
|
SimulateFullSpace(heap->old_space());
|
|
Handle<FixedArray> lit = isolate->factory()->NewFixedArray(23, TENURED);
|
|
evac_page = Page::FromAddress(lit->address());
|
|
BailoutId id = BailoutId(100);
|
|
SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id);
|
|
}
|
|
|
|
// Heap is ready, force {lit_page} to become an evacuation candidate and
|
|
// simulate incremental marking to enqueue optimized code map.
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
evac_page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
SimulateIncrementalMarking(heap);
|
|
|
|
// No matter whether reachable or not, {boomer} is doomed.
|
|
Handle<Object> boomer(shared->optimized_code_map(), isolate);
|
|
|
|
// Add the code several times to the optimized code map. This will leave old
|
|
// copies of the optimized code map unreachable but still marked.
|
|
for (int i = 3; i < 6; ++i) {
|
|
HandleScope inner_scope(isolate);
|
|
BailoutId id = BailoutId(i);
|
|
SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id);
|
|
}
|
|
|
|
// Trigger a GC to flush out the bug.
|
|
heap->CollectGarbage(i::OLD_SPACE, "fire in the hole");
|
|
boomer->Print();
|
|
}
|
|
|
|
|
|
class DummyVisitor : public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object** end) { }
|
|
};
|
|
|
|
|
|
TEST(DeferredHandles) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(isolate));
|
|
HandleScopeData* data = isolate->handle_scope_data();
|
|
Handle<Object> init(heap->empty_string(), isolate);
|
|
while (data->next < data->limit) {
|
|
Handle<Object> obj(heap->empty_string(), isolate);
|
|
}
|
|
// An entire block of handles has been filled.
|
|
// Next handle would require a new block.
|
|
DCHECK(data->next == data->limit);
|
|
|
|
DeferredHandleScope deferred(isolate);
|
|
DummyVisitor visitor;
|
|
isolate->handle_scope_implementer()->Iterate(&visitor);
|
|
delete deferred.Detach();
|
|
}
|
|
|
|
|
|
TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("function f(n) {"
|
|
" var a = new Array(n);"
|
|
" for (var i = 0; i < n; i += 100) a[i] = i;"
|
|
"};"
|
|
"f(10 * 1024 * 1024);");
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
if (marking->IsStopped()) marking->Start(Heap::kNoGCFlags);
|
|
// This big step should be sufficient to mark the whole array.
|
|
marking->Step(100 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
|
DCHECK(marking->IsComplete() ||
|
|
marking->IsReadyToOverApproximateWeakClosure());
|
|
}
|
|
|
|
|
|
TEST(DisableInlineAllocation) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("function test() {"
|
|
" var x = [];"
|
|
" for (var i = 0; i < 10; i++) {"
|
|
" x[i] = [ {}, [1,2,3], [1,x,3] ];"
|
|
" }"
|
|
"}"
|
|
"function run() {"
|
|
" %OptimizeFunctionOnNextCall(test);"
|
|
" test();"
|
|
" %DeoptimizeFunction(test);"
|
|
"}");
|
|
|
|
// Warm-up with inline allocation enabled.
|
|
CompileRun("test(); test(); run();");
|
|
|
|
// Run test with inline allocation disabled.
|
|
CcTest::heap()->DisableInlineAllocation();
|
|
CompileRun("run()");
|
|
|
|
// Run test with inline allocation re-enabled.
|
|
CcTest::heap()->EnableInlineAllocation();
|
|
CompileRun("run()");
|
|
}
|
|
|
|
|
|
static int AllocationSitesCount(Heap* heap) {
|
|
int count = 0;
|
|
for (Object* site = heap->allocation_sites_list();
|
|
!(site->IsUndefined());
|
|
site = AllocationSite::cast(site)->weak_next()) {
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
TEST(EnsureAllocationSiteDependentCodesProcessed) {
|
|
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
if (!isolate->use_crankshaft()) return;
|
|
|
|
// The allocation site at the head of the list is ours.
|
|
Handle<AllocationSite> site;
|
|
{
|
|
LocalContext context;
|
|
v8::HandleScope scope(context->GetIsolate());
|
|
|
|
int count = AllocationSitesCount(heap);
|
|
CompileRun("var bar = function() { return (new Array()); };"
|
|
"var a = bar();"
|
|
"bar();"
|
|
"bar();");
|
|
|
|
// One allocation site should have been created.
|
|
int new_count = AllocationSitesCount(heap);
|
|
CHECK_EQ(new_count, (count + 1));
|
|
site = Handle<AllocationSite>::cast(
|
|
global_handles->Create(
|
|
AllocationSite::cast(heap->allocation_sites_list())));
|
|
|
|
CompileRun("%OptimizeFunctionOnNextCall(bar); bar();");
|
|
|
|
DependentCode::GroupStartIndexes starts(site->dependent_code());
|
|
CHECK_GE(starts.number_of_entries(), 1);
|
|
int index = starts.at(DependentCode::kAllocationSiteTransitionChangedGroup);
|
|
CHECK(site->dependent_code()->object_at(index)->IsWeakCell());
|
|
Code* function_bar = Code::cast(
|
|
WeakCell::cast(site->dependent_code()->object_at(index))->value());
|
|
Handle<JSFunction> bar_handle =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("bar"))));
|
|
CHECK_EQ(bar_handle->code(), function_bar);
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function, even though we
|
|
// still have the allocation site alive.
|
|
for (int i = 0; i < 4; i++) {
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
// The site still exists because of our global handle, but the code is no
|
|
// longer referred to by dependent_code().
|
|
DependentCode::GroupStartIndexes starts(site->dependent_code());
|
|
int index = starts.at(DependentCode::kAllocationSiteTransitionChangedGroup);
|
|
CHECK(site->dependent_code()->object_at(index)->IsWeakCell() &&
|
|
WeakCell::cast(site->dependent_code()->object_at(index))->cleared());
|
|
}
|
|
|
|
|
|
TEST(CellsInOptimizedCodeAreWeak) {
|
|
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
|
|
i::FLAG_weak_embedded_objects_in_optimized_code = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_crankshaft()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(heap->isolate());
|
|
|
|
CompileRun("bar = (function() {"
|
|
" function bar() {"
|
|
" return foo(1);"
|
|
" };"
|
|
" var foo = function(x) { with (x) { return 1 + x; } };"
|
|
" bar(foo);"
|
|
" bar(foo);"
|
|
" bar(foo);"
|
|
" %OptimizeFunctionOnNextCall(bar);"
|
|
" bar(foo);"
|
|
" return bar;})();");
|
|
|
|
Handle<JSFunction> bar =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("bar"))));
|
|
code = scope.CloseAndEscape(Handle<Code>(bar->code()));
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function
|
|
for (int i = 0; i < 4; i++) {
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
DCHECK(code->marked_for_deoptimization());
|
|
}
|
|
|
|
|
|
TEST(ObjectsInOptimizedCodeAreWeak) {
|
|
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
|
|
i::FLAG_weak_embedded_objects_in_optimized_code = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_crankshaft()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(heap->isolate());
|
|
|
|
CompileRun("function bar() {"
|
|
" return foo(1);"
|
|
"};"
|
|
"function foo(x) { with (x) { return 1 + x; } };"
|
|
"bar();"
|
|
"bar();"
|
|
"bar();"
|
|
"%OptimizeFunctionOnNextCall(bar);"
|
|
"bar();");
|
|
|
|
Handle<JSFunction> bar =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("bar"))));
|
|
code = scope.CloseAndEscape(Handle<Code>(bar->code()));
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function
|
|
for (int i = 0; i < 4; i++) {
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
DCHECK(code->marked_for_deoptimization());
|
|
}
|
|
|
|
|
|
TEST(NoWeakHashTableLeakWithIncrementalMarking) {
|
|
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
|
|
if (!i::FLAG_incremental_marking) return;
|
|
i::FLAG_weak_embedded_objects_in_optimized_code = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_compilation_cache = false;
|
|
i::FLAG_retain_maps_for_n_gc = 0;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
|
|
// Do not run for no-snap builds.
