You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3628 lines
103 KiB

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "node.h"
#include "node_buffer.h"
#include "node_crypto.h"
#include "node_crypto_bio.h"
#include "node_crypto_groups.h"
#include "node_root_certs.h"
#include "tls_wrap.h" // TLSCallbacks
#include "string_bytes.h"
#include "v8.h"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#if defined(_MSC_VER)
#define strcasecmp _stricmp
#endif
#if OPENSSL_VERSION_NUMBER >= 0x10000000L
#define OPENSSL_CONST const
#else
#define OPENSSL_CONST
#endif
#define ASSERT_IS_STRING_OR_BUFFER(val) do { \
if (!Buffer::HasInstance(val) && !val->IsString()) { \
return ThrowTypeError("Not a string or buffer"); \
} \
} while (0)
#define ASSERT_IS_BUFFER(val) do { \
if (!Buffer::HasInstance(val)) { \
return ThrowTypeError("Not a buffer"); \
} \
} while (0)
static const char PUBLIC_KEY_PFX[] = "-----BEGIN PUBLIC KEY-----";
static const int PUBLIC_KEY_PFX_LEN = sizeof(PUBLIC_KEY_PFX) - 1;
static const char PUBRSA_KEY_PFX[] = "-----BEGIN RSA PUBLIC KEY-----";
static const int PUBRSA_KEY_PFX_LEN = sizeof(PUBRSA_KEY_PFX) - 1;
static const int X509_NAME_FLAGS = ASN1_STRFLGS_ESC_CTRL
| ASN1_STRFLGS_ESC_MSB
| XN_FLAG_SEP_MULTILINE
| XN_FLAG_FN_SN;
namespace node {
namespace crypto {
using v8::Array;
using v8::Boolean;
using v8::Exception;
using v8::False;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::Handle;
using v8::HandleScope;
using v8::Integer;
using v8::Local;
using v8::Null;
using v8::Object;
using v8::Persistent;
using v8::String;
using v8::ThrowException;
using v8::V8;
using v8::Value;
// Forcibly clear OpenSSL's error stack on return. This stops stale errors
// from popping up later in the lifecycle of crypto operations where they
// would cause spurious failures. It's a rather blunt method, though.
// ERR_clear_error() isn't necessarily cheap either.
struct ClearErrorOnReturn {
~ClearErrorOnReturn() { ERR_clear_error(); }
};
static Cached<String> subject_symbol;
static Cached<String> subjectaltname_symbol;
static Cached<String> modulus_symbol;
static Cached<String> exponent_symbol;
static Cached<String> issuer_symbol;
static Cached<String> valid_from_symbol;
static Cached<String> valid_to_symbol;
static Cached<String> fingerprint_symbol;
static Cached<String> name_symbol;
static Cached<String> version_symbol;
static Cached<String> ext_key_usage_symbol;
static Cached<String> onhandshakestart_sym;
static Cached<String> onhandshakedone_sym;
static Cached<String> onclienthello_sym;
static Cached<String> onnewsession_sym;
static Cached<String> sessionid_sym;
static Cached<String> servername_sym;
static Cached<String> tls_ticket_sym;
static Persistent<FunctionTemplate> secure_context_constructor;
static uv_rwlock_t* locks;
// Just to generate static methods
template class SSLWrap<TLSCallbacks>;
template void SSLWrap<TLSCallbacks>::AddMethods(Handle<FunctionTemplate> t);
template SSL_SESSION* SSLWrap<TLSCallbacks>::GetSessionCallback(
SSL* s,
unsigned char* key,
int len,
int* copy);
template int SSLWrap<TLSCallbacks>::NewSessionCallback(SSL* s,
SSL_SESSION* sess);
template void SSLWrap<TLSCallbacks>::OnClientHello(
void* arg,
const ClientHelloParser::ClientHello& hello);
template int SSLWrap<TLSCallbacks>::AdvertiseNextProtoCallback(
SSL* s,
const unsigned char** data,
unsigned int* len,
void* arg);
template int SSLWrap<TLSCallbacks>::SelectNextProtoCallback(
SSL* s,
unsigned char** out,
unsigned char* outlen,
const unsigned char* in,
unsigned int inlen,
void* arg);
static void crypto_threadid_cb(CRYPTO_THREADID* tid) {
CRYPTO_THREADID_set_numeric(tid, uv_thread_self());
}
