mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
425 lines
13 KiB
425 lines
13 KiB
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/arm64/utils-arm64.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/test-utils-arm64.h"
|
|
|
|
using namespace v8::internal;
|
|
|
|
|
|
#define __ masm->
|
|
|
|
|
|
bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
|
|
if (result != expected) {
|
|
printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
|
|
expected, result);
|
|
}
|
|
|
|
return expected == result;
|
|
}
|
|
|
|
|
|
bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
|
|
if (result != expected) {
|
|
printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
|
expected, result);
|
|
}
|
|
|
|
return expected == result;
|
|
}
|
|
|
|
|
|
bool EqualFP32(float expected, const RegisterDump*, float result) {
|
|
if (float_to_rawbits(expected) == float_to_rawbits(result)) {
|
|
return true;
|
|
} else {
|
|
if (std::isnan(expected) || (expected == 0.0)) {
|
|
printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
|
|
float_to_rawbits(expected), float_to_rawbits(result));
|
|
} else {
|
|
printf("Expected %.9f (0x%08" PRIx32 ")\t "
|
|
"Found %.9f (0x%08" PRIx32 ")\n",
|
|
expected, float_to_rawbits(expected),
|
|
result, float_to_rawbits(result));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool EqualFP64(double expected, const RegisterDump*, double result) {
|
|
if (double_to_rawbits(expected) == double_to_rawbits(result)) {
|
|
return true;
|
|
}
|
|
|
|
if (std::isnan(expected) || (expected == 0.0)) {
|
|
printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
|
double_to_rawbits(expected), double_to_rawbits(result));
|
|
} else {
|
|
printf("Expected %.17f (0x%016" PRIx64 ")\t "
|
|
"Found %.17f (0x%016" PRIx64 ")\n",
|
|
expected, double_to_rawbits(expected),
|
|
result, double_to_rawbits(result));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
|
|
DCHECK(reg.Is32Bits());
|
|
// Retrieve the corresponding X register so we can check that the upper part
|
|
// was properly cleared.
|
|
int64_t result_x = core->xreg(reg.code());
|
|
if ((result_x & 0xffffffff00000000L) != 0) {
|
|
printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
|
|
expected, result_x);
|
|
return false;
|
|
}
|
|
uint32_t result_w = core->wreg(reg.code());
|
|
return Equal32(expected, core, result_w);
|
|
}
|
|
|
|
|
|
bool Equal64(uint64_t expected,
|
|
const RegisterDump* core,
|
|
const Register& reg) {
|
|
DCHECK(reg.Is64Bits());
|
|
uint64_t result = core->xreg(reg.code());
|
|
return Equal64(expected, core, result);
|
|
}
|
|
|
|
|
|
bool EqualFP32(float expected,
|
|
const RegisterDump* core,
|
|
const FPRegister& fpreg) {
|
|
DCHECK(fpreg.Is32Bits());
|
|
// Retrieve the corresponding D register so we can check that the upper part
|
|
// was properly cleared.
|
|
uint64_t result_64 = core->dreg_bits(fpreg.code());
|
|
if ((result_64 & 0xffffffff00000000L) != 0) {
|
|
printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
|
|
float_to_rawbits(expected), expected, result_64);
|
|
return false;
|
|
}
|
|
|
|
return EqualFP32(expected, core, core->sreg(fpreg.code()));
|
|
}
|
|
|
|
|
|
bool EqualFP64(double expected,
|
|
const RegisterDump* core,
|
|
const FPRegister& fpreg) {
|
|
DCHECK(fpreg.Is64Bits());
|
|
return EqualFP64(expected, core, core->dreg(fpreg.code()));
|
|
}
|
|
|
|
|
|
bool Equal64(const Register& reg0,
|
|
const RegisterDump* core,
|
|
const Register& reg1) {
|
|
DCHECK(reg0.Is64Bits() && reg1.Is64Bits());
|
|
int64_t expected = core->xreg(reg0.code());
|
|
int64_t result = core->xreg(reg1.code());
|
|
return Equal64(expected, core, result);
|
|
}
|
|
|
|
|
|
static char FlagN(uint32_t flags) {
|
|
return (flags & NFlag) ? 'N' : 'n';
|
|
}
|