|
|
if (!i::Snapshot::HaveASnapshotToStartFrom(isolate)) return;
|
|
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
// Get a clean slate regarding optimized functions on the heap.
|
|
i::Deoptimizer::DeoptimizeAll(isolate);
|
|
heap->CollectAllGarbage();
|
|
|
|
if (!isolate->use_crankshaft()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
for (int i = 0; i < 3; i++) {
|
|
SimulateIncrementalMarking(heap);
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(heap->isolate());
|
|
EmbeddedVector<char, 256> source;
|
|
SNPrintF(source,
|
|
"function bar%d() {"
|
|
" return foo%d(1);"
|
|
"};"
|
|
"function foo%d(x) { with (x) { return 1 + x; } };"
|
|
"bar%d();"
|
|
"bar%d();"
|
|
"bar%d();"
|
|
"%%OptimizeFunctionOnNextCall(bar%d);"
|
|
"bar%d();",
|
|
i, i, i, i, i, i, i, i);
|
|
CompileRun(source.start());
|
|
}
|
|
heap->CollectAllGarbage();
|
|
}
|
|
int elements = 0;
|
|
if (heap->weak_object_to_code_table()->IsHashTable()) {
|
|
WeakHashTable* t = WeakHashTable::cast(heap->weak_object_to_code_table());
|
|
elements = t->NumberOfElements();
|
|
}
|
|
CHECK_EQ(0, elements);
|
|
}
|
|
|
|
|
|
static Handle<JSFunction> OptimizeDummyFunction(const char* name) {
|
|
EmbeddedVector<char, 256> source;
|
|
SNPrintF(source,
|
|
"function %s() { return 0; }"
|
|
"%s(); %s();"
|
|
"%%OptimizeFunctionOnNextCall(%s);"
|
|
"%s();", name, name, name, name, name);
|
|
CompileRun(source.start());
|
|
Handle<JSFunction> fun =
|
|
v8::Utils::OpenHandle(
|
|
*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str(name))));
|
|
return fun;
|
|
}
|
|
|
|
|
|
static int GetCodeChainLength(Code* code) {
|
|
int result = 0;
|
|
while (code->next_code_link()->IsCode()) {
|
|
result++;
|
|
code = Code::cast(code->next_code_link());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
TEST(NextCodeLinkIsWeak) {
|
|
i::FLAG_always_opt = false;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_crankshaft()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
heap->CollectAllAvailableGarbage();
|
|
int code_chain_length_before, code_chain_length_after;
|
|
{
|
|
HandleScope scope(heap->isolate());
|
|
Handle<JSFunction> mortal = OptimizeDummyFunction("mortal");
|
|
Handle<JSFunction> immortal = OptimizeDummyFunction("immortal");
|
|
CHECK_EQ(immortal->code()->next_code_link(), mortal->code());
|
|
code_chain_length_before = GetCodeChainLength(immortal->code());
|
|
// Keep the immortal code and let the mortal code die.
|
|
code = scope.CloseAndEscape(Handle<Code>(immortal->code()));
|
|
CompileRun("mortal = null; immortal = null;");
|
|
}
|
|
heap->CollectAllAvailableGarbage();
|
|
// Now mortal code should be dead.
|
|
code_chain_length_after = GetCodeChainLength(*code);
|
|
CHECK_EQ(code_chain_length_before - 1, code_chain_length_after);
|
|
}
|
|
|
|
|
|
static Handle<Code> DummyOptimizedCode(Isolate* isolate) {
|
|
i::byte buffer[i::Assembler::kMinimalBufferSize];
|
|
MacroAssembler masm(isolate, buffer, sizeof(buffer));
|
|
CodeDesc desc;
|
|
masm.Push(isolate->factory()->undefined_value());
|
|
masm.Drop(1);
|
|
masm.GetCode(&desc);
|
|
Handle<Object> undefined(isolate->heap()->undefined_value(), isolate);
|
|
Handle<Code> code = isolate->factory()->NewCode(
|
|
desc, Code::ComputeFlags(Code::OPTIMIZED_FUNCTION), undefined);
|
|
CHECK(code->IsCode());
|
|
return code;
|
|
}
|
|
|
|
|
|
TEST(NextCodeLinkIsWeak2) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_crankshaft()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
heap->CollectAllAvailableGarbage();
|
|
Handle<Context> context(Context::cast(heap->native_contexts_list()), isolate);
|
|
Handle<Code> new_head;
|
|
Handle<Object> old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate);
|
|
{
|
|
HandleScope scope(heap->isolate());
|
|
Handle<Code> immortal = DummyOptimizedCode(isolate);
|
|
Handle<Code> mortal = DummyOptimizedCode(isolate);
|
|
mortal->set_next_code_link(*old_head);
|
|
immortal->set_next_code_link(*mortal);
|
|
context->set(Context::OPTIMIZED_CODE_LIST, *immortal);
|
|
new_head = scope.CloseAndEscape(immortal);
|
|
}
|
|
heap->CollectAllAvailableGarbage();
|
|
// Now mortal code should be dead.
|
|
CHECK_EQ(*old_head, new_head->next_code_link());
|
|
}
|
|
|
|
|
|
static bool weak_ic_cleared = false;
|
|
|
|
static void ClearWeakIC(
|
|
const v8::WeakCallbackInfo<v8::Persistent<v8::Object>>& data) {
|
|
printf("clear weak is called\n");
|
|
weak_ic_cleared = true;
|
|
data.GetParameter()->Reset();
|
|
}
|
|
|
|
|
|
TEST(WeakFunctionInConstructor) {
|
|
if (i::FLAG_always_opt) return;
|
|
i::FLAG_stress_compaction = false;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
CompileRun(
|
|
"function createObj(obj) {"
|
|
" return new obj();"
|
|
"}");
|
|
Handle<JSFunction> createObj =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Function>::Cast(
|
|
CcTest::global()->Get(v8_str("createObj"))));
|
|
|
|
v8::Persistent<v8::Object> garbage;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
const char* source =
|
|
" (function() {"
|
|
" function hat() { this.x = 5; }"
|
|
" createObj(hat);"
|
|
" createObj(hat);"
|
|
" return hat;"
|
|
" })();";
|
|
garbage.Reset(isolate, CompileRun(source)->ToObject(isolate));
|
|
}
|
|
weak_ic_cleared = false;
|
|
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
|
|
Heap* heap = CcTest::i_isolate()->heap();
|
|
heap->CollectAllGarbage();
|
|
CHECK(weak_ic_cleared);
|
|
|
|
// We've determined the constructor in createObj has had it's weak cell
|
|
// cleared. Now, verify that one additional call with a new function
|
|
// allows monomorphicity.