static void crypto_lock_init(void) {
int i, n;
n = CRYPTO_num_locks();
locks = new uv_rwlock_t[n];
for (i = 0; i < n; i++)
if (uv_rwlock_init(locks + i))
abort();
}
static void crypto_lock_cb(int mode, int n, const char* file, int line) {
assert((mode & CRYPTO_LOCK) || (mode & CRYPTO_UNLOCK));
assert((mode & CRYPTO_READ) || (mode & CRYPTO_WRITE));
if (mode & CRYPTO_LOCK) {
if (mode & CRYPTO_READ)
uv_rwlock_rdlock(locks + n);
else
uv_rwlock_wrlock(locks + n);
} else {
if (mode & CRYPTO_READ)
uv_rwlock_rdunlock(locks + n);
else
uv_rwlock_wrunlock(locks + n);
}
}
void ThrowCryptoErrorHelper(unsigned long err, bool is_type_error) {
HandleScope scope(node_isolate);
char errmsg[128];
ERR_error_string_n(err, errmsg, sizeof(errmsg));
if (is_type_error)
ThrowTypeError(errmsg);
else
ThrowError(errmsg);
}
void ThrowCryptoError(unsigned long err) {
ThrowCryptoErrorHelper(err, false);
}
void ThrowCryptoTypeError(unsigned long err) {
ThrowCryptoErrorHelper(err, true);
}
void SecureContext::Initialize(Handle<Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(SecureContext::New);
secure_context_constructor.Reset(node_isolate, t);
t->InstanceTemplate()->SetInternalFieldCount(1);
t->SetClassName(FIXED_ONE_BYTE_STRING(node_isolate, "SecureContext"));
NODE_SET_PROTOTYPE_METHOD(t, "init", SecureContext::Init);
NODE_SET_PROTOTYPE_METHOD(t, "setKey", SecureContext::SetKey);
NODE_SET_PROTOTYPE_METHOD(t, "setCert", SecureContext::SetCert);
NODE_SET_PROTOTYPE_METHOD(t, "addCACert", SecureContext::AddCACert);
NODE_SET_PROTOTYPE_METHOD(t, "addCRL", SecureContext::AddCRL);
NODE_SET_PROTOTYPE_METHOD(t, "addRootCerts", SecureContext::AddRootCerts);
NODE_SET_PROTOTYPE_METHOD(t, "setCiphers", SecureContext::SetCiphers);
NODE_SET_PROTOTYPE_METHOD(t, "setOptions", SecureContext::SetOptions);
NODE_SET_PROTOTYPE_METHOD(t, "setSessionIdContext",
SecureContext::SetSessionIdContext);
NODE_SET_PROTOTYPE_METHOD(t, "setSessionTimeout",
SecureContext::SetSessionTimeout);
NODE_SET_PROTOTYPE_METHOD(t, "close", SecureContext::Close);
NODE_SET_PROTOTYPE_METHOD(t, "loadPKCS12", SecureContext::LoadPKCS12);
NODE_SET_PROTOTYPE_METHOD(t, "getTicketKeys", SecureContext::GetTicketKeys);
NODE_SET_PROTOTYPE_METHOD(t, "setTicketKeys", SecureContext::SetTicketKeys);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "SecureContext"),
t->GetFunction());
}
void SecureContext::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext* sc = new SecureContext();
sc->Wrap(args.This());
}
void SecureContext::Init(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
OPENSSL_CONST SSL_METHOD *method = SSLv23_method();
if (args.Length() == 1 && args[0]->IsString()) {
const String::Utf8Value sslmethod(args[0]);
if (strcmp(*sslmethod, "SSLv2_method") == 0) {
#ifndef OPENSSL_NO_SSL2
method = SSLv2_method();
#else
return ThrowError("SSLv2 methods disabled");
#endif
} else if (strcmp(*sslmethod, "SSLv2_server_method") == 0) {
#ifndef OPENSSL_NO_SSL2
method = SSLv2_server_method();
#else
return ThrowError("SSLv2 methods disabled");
#endif
} else if (strcmp(*sslmethod, "SSLv2_client_method") == 0) {
#ifndef OPENSSL_NO_SSL2
method = SSLv2_client_method();
#else
return ThrowError("SSLv2 methods disabled");
#endif
} else if (strcmp(*sslmethod, "SSLv3_method") == 0) {
method = SSLv3_method();
} else if (strcmp(*sslmethod, "SSLv3_server_method") == 0) {
method = SSLv3_server_method();
} else if (strcmp(*sslmethod, "SSLv3_client_method") == 0) {
method = SSLv3_client_method();
} else if (strcmp(*sslmethod, "SSLv23_method") == 0) {
method = SSLv23_method();
} else if (strcmp(*sslmethod, "SSLv23_server_method") == 0) {
method = SSLv23_server_method();