|
|
|
|
|
static char FlagZ(uint32_t flags) {
|
|
return (flags & ZFlag) ? 'Z' : 'z';
|
|
}
|
|
|
|
|
|
static char FlagC(uint32_t flags) {
|
|
return (flags & CFlag) ? 'C' : 'c';
|
|
}
|
|
|
|
|
|
static char FlagV(uint32_t flags) {
|
|
return (flags & VFlag) ? 'V' : 'v';
|
|
}
|
|
|
|
|
|
bool EqualNzcv(uint32_t expected, uint32_t result) {
|
|
DCHECK((expected & ~NZCVFlag) == 0);
|
|
DCHECK((result & ~NZCVFlag) == 0);
|
|
if (result != expected) {
|
|
printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
|
|
FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected),
|
|
FlagN(result), FlagZ(result), FlagC(result), FlagV(result));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
|
if (a->xreg(i) != b->xreg(i)) {
|
|
printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
|
i, a->xreg(i), b->xreg(i));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
|
uint64_t a_bits = a->dreg_bits(i);
|
|
uint64_t b_bits = b->dreg_bits(i);
|
|
if (a_bits != b_bits) {
|
|
printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
|
i, a_bits, b_bits);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
|
|
int reg_size, int reg_count, RegList allowed) {
|
|
RegList list = 0;
|
|
int i = 0;
|
|
for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
|
|
if (((1UL << n) & allowed) != 0) {
|
|
// Only assign allowed registers.
|
|
if (r) {
|
|
r[i] = Register::Create(n, reg_size);
|
|
}
|
|
if (x) {
|
|
x[i] = Register::Create(n, kXRegSizeInBits);
|
|
}
|
|
if (w) {
|
|
w[i] = Register::Create(n, kWRegSizeInBits);
|
|
}
|
|
list |= (1UL << n);
|
|
i++;
|
|
}
|
|
}
|
|
// Check that we got enough registers.
|
|
DCHECK(CountSetBits(list, kNumberOfRegisters) == reg_count);
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
|
|
int reg_size, int reg_count, RegList allowed) {
|
|
RegList list = 0;
|
|
int i = 0;
|
|
for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
|
|
if (((1UL << n) & allowed) != 0) {
|
|
// Only assigned allowed registers.
|
|
if (v) {
|
|
v[i] = FPRegister::Create(n, reg_size);
|
|
}
|
|
if (d) {
|
|
d[i] = FPRegister::Create(n, kDRegSizeInBits);
|
|
}
|
|
if (s) {
|
|
s[i] = FPRegister::Create(n, kSRegSizeInBits);
|
|
}
|
|
list |= (1UL << n);
|
|
i++;
|
|
}
|
|
}
|
|
// Check that we got enough registers.
|
|
DCHECK(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
|
|
Register first = NoReg;
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
|
if (reg_list & (1UL << i)) {
|
|
Register xn = Register::Create(i, kXRegSizeInBits);
|
|
// We should never write into csp here.
|
|
DCHECK(!xn.Is(csp));
|
|
if (!xn.IsZero()) {
|
|
if (!first.IsValid()) {
|
|
// This is the first register we've hit, so construct the literal.
|
|
__ Mov(xn, value);
|
|
first = xn;
|
|
} else {
|
|
// We've already loaded the literal, so re-use the value already
|
|
// loaded into the first register we hit.
|
|
__ Mov(xn, first);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
|
|
FPRegister first = NoFPReg;
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
|
if (reg_list & (1UL << i)) {
|
|
FPRegister dn = FPRegister::Create(i, kDRegSizeInBits);
|
|
if (!first.IsValid()) {
|
|
// This is the first register we've hit, so construct the literal.
|
|
__ Fmov(dn, value);
|
|
first = dn;
|
|
} else {
|
|
// We've already loaded the literal, so re-use the value already loaded
|
|
// into the first register we hit.
|
|
__ Fmov(dn, first);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Clobber(MacroAssembler* masm, CPURegList reg_list) {
|
|
if (reg_list.type() == CPURegister::kRegister) {
|
|
// This will always clobber X registers.
|
|
Clobber(masm, reg_list.list());
|
|
} else if (reg_list.type() == CPURegister::kFPRegister) {
|
|
// This will always clobber D registers.