|
|
Handle<TypeFeedbackVector> feedback_vector = Handle<TypeFeedbackVector>(
|
|
createObj->shared()->feedback_vector(), CcTest::i_isolate());
|
|
for (int i = 0; i < 20; i++) {
|
|
Object* slot_value = feedback_vector->Get(FeedbackVectorSlot(0));
|
|
CHECK(slot_value->IsWeakCell());
|
|
if (WeakCell::cast(slot_value)->cleared()) break;
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
Object* slot_value = feedback_vector->Get(FeedbackVectorSlot(0));
|
|
CHECK(slot_value->IsWeakCell() && WeakCell::cast(slot_value)->cleared());
|
|
CompileRun(
|
|
"function coat() { this.x = 6; }"
|
|
"createObj(coat);");
|
|
slot_value = feedback_vector->Get(FeedbackVectorSlot(0));
|
|
CHECK(slot_value->IsWeakCell() && !WeakCell::cast(slot_value)->cleared());
|
|
}
|
|
|
|
|
|
// Checks that the value returned by execution of the source is weak.
|
|
void CheckWeakness(const char* source) {
|
|
i::FLAG_stress_compaction = false;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Persistent<v8::Object> garbage;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
garbage.Reset(isolate, CompileRun(source)->ToObject(isolate));
|
|
}
|
|
weak_ic_cleared = false;
|
|
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
|
|
Heap* heap = CcTest::i_isolate()->heap();
|
|
heap->CollectAllGarbage();
|
|
CHECK(weak_ic_cleared);
|
|
}
|
|
|
|
|
|
// Each of the following "weak IC" tests creates an IC that embeds a map with
|
|
// the prototype pointing to _proto_ and checks that the _proto_ dies on GC.
|
|
TEST(WeakMapInMonomorphicLoadIC) {
|
|
CheckWeakness("function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicLoadIC) {
|
|
CheckWeakness(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" loadIC(poly);"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicKeyedLoadIC) {
|
|
CheckWeakness("function keyedLoadIC(obj, field) {"
|
|
" return obj[field];"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicKeyedLoadIC) {
|
|
CheckWeakness(
|
|
"function keyedLoadIC(obj, field) {"
|
|
" return obj[field];"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" keyedLoadIC(poly, 'name');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicStoreIC) {
|
|
CheckWeakness("function storeIC(obj, value) {"
|
|
" obj.name = value;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicStoreIC) {
|
|
CheckWeakness(
|
|
"function storeIC(obj, value) {"
|
|
" obj.name = value;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" storeIC(poly, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicKeyedStoreIC) {
|
|
CheckWeakness("function keyedStoreIC(obj, field, value) {"
|
|
" obj[field] = value;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicKeyedStoreIC) {
|
|
CheckWeakness(
|
|
"function keyedStoreIC(obj, field, value) {"
|
|
" obj[field] = value;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" keyedStoreIC(poly, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicCompareNilIC) {
|
|
CheckWeakness("function compareNilIC(obj) {"
|
|
" return obj == null;"
|
|
"}"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" compareNilIC(obj);"
|
|
" compareNilIC(obj);"
|
|
" compareNilIC(obj);"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
Handle<JSFunction> GetFunctionByName(Isolate* isolate, const char* name) {
|
|
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
|
|
Handle<Object> obj =
|
|
Object::GetProperty(isolate->global_object(), str).ToHandleChecked();
|
|
return Handle<JSFunction>::cast(obj);
|
|
}
|
|
|
|
|
|
void CheckIC(Code* code, Code::Kind kind, SharedFunctionInfo* shared,
|
|
int ic_slot, InlineCacheState state) {
|
|
if (kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC ||
|
|
kind == Code::CALL_IC) {
|
|
TypeFeedbackVector* vector = shared->feedback_vector();
|
|
FeedbackVectorICSlot slot(ic_slot);
|
|
if (kind == Code::LOAD_IC) {
|
|
LoadICNexus nexus(vector, slot);
|
|
CHECK_EQ(nexus.StateFromFeedback(), state);
|
|
} else if (kind == Code::KEYED_LOAD_IC) {
|
|
KeyedLoadICNexus nexus(vector, slot);
|
|
CHECK_EQ(nexus.StateFromFeedback(), state);
|
|
} else if (kind == Code::CALL_IC) {
|
|
CallICNexus nexus(vector, slot);
|
|
CHECK_EQ(nexus.StateFromFeedback(), state);
|
|
}
|
|
} else {
|
|
Code* ic = FindFirstIC(code, kind);
|
|
CHECK(ic->is_inline_cache_stub());
|
|
CHECK(ic->ic_state() == state);
|
|
}
|
|
}
|
|
|
|
|
|
TEST(MonomorphicStaysMonomorphicAfterGC) {
|
|
if (FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
"function testIC() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" return proto;"
|
|
"};");
|
|
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
heap->CollectAllGarbage();
|
|
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, MONOMORPHIC);
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, MONOMORPHIC);
|
|
}
|
|
|
|
|
|
TEST(PolymorphicStaysPolymorphicAfterGC) {
|
|
if (FLAG_always_opt) return;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
"function testIC() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" loadIC(poly);"
|
|
" return proto;"
|
|
"};");
|
|
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
heap->CollectAllGarbage();
|
|
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, POLYMORPHIC);
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, POLYMORPHIC);
|
|
}
|
|
|
|
|
|
TEST(WeakCell) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
v8::internal::Factory* factory = isolate->factory();
|
|
|
|
HandleScope outer_scope(isolate);
|
|
Handle<WeakCell> weak_cell1;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
Handle<HeapObject> value = factory->NewFixedArray(1, NOT_TENURED);
|
|
weak_cell1 = inner_scope.CloseAndEscape(factory->NewWeakCell(value));
|
|
}
|
|
|
|
Handle<FixedArray> survivor = factory->NewFixedArray(1, NOT_TENURED);
|
|
Handle<WeakCell> weak_cell2;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
weak_cell2 = inner_scope.CloseAndEscape(factory->NewWeakCell(survivor));
|
|
}
|
|
CHECK(weak_cell1->value()->IsFixedArray());
|
|
CHECK_EQ(*survivor, weak_cell2->value());
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
CHECK(weak_cell1->value()->IsFixedArray());
|
|
CHECK_EQ(*survivor, weak_cell2->value());
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
CHECK(weak_cell1->value()->IsFixedArray());
|
|
CHECK_EQ(*survivor, weak_cell2->value());
|
|
heap->CollectAllAvailableGarbage();
|
|
CHECK(weak_cell1->cleared());
|
|
CHECK_EQ(*survivor, weak_cell2->value());
|
|
}
|
|
|
|
|
|
TEST(WeakCellsWithIncrementalMarking) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
v8::internal::Factory* factory = isolate->factory();
|
|
|
|
const int N = 16;
|
|
HandleScope outer_scope(isolate);
|
|
Handle<FixedArray> survivor = factory->NewFixedArray(1, NOT_TENURED);
|
|
Handle<WeakCell> weak_cells[N];
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
HandleScope inner_scope(isolate);
|
|
Handle<HeapObject> value =
|
|
i == 0 ? survivor : factory->NewFixedArray(1, NOT_TENURED);
|
|
Handle<WeakCell> weak_cell = factory->NewWeakCell(value);
|
|
CHECK(weak_cell->value()->IsFixedArray());
|
|
IncrementalMarking* marking = heap->incremental_marking();
|
|
if (marking->IsStopped()) marking->Start(Heap::kNoGCFlags);
|
|
marking->Step(128, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
CHECK(weak_cell->value()->IsFixedArray());
|
|
weak_cells[i] = inner_scope.CloseAndEscape(weak_cell);
|
|
}
|
|
heap->CollectAllGarbage();
|
|
CHECK_EQ(*survivor, weak_cells[0]->value());
|
|
for (int i = 1; i < N; i++) {
|
|
CHECK(weak_cells[i]->cleared());
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
TEST(AddInstructionChangesNewSpacePromotion) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_expose_gc = true;
|
|
i::FLAG_stress_compaction = true;
|
|
i::FLAG_gc_interval = 1000;
|
|
CcTest::InitializeVM();
|
|
if (!i::FLAG_allocation_site_pretenuring) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
CompileRun(
|
|
"function add(a, b) {"
|
|
" return a + b;"
|
|
"}"
|
|
"add(1, 2);"
|
|
"add(\"a\", \"b\");"
|
|
"var oldSpaceObject;"
|
|
"gc();"
|
|
"function crash(x) {"
|
|
" var object = {a: null, b: null};"
|
|
" var result = add(1.5, x | 0);"
|
|
" object.a = result;"
|
|
" oldSpaceObject = object;"
|
|
" return object;"
|
|
"}"
|
|
"crash(1);"
|
|
"crash(1);"
|
|
"%OptimizeFunctionOnNextCall(crash);"
|
|
"crash(1);");
|
|
|
|
v8::Handle<v8::Object> global = CcTest::global();
|
|
v8::Handle<v8::Function> g =
|
|
v8::Handle<v8::Function>::Cast(global->Get(v8_str("crash")));
|
|
v8::Handle<v8::Value> args1[] = { v8_num(1) };
|
|
heap->DisableInlineAllocation();
|
|
heap->set_allocation_timeout(1);
|
|
g->Call(global, 1, args1);
|
|
heap->CollectAllGarbage();
|
|
}
|
|
|
|
|
|
void OnFatalErrorExpectOOM(const char* location, const char* message) {
|
|
// Exit with 0 if the location matches our expectation.