} else if (strcmp(*sslmethod, "SSLv23_client_method") == 0) {
method = SSLv23_client_method();
} else if (strcmp(*sslmethod, "TLSv1_method") == 0) {
method = TLSv1_method();
} else if (strcmp(*sslmethod, "TLSv1_server_method") == 0) {
method = TLSv1_server_method();
} else if (strcmp(*sslmethod, "TLSv1_client_method") == 0) {
method = TLSv1_client_method();
} else if (strcmp(*sslmethod, "TLSv1_1_method") == 0) {
method = TLSv1_1_method();
} else if (strcmp(*sslmethod, "TLSv1_1_server_method") == 0) {
method = TLSv1_1_server_method();
} else if (strcmp(*sslmethod, "TLSv1_1_client_method") == 0) {
method = TLSv1_1_client_method();
} else if (strcmp(*sslmethod, "TLSv1_2_method") == 0) {
method = TLSv1_2_method();
} else if (strcmp(*sslmethod, "TLSv1_2_server_method") == 0) {
method = TLSv1_2_server_method();
} else if (strcmp(*sslmethod, "TLSv1_2_client_method") == 0) {
method = TLSv1_2_client_method();
} else {
return ThrowError("Unknown method");
}
}
sc->ctx_ = SSL_CTX_new(method);
// SSL session cache configuration
SSL_CTX_set_session_cache_mode(sc->ctx_,
SSL_SESS_CACHE_SERVER |
SSL_SESS_CACHE_NO_INTERNAL |
SSL_SESS_CACHE_NO_AUTO_CLEAR);
SSL_CTX_sess_set_get_cb(sc->ctx_, SSLWrap<Connection>::GetSessionCallback);
SSL_CTX_sess_set_new_cb(sc->ctx_, SSLWrap<Connection>::NewSessionCallback);
sc->ca_store_ = NULL;
}
// Takes a string or buffer and loads it into a BIO.
// Caller responsible for BIO_free_all-ing the returned object.
static BIO* LoadBIO(Handle<Value> v) {
BIO *bio = BIO_new(NodeBIO::GetMethod());
if (!bio) return NULL;
HandleScope scope(node_isolate);
int r = -1;
if (v->IsString()) {
const String::Utf8Value s(v);
r = BIO_write(bio, *s, s.length());
} else if (Buffer::HasInstance(v)) {
char* buffer_data = Buffer::Data(v);
size_t buffer_length = Buffer::Length(v);
r = BIO_write(bio, buffer_data, buffer_length);
}
if (r <= 0) {
BIO_free_all(bio);
return NULL;
}
return bio;
}
// Takes a string or buffer and loads it into an X509
// Caller responsible for X509_free-ing the returned object.
static X509* LoadX509(Handle<Value> v) {
HandleScope scope(node_isolate);
BIO *bio = LoadBIO(v);
if (!bio) return NULL;
X509 * x509 = PEM_read_bio_X509(bio, NULL, NULL, NULL);
if (!x509) {
BIO_free_all(bio);
return NULL;
}
BIO_free_all(bio);
return x509;
}
void SecureContext::SetKey(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
unsigned int len = args.Length();
if (len != 1 && len != 2) {
return ThrowTypeError("Bad parameter");
}
if (len == 2 && !args[1]->IsString()) {
return ThrowTypeError("Bad parameter");
}
BIO *bio = LoadBIO(args[0]);
if (!bio) return;
String::Utf8Value passphrase(args[1]);
EVP_PKEY* key = PEM_read_bio_PrivateKey(bio, NULL, NULL,
len == 1 ? NULL : *passphrase);
if (!key) {
BIO_free_all(bio);
unsigned long err = ERR_get_error();
if (!err) {
return ThrowError("PEM_read_bio_PrivateKey");
}
return ThrowCryptoError(err);
}
SSL_CTX_use_PrivateKey(sc->ctx_, key);
EVP_PKEY_free(key);
BIO_free_all(bio);
}
// Read a file that contains our certificate in "PEM" format,
// possibly followed by a sequence of CA certificates that should be
// sent to the peer in the Certificate message.
//
// Taken from OpenSSL - editted for style.
int SSL_CTX_use_certificate_chain(SSL_CTX *ctx, BIO *in) {
int ret = 0;
X509 *x = NULL;
x = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL);
if (x == NULL) {
SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE, ERR_R_PEM_LIB);
goto end;
}
ret = SSL_CTX_use_certificate(ctx, x);
if (ERR_peek_error() != 0) {
// Key/certificate mismatch doesn't imply ret==0 ...
ret = 0;
}
if (ret) {
// If we could set up our certificate, now proceed to
// the CA certificates.