|
|
ClobberFP(masm, reg_list.list());
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void RegisterDump::Dump(MacroAssembler* masm) {
|
|
DCHECK(__ StackPointer().Is(csp));
|
|
|
|
// Ensure that we don't unintentionally clobber any registers.
|
|
RegList old_tmp_list = masm->TmpList()->list();
|
|
RegList old_fptmp_list = masm->FPTmpList()->list();
|
|
masm->TmpList()->set_list(0);
|
|
masm->FPTmpList()->set_list(0);
|
|
|
|
// Preserve some temporary registers.
|
|
Register dump_base = x0;
|
|
Register dump = x1;
|
|
Register tmp = x2;
|
|
Register dump_base_w = dump_base.W();
|
|
Register dump_w = dump.W();
|
|
Register tmp_w = tmp.W();
|
|
|
|
// Offsets into the dump_ structure.
|
|
const int x_offset = offsetof(dump_t, x_);
|
|
const int w_offset = offsetof(dump_t, w_);
|
|
const int d_offset = offsetof(dump_t, d_);
|
|
const int s_offset = offsetof(dump_t, s_);
|
|
const int sp_offset = offsetof(dump_t, sp_);
|
|
const int wsp_offset = offsetof(dump_t, wsp_);
|
|
const int flags_offset = offsetof(dump_t, flags_);
|
|
|
|
__ Push(xzr, dump_base, dump, tmp);
|
|
|
|
// Load the address where we will dump the state.
|
|
__ Mov(dump_base, reinterpret_cast<uint64_t>(&dump_));
|
|
|
|
// Dump the stack pointer (csp and wcsp).
|
|
// The stack pointer cannot be stored directly; it needs to be moved into
|
|
// another register first. Also, we pushed four X registers, so we need to
|
|
// compensate here.
|
|
__ Add(tmp, csp, 4 * kXRegSize);
|
|
__ Str(tmp, MemOperand(dump_base, sp_offset));
|
|
__ Add(tmp_w, wcsp, 4 * kXRegSize);
|
|
__ Str(tmp_w, MemOperand(dump_base, wsp_offset));
|
|
|
|
// Dump X registers.
|
|
__ Add(dump, dump_base, x_offset);
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
|
|
__ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1),
|
|
MemOperand(dump, i * kXRegSize));
|
|
}
|
|
|
|
// Dump W registers.
|
|
__ Add(dump, dump_base, w_offset);
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
|
|
__ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1),
|
|
MemOperand(dump, i * kWRegSize));
|
|
}
|
|
|
|
// Dump D registers.
|
|
__ Add(dump, dump_base, d_offset);
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
|
|
__ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1),
|
|
MemOperand(dump, i * kDRegSize));
|
|
}
|
|
|
|
// Dump S registers.
|
|
__ Add(dump, dump_base, s_offset);
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
|
|
__ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1),
|
|
MemOperand(dump, i * kSRegSize));
|
|
}
|
|
|
|
// Dump the flags.
|
|
__ Mrs(tmp, NZCV);
|
|
__ Str(tmp, MemOperand(dump_base, flags_offset));
|
|
|
|
// To dump the values that were in tmp amd dump, we need a new scratch
|
|
// register. We can use any of the already dumped registers since we can
|
|
// easily restore them.
|
|
Register dump2_base = x10;
|
|
Register dump2 = x11;
|
|
DCHECK(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
|
|
|
|
// Don't lose the dump_ address.
|
|
__ Mov(dump2_base, dump_base);
|
|
|
|
__ Pop(tmp, dump, dump_base, xzr);
|
|
|
|
__ Add(dump2, dump2_base, w_offset);
|
|
__ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSize));
|
|
__ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSize));
|
|
__ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSize));
|
|
|
|
__ Add(dump2, dump2_base, x_offset);
|
|
__ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSize));
|
|
__ Str(dump, MemOperand(dump2, dump.code() * kXRegSize));
|
|
__ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSize));
|
|
|
|
// Finally, restore dump2_base and dump2.
|
|
__ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSize));
|
|
__ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSize));
|
|
|
|
// Restore the MacroAssembler's scratch registers.
|
|
masm->TmpList()->set_list(old_tmp_list);
|
|
masm->FPTmpList()->set_list(old_fptmp_list);
|
|
|
|
completed_ = true;
|
|
}
|
|
|