|
|
exit(strcmp(location, "CALL_AND_RETRY_LAST"));
|
|
}
|
|
|
|
|
|
TEST(CEntryStubOOM) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::V8::SetFatalErrorHandler(OnFatalErrorExpectOOM);
|
|
|
|
v8::Handle<v8::Value> result = CompileRun(
|
|
"%SetFlags('--gc-interval=1');"
|
|
"var a = [];"
|
|
"a.__proto__ = [];"
|
|
"a.unshift(1)");
|
|
|
|
CHECK(result->IsNumber());
|
|
}
|
|
|
|
#endif // DEBUG
|
|
|
|
|
|
static void InterruptCallback357137(v8::Isolate* isolate, void* data) { }
|
|
|
|
|
|
static void RequestInterrupt(const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, NULL);
|
|
}
|
|
|
|
|
|
TEST(Regress357137) {
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope hscope(isolate);
|
|
v8::Handle<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
|
|
global->Set(v8::String::NewFromUtf8(isolate, "interrupt"),
|
|
v8::FunctionTemplate::New(isolate, RequestInterrupt));
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate, NULL, global);
|
|
DCHECK(!context.IsEmpty());
|
|
v8::Context::Scope cscope(context);
|
|
|
|
v8::Local<v8::Value> result = CompileRun(
|
|
"var locals = '';"
|
|
"for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';"
|
|
"eval('function f() {' + locals + 'return function() { return v0; }; }');"
|
|
"interrupt();" // This triggers a fake stack overflow in f.
|
|
"f()()");
|
|
CHECK_EQ(42.0, result->ToNumber(isolate)->Value());
|
|
}
|
|
|
|
|
|
TEST(Regress507979) {
|
|
const int kFixedArrayLen = 10;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope handle_scope(isolate);
|
|
|
|
Handle<FixedArray> o1 = isolate->factory()->NewFixedArray(kFixedArrayLen);
|
|
Handle<FixedArray> o2 = isolate->factory()->NewFixedArray(kFixedArrayLen);
|
|
CHECK(heap->InNewSpace(o1->address()));
|
|
CHECK(heap->InNewSpace(o2->address()));
|
|
|
|
HeapIterator it(heap, i::HeapIterator::kFilterUnreachable);
|
|
|
|
// Replace parts of an object placed before a live object with a filler. This
|
|
// way the filler object shares the mark bits with the following live object.
|
|
o1->Shrink(kFixedArrayLen - 1);
|
|
|
|
for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
|
|
// Let's not optimize the loop away.
|
|
CHECK(obj->address() != nullptr);
|
|
}
|
|
}
|
|
|
|
|
|
TEST(ArrayShiftSweeping) {
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
v8::Local<v8::Value> result = CompileRun(
|
|
"var array = new Array(40000);"
|
|
"var tmp = new Array(100000);"
|
|
"array[0] = 10;"
|
|
"gc();"
|
|
"gc();"
|
|
"array.shift();"
|
|
"array;");
|
|
|
|
Handle<JSObject> o =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
|
|
CHECK(heap->InOldSpace(o->elements()));
|
|
CHECK(heap->InOldSpace(*o));
|
|
Page* page = Page::FromAddress(o->elements()->address());
|
|
CHECK(page->parallel_sweeping() <= MemoryChunk::SWEEPING_FINALIZE ||
|
|
Marking::IsBlack(Marking::MarkBitFrom(o->elements())));
|
|
}
|
|
|
|
|
|
UNINITIALIZED_TEST(PromotionQueue) {
|
|
i::FLAG_expose_gc = true;
|
|
i::FLAG_max_semi_space_size = 2 * (Page::kPageSize / MB);
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
|
|
{
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
Heap* heap = i_isolate->heap();
|
|
NewSpace* new_space = heap->new_space();
|
|
|
|
// In this test we will try to overwrite the promotion queue which is at the
|
|
// end of to-space. To actually make that possible, we need at least two
|
|
// semi-space pages and take advantage of fragmentation.
|
|
// (1) Grow semi-space to two pages.
|
|
// (2) Create a few small long living objects and call the scavenger to
|
|
// move them to the other semi-space.
|
|
// (3) Create a huge object, i.e., remainder of first semi-space page and
|
|
// create another huge object which should be of maximum allocatable memory
|
|
// size of the second semi-space page.
|
|
// (4) Call the scavenger again.
|
|
// What will happen is: the scavenger will promote the objects created in
|
|
// (2) and will create promotion queue entries at the end of the second
|
|
// semi-space page during the next scavenge when it promotes the objects to
|
|
// the old generation. The first allocation of (3) will fill up the first
|
|
// semi-space page. The second allocation in (3) will not fit into the
|
|
// first semi-space page, but it will overwrite the promotion queue which
|
|
// are in the second semi-space page. If the right guards are in place, the
|
|
// promotion queue will be evacuated in that case.
|
|
|
|
// Grow the semi-space to two pages to make semi-space copy overwrite the
|
|
// promotion queue, which will be at the end of the second page.
|
|
intptr_t old_capacity = new_space->TotalCapacity();
|
|
|
|
// If we are in a low memory config, we can't grow to two pages and we can't
|
|
// run this test. This also means the issue we are testing cannot arise, as
|
|
// there is no fragmentation.