X509 *ca;
int r;
unsigned long err;
if (ctx->extra_certs != NULL) {
sk_X509_pop_free(ctx->extra_certs, X509_free);
ctx->extra_certs = NULL;
}
while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) {
r = SSL_CTX_add_extra_chain_cert(ctx, ca);
if (!r) {
X509_free(ca);
ret = 0;
goto end;
}
// Note that we must not free r if it was successfully
// added to the chain (while we must free the main
// certificate, since its reference count is increased
// by SSL_CTX_use_certificate).
}
// When the while loop ends, it's usually just EOF.
err = ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
ERR_clear_error();
} else {
// some real error
ret = 0;
}
}
end:
if (x != NULL) X509_free(x);
return ret;
}
void SecureContext::SetCert(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1) {
return ThrowTypeError("Bad parameter");
}
BIO* bio = LoadBIO(args[0]);
if (!bio) return;
int rv = SSL_CTX_use_certificate_chain(sc->ctx_, bio);
BIO_free_all(bio);
if (!rv) {
unsigned long err = ERR_get_error();
if (!err) {
return ThrowError("SSL_CTX_use_certificate_chain");
}
return ThrowCryptoError(err);
}
}
void SecureContext::AddCACert(const FunctionCallbackInfo<Value>& args) {
bool newCAStore = false;
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1) {
return ThrowTypeError("Bad parameter");
}
if (!sc->ca_store_) {
sc->ca_store_ = X509_STORE_new();
newCAStore = true;
}
X509* x509 = LoadX509(args[0]);
if (!x509) return;
X509_STORE_add_cert(sc->ca_store_, x509);
SSL_CTX_add_client_CA(sc->ctx_, x509);
X509_free(x509);
if (newCAStore) {
SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_);
}
}
void SecureContext::AddCRL(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1) {
return ThrowTypeError("Bad parameter");
}
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
BIO *bio = LoadBIO(args[0]);
if (!bio) return;
X509_CRL *x509 = PEM_read_bio_X509_CRL(bio, NULL, NULL, NULL);
if (x509 == NULL) {
BIO_free_all(bio);
return;
}
X509_STORE_add_crl(sc->ca_store_, x509);
X509_STORE_set_flags(sc->ca_store_, X509_V_FLAG_CRL_CHECK |
X509_V_FLAG_CRL_CHECK_ALL);
BIO_free_all(bio);
X509_CRL_free(x509);
}
void SecureContext::AddRootCerts(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
assert(sc->ca_store_ == NULL);
if (!root_cert_store) {
root_cert_store = X509_STORE_new();
for (int i = 0; root_certs[i]; i++) {
BIO *bp = BIO_new(NodeBIO::GetMethod());
if (!BIO_write(bp, root_certs[i], strlen(root_certs[i]))) {
BIO_free_all(bp);
return;
}
X509 *x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL);
if (x509 == NULL) {
BIO_free_all(bp);
return;
}
X509_STORE_add_cert(root_cert_store, x509);
BIO_free_all(bp);
X509_free(x509);
}
}
sc->ca_store_ = root_cert_store;
SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_);
}
void SecureContext::SetCiphers(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1 || !args[0]->IsString()) {
return ThrowTypeError("Bad parameter");
}
const String::Utf8Value ciphers(args[0]);
SSL_CTX_set_cipher_list(sc->ctx_, *ciphers);
}
void SecureContext::SetOptions(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1 || !args[0]->IntegerValue()) {
return ThrowTypeError("Bad parameter");
}
SSL_CTX_set_options(sc->ctx_, args[0]->IntegerValue());
}
void SecureContext::SetSessionIdContext(
const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1 || !args[0]->IsString()) {
return ThrowTypeError("Bad parameter");
}
const String::Utf8Value sessionIdContext(args[0]);
const unsigned char* sid_ctx =
reinterpret_cast<const unsigned char*>(*sessionIdContext);
unsigned int sid_ctx_len = sessionIdContext.length();
int r = SSL_CTX_set_session_id_context(sc->ctx_, sid_ctx, sid_ctx_len);
if (r == 1) return;
BIO* bio;
BUF_MEM* mem;
Local<String> message;
bio = BIO_new(BIO_s_mem());
if (bio == NULL) {
message = FIXED_ONE_BYTE_STRING(node_isolate,