|
|
if (new_space->IsAtMaximumCapacity()) return;
|
|
|
|
new_space->Grow();
|
|
CHECK(new_space->IsAtMaximumCapacity());
|
|
CHECK(2 * old_capacity == new_space->TotalCapacity());
|
|
|
|
// Call the scavenger two times to get an empty new space
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
// First create a few objects which will survive a scavenge, and will get
|
|
// promoted to the old generation later on. These objects will create
|
|
// promotion queue entries at the end of the second semi-space page.
|
|
const int number_handles = 12;
|
|
Handle<FixedArray> handles[number_handles];
|
|
for (int i = 0; i < number_handles; i++) {
|
|
handles[i] = i_isolate->factory()->NewFixedArray(1, NOT_TENURED);
|
|
}
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
|
|
// Create the first huge object which will exactly fit the first semi-space
|
|
// page.
|
|
int new_linear_size =
|
|
static_cast<int>(*heap->new_space()->allocation_limit_address() -
|
|
*heap->new_space()->allocation_top_address());
|
|
int length = new_linear_size / kPointerSize - FixedArray::kHeaderSize;
|
|
Handle<FixedArray> first =
|
|
i_isolate->factory()->NewFixedArray(length, NOT_TENURED);
|
|
CHECK(heap->InNewSpace(*first));
|
|
|
|
// Create the second huge object of maximum allocatable second semi-space
|
|
// page size.
|
|
new_linear_size =
|
|
static_cast<int>(*heap->new_space()->allocation_limit_address() -
|
|
*heap->new_space()->allocation_top_address());
|
|
length = Page::kMaxRegularHeapObjectSize / kPointerSize -
|
|
FixedArray::kHeaderSize;
|
|
Handle<FixedArray> second =
|
|
i_isolate->factory()->NewFixedArray(length, NOT_TENURED);
|
|
CHECK(heap->InNewSpace(*second));
|
|
|
|
// This scavenge will corrupt memory if the promotion queue is not
|
|
// evacuated.
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
|
|
TEST(Regress388880) {
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
|
|
Handle<Map> map1 = Map::Create(isolate, 1);
|
|
Handle<Map> map2 =
|
|
Map::CopyWithField(map1, factory->NewStringFromStaticChars("foo"),
|
|
HeapType::Any(isolate), NONE, Representation::Tagged(),
|
|
OMIT_TRANSITION).ToHandleChecked();
|
|
|
|
int desired_offset = Page::kPageSize - map1->instance_size();
|
|
|
|
// Allocate fixed array in old pointer space so, that object allocated
|
|
// afterwards would end at the end of the page.
|
|
{
|
|
SimulateFullSpace(heap->old_space());
|
|
int padding_size = desired_offset - Page::kObjectStartOffset;
|
|
int padding_array_length =
|
|
(padding_size - FixedArray::kHeaderSize) / kPointerSize;
|
|
|
|
Handle<FixedArray> temp2 =
|
|
factory->NewFixedArray(padding_array_length, TENURED);
|
|
Page* page = Page::FromAddress(temp2->address());
|
|
CHECK_EQ(Page::kObjectStartOffset, page->Offset(temp2->address()));
|
|
}
|
|
|
|
Handle<JSObject> o = factory->NewJSObjectFromMap(map1, TENURED);
|
|
o->set_properties(*factory->empty_fixed_array());
|
|
|
|
// Ensure that the object allocated where we need it.
|
|
Page* page = Page::FromAddress(o->address());
|
|
CHECK_EQ(desired_offset, page->Offset(o->address()));
|
|
|
|
// Now we have an object right at the end of the page.
|
|
|
|
// Enable incremental marking to trigger actions in Heap::AdjustLiveBytes()
|
|
// that would cause crash.
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
marking->Start(Heap::kNoGCFlags);
|
|
CHECK(marking->IsMarking());
|
|
|
|
// Now everything is set up for crashing in JSObject::MigrateFastToFast()
|
|
// when it calls heap->AdjustLiveBytes(...).
|
|
JSObject::MigrateToMap(o, map2);
|
|
}
|
|
|
|
|
|
TEST(Regress3631) {
|
|
i::FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
v8::Local<v8::Value> result = CompileRun(
|
|
"var weak_map = new WeakMap();"
|
|
"var future_keys = [];"
|
|
"for (var i = 0; i < 50; i++) {"
|
|
" var key = {'k' : i + 0.1};"
|
|
" weak_map.set(key, 1);"
|
|
" future_keys.push({'x' : i + 0.2});"
|
|
"}"
|
|
"weak_map");
|
|
if (marking->IsStopped()) {
|
|
marking->Start(Heap::kNoGCFlags);
|
|
}
|
|
// Incrementally mark the backing store.
|
|
Handle<JSObject> obj =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
|
|
Handle<JSWeakCollection> weak_map(reinterpret_cast<JSWeakCollection*>(*obj));
|
|
while (!Marking::IsBlack(
|
|
Marking::MarkBitFrom(HeapObject::cast(weak_map->table()))) &&
|
|
!marking->IsStopped()) {
|
|
marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
|
}
|
|
// Stash the backing store in a handle.
|
|
Handle<Object> save(weak_map->table(), isolate);
|
|
// The following line will update the backing store.
|
|
CompileRun(
|
|
"for (var i = 0; i < 50; i++) {"
|
|
" weak_map.set(future_keys[i], i);"
|
|
"}");
|
|
heap->incremental_marking()->set_should_hurry(true);
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
|
|
TEST(Regress442710) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
|
|
HandleScope sc(isolate);
|
|
Handle<GlobalObject> global(CcTest::i_isolate()->context()->global_object());
|
|
Handle<JSArray> array = factory->NewJSArray(2);
|
|
|
|
Handle<String> name = factory->InternalizeUtf8String("testArray");
|
|
JSReceiver::SetProperty(global, name, array, SLOPPY).Check();
|
|
CompileRun("testArray[0] = 1; testArray[1] = 2; testArray.shift();");
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
|
|
TEST(NumberStringCacheSize) {
|
|
// Test that the number-string cache has not been resized in the snapshot.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
if (!isolate->snapshot_available()) return;
|
|
Heap* heap = isolate->heap();
|
|
CHECK_EQ(TestHeap::kInitialNumberStringCacheSize * 2,
|
|
heap->number_string_cache()->length());
|
|
}
|
|
|
|
|
|
TEST(Regress3877) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
CompileRun("function cls() { this.x = 10; }");
|
|
Handle<WeakCell> weak_prototype;
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
v8::Local<v8::Value> result = CompileRun("cls.prototype");
|
|
Handle<JSObject> proto =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
|
|
weak_prototype = inner_scope.CloseAndEscape(factory->NewWeakCell(proto));
|
|
}
|
|
CHECK(!weak_prototype->cleared());
|
|
CompileRun(
|
|
"var a = { };"
|
|
"a.x = new cls();"
|
|
"cls.prototype = null;");
|
|
for (int i = 0; i < 4; i++) {
|
|
heap->CollectAllGarbage();
|
|
}
|
|
// The map of a.x keeps prototype alive
|
|
CHECK(!weak_prototype->cleared());
|
|
// Change the map of a.x and make the previous map garbage collectable.
|
|
CompileRun("a.x.__proto__ = {};");
|
|
for (int i = 0; i < 4; i++) {
|
|
heap->CollectAllGarbage();
|
|
}
|
|
CHECK(weak_prototype->cleared());
|
|
}
|
|
|
|
|
|
Handle<WeakCell> AddRetainedMap(Isolate* isolate, Heap* heap) {
|
|
HandleScope inner_scope(isolate);
|
|
Handle<Map> map = Map::Create(isolate, 1);
|
|
v8::Local<v8::Value> result =
|
|
CompileRun("(function () { return {x : 10}; })();");
|
|
Handle<JSObject> proto =
|
|
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
|
|
Map::SetPrototype(map, proto);
|
|
heap->AddRetainedMap(map);
|
|
return inner_scope.CloseAndEscape(Map::WeakCellForMap(map));
|
|
}
|
|
|
|
|
|
void CheckMapRetainingFor(int n) {
|
|
FLAG_retain_maps_for_n_gc = n;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Handle<WeakCell> weak_cell = AddRetainedMap(isolate, heap);
|
|
CHECK(!weak_cell->cleared());
|
|
for (int i = 0; i < n; i++) {
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
}
|
|
CHECK(!weak_cell->cleared());
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
CHECK(weak_cell->cleared());
|
|
}
|
|
|
|
|
|
TEST(MapRetaining) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CheckMapRetainingFor(FLAG_retain_maps_for_n_gc);
|
|
CheckMapRetainingFor(0);
|
|
CheckMapRetainingFor(1);
|
|
CheckMapRetainingFor(7);
|
|
}
|
|
|
|
|
|
TEST(RegressArrayListGC) {
|
|
FLAG_retain_maps_for_n_gc = 1;
|
|
FLAG_incremental_marking = 0;
|
|
FLAG_gc_global = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
AddRetainedMap(isolate, heap);
|
|
Handle<Map> map = Map::Create(isolate, 1);
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
// Force GC in old space on next addition of retained map.
|
|
Map::WeakCellForMap(map);
|
|
SimulateFullSpace(CcTest::heap()->new_space());
|
|
for (int i = 0; i < 10; i++) {
|
|
heap->AddRetainedMap(map);
|
|
}
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
TEST(PathTracer) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
v8::Local<v8::Value> result = CompileRun("'abc'");
|
|
Handle<Object> o = v8::Utils::OpenHandle(*result);
|
|
CcTest::i_isolate()->heap()->TracePathToObject(*o);
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
TEST(WritableVsImmortalRoots) {
|
|
for (int i = 0; i < Heap::kStrongRootListLength; ++i) {
|
|
Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i);
|
|
bool writable = Heap::RootCanBeWrittenAfterInitialization(root_index);
|
|
bool immortal = Heap::RootIsImmortalImmovable(root_index);
|
|
// A root value can be writable, immortal, or neither, but not both.
|
|
CHECK(!immortal || !writable);
|
|
}
|
|
}
|
|
|
|
|
|
static void TestRightTrimFixedTypedArray(i::ExternalArrayType type,
|
|
int initial_length,
|
|
int elements_to_trim) {
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
|
|
Handle<FixedTypedArrayBase> array =
|
|
factory->NewFixedTypedArray(initial_length, type, true);
|
|
int old_size = array->size();
|
|
heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array,
|
|
elements_to_trim);
|
|
|
|
// Check that free space filler is at the right place and did not smash the
|
|
// array header.
|
|
CHECK(array->IsFixedArrayBase());
|
|
CHECK_EQ(initial_length - elements_to_trim, array->length());
|
|
int new_size = array->size();
|
|
if (new_size != old_size) {
|
|
// Free space filler should be created in this case.
|
|
Address next_obj_address = array->address() + array->size();
|
|
CHECK(HeapObject::FromAddress(next_obj_address)->IsFiller());
|
|
}
|
|
heap->CollectAllAvailableGarbage();
|
|
}
|
|
|
|
|
|
TEST(Regress472513) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// The combination of type/initial_length/elements_to_trim triggered
|
|
// typed array header smashing with free space filler (crbug/472513).
|
|
|
|
// 64-bit cases.
|
|
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 32, 6);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 32 - 7, 6);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 16, 6);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 16 - 3, 6);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint32Array, 8, 6);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint32Array, 8 - 1, 6);
|
|
|
|
// 32-bit cases.
|
|
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 16, 3);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 16 - 3, 3);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 8, 3);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 8 - 1, 3);
|
|
TestRightTrimFixedTypedArray(i::kExternalUint32Array, 4, 3);
|
|
}
|
|
|
|
|
|
TEST(WeakFixedArray) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
Handle<HeapNumber> number = CcTest::i_isolate()->factory()->NewHeapNumber(1);
|
|
Handle<WeakFixedArray> array = WeakFixedArray::Add(Handle<Object>(), number);
|
|
array->Remove(number);
|
|
array->Compact<WeakFixedArray::NullCallback>();
|
|
WeakFixedArray::Add(array, number);
|
|
}
|
|
|
|
|
|
TEST(PreprocessStackTrace) {
|
|
// Do not automatically trigger early GC.
|
|
FLAG_gc_interval = -1;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::TryCatch try_catch(CcTest::isolate());
|
|
CompileRun("throw new Error();");
|
|
CHECK(try_catch.HasCaught());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Handle<Object> exception = v8::Utils::OpenHandle(*try_catch.Exception());
|
|
Handle<Name> key = isolate->factory()->stack_trace_symbol();
|
|
Handle<Object> stack_trace =
|
|
JSObject::GetProperty(exception, key).ToHandleChecked();
|
|
Handle<Object> code =
|
|
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
|
|
CHECK(code->IsCode());
|
|
|
|
isolate->heap()->CollectAllAvailableGarbage("stack trace preprocessing");
|
|
|
|
Handle<Object> pos =
|
|
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
|
|
CHECK(pos->IsSmi());
|
|
|
|
Handle<JSArray> stack_trace_array = Handle<JSArray>::cast(stack_trace);
|
|
int array_length = Smi::cast(stack_trace_array->length())->value();
|
|
for (int i = 0; i < array_length; i++) {
|
|
Handle<Object> element =
|
|
Object::GetElement(isolate, stack_trace, i).ToHandleChecked();
|
|
CHECK(!element->IsCode());
|
|
}
|
|
}
|
|
|
|
|
|
static bool utils_has_been_collected = false;
|
|
|
|
static void UtilsHasBeenCollected(
|
|
const v8::WeakCallbackInfo<v8::Persistent<v8::Object>>& data) {
|
|
utils_has_been_collected = true;
|
|
data.GetParameter()->Reset();
|
|
}
|
|
|
|
|
|
TEST(BootstrappingExports) {
|
|
FLAG_expose_natives_as = "natives";
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
|
|
if (Snapshot::HaveASnapshotToStartFrom(CcTest::i_isolate())) return;
|
|
|
|
utils_has_been_collected = false;
|
|
|
|
v8::Persistent<v8::Object> utils;
|
|
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
v8::Handle<v8::Object> natives =
|
|
CcTest::global()->Get(v8_str("natives"))->ToObject(isolate);
|
|
utils.Reset(isolate, natives->Get(v8_str("utils"))->ToObject(isolate));
|
|
natives->Delete(v8_str("utils"));
|
|
}
|
|
|
|
utils.SetWeak(&utils, UtilsHasBeenCollected,
|
|
v8::WeakCallbackType::kParameter);
|
|
|
|
CcTest::heap()->CollectAllAvailableGarbage("fire weak callbacks");
|
|
|
|
CHECK(utils_has_been_collected);
|
|
}
|
|
|
|
|
|
TEST(Regress1878) {
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Local<v8::Function> constructor =
|
|
v8::Utils::ToLocal(CcTest::i_isolate()->internal_array_function());
|
|
CcTest::global()->Set(v8_str("InternalArray"), constructor);
|
|
|
|
v8::TryCatch try_catch(isolate);
|
|
|
|
CompileRun(
|
|
"var a = Array();"
|
|
"for (var i = 0; i < 1000; i++) {"
|
|
" var ai = new InternalArray(10000);"
|
|
" if (%HaveSameMap(ai, a)) throw Error();"
|
|
" if (!%HasFastObjectElements(ai)) throw Error();"
|
|
"}"
|
|
"for (var i = 0; i < 1000; i++) {"
|
|
" var ai = new InternalArray(10000);"
|
|
" if (%HaveSameMap(ai, a)) throw Error();"
|
|
" if (!%HasFastObjectElements(ai)) throw Error();"
|
|
"}");
|
|
|
|
CHECK(!try_catch.HasCaught());
|
|
}
|
|
|
|
|
|
void AllocateInSpace(Isolate* isolate, size_t bytes, AllocationSpace space) {
|
|
CHECK(bytes >= FixedArray::kHeaderSize);
|
|
CHECK(bytes % kPointerSize == 0);
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
AlwaysAllocateScope always_allocate(isolate);
|
|
int elements =
|
|
static_cast<int>((bytes - FixedArray::kHeaderSize) / kPointerSize);
|
|
Handle<FixedArray> array = factory->NewFixedArray(
|
|
elements, space == NEW_SPACE ? NOT_TENURED : TENURED);
|
|
CHECK((space == NEW_SPACE) == isolate->heap()->InNewSpace(*array));
|
|
CHECK_EQ(bytes, static_cast<size_t>(array->Size()));
|
|
}
|
|
|
|
|
|
TEST(NewSpaceAllocationCounter) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
size_t counter1 = heap->NewSpaceAllocationCounter();
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
const size_t kSize = 1024;
|
|
AllocateInSpace(isolate, kSize, NEW_SPACE);
|
|
size_t counter2 = heap->NewSpaceAllocationCounter();
|
|
CHECK_EQ(kSize, counter2 - counter1);
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
size_t counter3 = heap->NewSpaceAllocationCounter();
|
|
CHECK_EQ(0U, counter3 - counter2);
|
|
// Test counter overflow.
|
|
size_t max_counter = -1;
|
|
heap->set_new_space_allocation_counter(max_counter - 10 * kSize);
|
|
size_t start = heap->NewSpaceAllocationCounter();
|
|
for (int i = 0; i < 20; i++) {
|
|
AllocateInSpace(isolate, kSize, NEW_SPACE);
|
|
size_t counter = heap->NewSpaceAllocationCounter();
|
|
CHECK_EQ(kSize, counter - start);
|
|
start = counter;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(OldSpaceAllocationCounter) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
size_t counter1 = heap->OldGenerationAllocationCounter();
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
const size_t kSize = 1024;
|
|
AllocateInSpace(isolate, kSize, OLD_SPACE);
|
|
size_t counter2 = heap->OldGenerationAllocationCounter();
|
|
// TODO(ulan): replace all CHECK_LE with CHECK_EQ after v8:4148 is fixed.
|
|
CHECK_LE(kSize, counter2 - counter1);
|
|
heap->CollectGarbage(NEW_SPACE);
|
|
size_t counter3 = heap->OldGenerationAllocationCounter();
|
|
CHECK_EQ(0u, counter3 - counter2);
|
|
AllocateInSpace(isolate, kSize, OLD_SPACE);
|
|
heap->CollectGarbage(OLD_SPACE);
|
|
size_t counter4 = heap->OldGenerationAllocationCounter();
|
|
CHECK_LE(kSize, counter4 - counter3);
|
|
// Test counter overflow.
|
|
size_t max_counter = -1;
|
|
heap->set_old_generation_allocation_counter(max_counter - 10 * kSize);
|
|
size_t start = heap->OldGenerationAllocationCounter();
|
|
for (int i = 0; i < 20; i++) {
|
|
AllocateInSpace(isolate, kSize, OLD_SPACE);
|
|
size_t counter = heap->OldGenerationAllocationCounter();
|
|
CHECK_LE(kSize, counter - start);
|
|
start = counter;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(NewSpaceAllocationThroughput) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
GCTracer* tracer = heap->tracer();
|
|
int time1 = 100;
|
|
size_t counter1 = 1000;
|
|
tracer->SampleAllocation(time1, counter1, 0);
|
|
int time2 = 200;
|
|
size_t counter2 = 2000;
|
|
tracer->SampleAllocation(time2, counter2, 0);
|
|
size_t throughput =
|
|
tracer->NewSpaceAllocationThroughputInBytesPerMillisecond();
|
|
CHECK_EQ((counter2 - counter1) / (time2 - time1), throughput);
|
|
int time3 = 1000;
|
|
size_t counter3 = 30000;
|
|
tracer->SampleAllocation(time3, counter3, 0);
|
|
throughput = tracer->NewSpaceAllocationThroughputInBytesPerMillisecond();
|
|
CHECK_EQ((counter3 - counter1) / (time3 - time1), throughput);
|
|
}
|
|
|
|
|
|
TEST(NewSpaceAllocationThroughput2) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
GCTracer* tracer = heap->tracer();
|
|
int time1 = 100;
|
|
size_t counter1 = 1000;
|
|
tracer->SampleAllocation(time1, counter1, 0);
|
|
int time2 = 200;
|
|
size_t counter2 = 2000;
|
|
tracer->SampleAllocation(time2, counter2, 0);
|
|
size_t throughput =
|
|
tracer->NewSpaceAllocationThroughputInBytesPerMillisecond(100);
|
|
CHECK_EQ((counter2 - counter1) / (time2 - time1), throughput);
|
|
int time3 = 1000;
|
|
size_t counter3 = 30000;
|
|
tracer->SampleAllocation(time3, counter3, 0);
|
|
throughput = tracer->NewSpaceAllocationThroughputInBytesPerMillisecond(100);
|
|
CHECK_EQ((counter3 - counter1) / (time3 - time1), throughput);
|
|
}
|
|
|
|
|
|
static void CheckLeak(const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Object* message =
|
|
*reinterpret_cast<Object**>(isolate->pending_message_obj_address());
|
|
CHECK(message->IsTheHole());
|
|
}
|
|
|
|
|
|
TEST(MessageObjectLeak) {
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Handle<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
|
|
global->Set(v8::String::NewFromUtf8(isolate, "check"),
|
|
v8::FunctionTemplate::New(isolate, CheckLeak));
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate, NULL, global);
|
|
v8::Context::Scope cscope(context);
|
|
|
|
const char* test =
|
|
"try {"
|
|
" throw 'message 1';"
|
|
"} catch (e) {"
|
|
"}"
|
|
"check();"
|
|
"L: try {"
|
|
" throw 'message 2';"
|
|
"} finally {"
|
|
" break L;"
|
|
"}"
|
|
"check();";
|
|
CompileRun(test);
|
|
|
|
const char* flag = "--turbo-filter=*";
|
|
FlagList::SetFlagsFromString(flag, StrLength(flag));
|
|
FLAG_always_opt = true;
|
|
FLAG_turbo_try_catch = true;
|
|
FLAG_turbo_try_finally = true;
|
|
|
|
CompileRun(test);
|
|
}
|
|
|
|
|
|
static void CheckEqualSharedFunctionInfos(
|
|
const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
Handle<Object> obj1 = v8::Utils::OpenHandle(*args[0]);
|
|
Handle<Object> obj2 = v8::Utils::OpenHandle(*args[1]);
|
|
Handle<JSFunction> fun1 = Handle<JSFunction>::cast(obj1);
|
|
Handle<JSFunction> fun2 = Handle<JSFunction>::cast(obj2);
|
|
CHECK(fun1->shared() == fun2->shared());
|
|
}
|
|
|
|
|
|
static void RemoveCodeAndGC(const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Handle<Object> obj = v8::Utils::OpenHandle(*args[0]);
|
|
Handle<JSFunction> fun = Handle<JSFunction>::cast(obj);
|
|
fun->ReplaceCode(*isolate->builtins()->CompileLazy());
|
|
fun->shared()->ReplaceCode(*isolate->builtins()->CompileLazy());
|
|
isolate->heap()->CollectAllAvailableGarbage("remove code and gc");
|
|
}
|
|
|
|
|
|
TEST(CanonicalSharedFunctionInfo) {
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Handle<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
|
|
global->Set(isolate, "check", v8::FunctionTemplate::New(
|
|
isolate, CheckEqualSharedFunctionInfos));
|
|
global->Set(isolate, "remove",
|
|
v8::FunctionTemplate::New(isolate, RemoveCodeAndGC));
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate, NULL, global);
|
|
v8::Context::Scope cscope(context);
|
|
CompileRun(
|
|
"function f() { return function g() {}; }"
|
|
"var g1 = f();"
|
|
"remove(f);"
|
|
"var g2 = f();"
|
|
"check(g1, g2);");
|
|
|
|
CompileRun(
|
|
"function f() { return (function() { return function g() {}; })(); }"
|
|
"var g1 = f();"
|
|
"remove(f);"
|
|
"var g2 = f();"
|
|
"check(g1, g2);");
|
|
}
|
|
|
|
|
|
TEST(OldGenerationAllocationThroughput) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
GCTracer* tracer = heap->tracer();
|
|
int time1 = 100;
|
|
size_t counter1 = 1000;
|
|
tracer->SampleAllocation(time1, 0, counter1);
|
|
int time2 = 200;
|
|
size_t counter2 = 2000;
|
|
tracer->SampleAllocation(time2, 0, counter2);
|
|
size_t throughput =
|
|
tracer->OldGenerationAllocationThroughputInBytesPerMillisecond(100);
|
|
CHECK_EQ((counter2 - counter1) / (time2 - time1), throughput);
|
|
int time3 = 1000;
|
|
size_t counter3 = 30000;
|
|
tracer->SampleAllocation(time3, 0, counter3);
|
|
throughput =
|
|
tracer->OldGenerationAllocationThroughputInBytesPerMillisecond(100);
|
|
CHECK_EQ((counter3 - counter1) / (time3 - time1), throughput);
|
|
}
|
|
|
|
|
|
TEST(AllocationThroughput) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
GCTracer* tracer = heap->tracer();
|
|
int time1 = 100;
|
|
size_t counter1 = 1000;
|
|
tracer->SampleAllocation(time1, counter1, counter1);
|
|
int time2 = 200;
|
|
size_t counter2 = 2000;
|
|
tracer->SampleAllocation(time2, counter2, counter2);
|
|
size_t throughput = tracer->AllocationThroughputInBytesPerMillisecond(100);
|
|
CHECK_EQ(2 * (counter2 - counter1) / (time2 - time1), throughput);
|
|
int time3 = 1000;
|
|
size_t counter3 = 30000;
|
|
tracer->SampleAllocation(time3, counter3, counter3);
|
|
throughput = tracer->AllocationThroughputInBytesPerMillisecond(100);
|
|
CHECK_EQ(2 * (counter3 - counter1) / (time3 - time1), throughput);
|
|
}
|
|
|
|
|
|
TEST(SlotsBufferObjectSlotsRemoval) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
|
|
SlotsBuffer* buffer = new SlotsBuffer(NULL);
|
|
void* fake_object[1];
|
|
|
|
Handle<FixedArray> array = factory->NewFixedArray(2, TENURED);
|
|
CHECK(heap->old_space()->Contains(*array));
|
|
array->set(0, reinterpret_cast<Object*>(fake_object), SKIP_WRITE_BARRIER);
|
|
|
|
// Firstly, let's test the regular slots buffer entry.
|
|
buffer->Add(HeapObject::RawField(*array, FixedArray::kHeaderSize));
|
|
CHECK(reinterpret_cast<void*>(buffer->Get(0)) ==
|
|
HeapObject::RawField(*array, FixedArray::kHeaderSize));
|
|
SlotsBuffer::RemoveObjectSlots(CcTest::i_isolate()->heap(), buffer,
|
|
array->address(),
|
|
array->address() + array->Size());
|
|
CHECK(reinterpret_cast<void*>(buffer->Get(0)) ==
|
|
HeapObject::RawField(heap->empty_fixed_array(),
|
|
FixedArrayBase::kLengthOffset));
|
|
|
|
// Secondly, let's test the typed slots buffer entry.
|
|
SlotsBuffer::AddTo(NULL, &buffer, SlotsBuffer::EMBEDDED_OBJECT_SLOT,
|
|
array->address() + FixedArray::kHeaderSize,
|
|
SlotsBuffer::FAIL_ON_OVERFLOW);
|
|
CHECK(reinterpret_cast<void*>(buffer->Get(1)) ==
|
|
reinterpret_cast<Object**>(SlotsBuffer::EMBEDDED_OBJECT_SLOT));
|
|
CHECK(reinterpret_cast<void*>(buffer->Get(2)) ==
|
|
HeapObject::RawField(*array, FixedArray::kHeaderSize));
|
|
SlotsBuffer::RemoveObjectSlots(CcTest::i_isolate()->heap(), buffer,
|
|
array->address(),
|
|
array->address() + array->Size());
|
|
CHECK(reinterpret_cast<void*>(buffer->Get(1)) ==
|
|
HeapObject::RawField(heap->empty_fixed_array(),
|
|
FixedArrayBase::kLengthOffset));
|
|
CHECK(reinterpret_cast<void*>(buffer->Get(2)) ==
|
|
HeapObject::RawField(heap->empty_fixed_array(),
|
|
FixedArrayBase::kLengthOffset));
|
|
delete buffer;
|
|
}
|
|
|
|
|
|
TEST(ContextMeasure) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
LocalContext context;
|
|
|
|
int size_upper_limit = 0;
|
|
int count_upper_limit = 0;
|
|
HeapIterator it(CcTest::heap());
|
|
for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
|
|
size_upper_limit += obj->Size();
|
|
count_upper_limit++;
|
|
}
|
|
|
|
ContextMeasure measure(*isolate->native_context());
|
|
|
|
PrintF("Context size : %d bytes\n", measure.Size());
|
|
PrintF("Context object count: %d\n", measure.Count());
|
|
|
|
CHECK_LE(1000, measure.Count());
|
|
CHECK_LE(50000, measure.Size());
|
|
|
|
CHECK_LE(measure.Count(), count_upper_limit);
|
|
CHECK_LE(measure.Size(), size_upper_limit);
|
|
}
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|