"SSL_CTX_set_session_id_context error");
} else {
ERR_print_errors(bio);
BIO_get_mem_ptr(bio, &mem);
message = OneByteString(node_isolate, mem->data, mem->length);
BIO_free_all(bio);
}
ThrowException(Exception::TypeError(message));
}
void SecureContext::SetSessionTimeout(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() != 1 || !args[0]->IsInt32()) {
return ThrowTypeError("Bad parameter");
}
int32_t sessionTimeout = args[0]->Int32Value();
SSL_CTX_set_timeout(sc->ctx_, sessionTimeout);
}
void SecureContext::Close(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
sc->FreeCTXMem();
}
// Takes .pfx or .p12 and password in string or buffer format
void SecureContext::LoadPKCS12(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
BIO* in = NULL;
PKCS12* p12 = NULL;
EVP_PKEY* pkey = NULL;
X509* cert = NULL;
STACK_OF(X509)* extraCerts = NULL;
char* pass = NULL;
bool ret = false;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.This());
if (args.Length() < 1) {
return ThrowTypeError("Bad parameter");
}
in = LoadBIO(args[0]);
if (in == NULL) {
return ThrowError("Unable to load BIO");
}
if (args.Length() >= 2) {
ASSERT_IS_BUFFER(args[1]);
int passlen = Buffer::Length(args[1]);
if (passlen < 0) {
BIO_free_all(in);
return ThrowTypeError("Bad password");
}
pass = new char[passlen + 1];
int pass_written = DecodeWrite(pass, passlen, args[1], BINARY);
assert(pass_written == passlen);
pass[passlen] = '\0';
}
if (d2i_PKCS12_bio(in, &p12) &&
PKCS12_parse(p12, pass, &pkey, &cert, &extraCerts) &&
SSL_CTX_use_certificate(sc->ctx_, cert) &&
SSL_CTX_use_PrivateKey(sc->ctx_, pkey)) {
// set extra certs
while (X509* x509 = sk_X509_pop(extraCerts)) {
if (!sc->ca_store_) {
sc->ca_store_ = X509_STORE_new();
SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_);
}
X509_STORE_add_cert(sc->ca_store_, x509);
SSL_CTX_add_client_CA(sc->ctx_, x509);
X509_free(x509);
}
EVP_PKEY_free(pkey);
X509_free(cert);
sk_X509_free(extraCerts);
ret = true;
}
PKCS12_free(p12);
BIO_free_all(in);
delete[] pass;
if (!ret) {
unsigned long err = ERR_get_error();
const char* str = ERR_reason_error_string(err);
return ThrowError(str);
}
}
void SecureContext::GetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)
HandleScope scope(node_isolate);
SecureContext* wrap;
NODE_UNWRAP(args.This(), SecureContext, wrap);
Local<Object> buff = Buffer::New(48);
if (SSL_CTX_get_tlsext_ticket_keys(wrap->ctx_,
Buffer::Data(buff),
Buffer::Length(buff)) != 1) {
return ThrowError("Failed to fetch tls ticket keys");
}
args.GetReturnValue().Set(buff);
#endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}
void SecureContext::SetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)
HandleScope scope(node_isolate);
if (args.Length() < 1 ||
!Buffer::HasInstance(args[0]) ||
Buffer::Length(args[0]) != 48) {
return ThrowTypeError("Bad argument");
}
SecureContext* wrap;
NODE_UNWRAP(args.This(), SecureContext, wrap);
if (SSL_CTX_set_tlsext_ticket_keys(wrap->ctx_,
Buffer::Data(args[0]),
Buffer::Length(args[0])) != 1) {
return ThrowError("Failed to fetch tls ticket keys");
}
args.GetReturnValue().Set(true);
#endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}
template <class Base>
void SSLWrap<Base>::AddMethods(Handle<FunctionTemplate> t) {
HandleScope scope(node_isolate);
NODE_SET_PROTOTYPE_METHOD(t, "getPeerCertificate", GetPeerCertificate);
NODE_SET_PROTOTYPE_METHOD(t, "getSession", GetSession);
NODE_SET_PROTOTYPE_METHOD(t, "setSession", SetSession);
NODE_SET_PROTOTYPE_METHOD(t, "loadSession", LoadSession);
NODE_SET_PROTOTYPE_METHOD(t, "isSessionReused", IsSessionReused);
NODE_SET_PROTOTYPE_METHOD(t, "isInitFinished", IsInitFinished);
NODE_SET_PROTOTYPE_METHOD(t, "verifyError", VerifyError);
NODE_SET_PROTOTYPE_METHOD(t, "getCurrentCipher", GetCurrentCipher);
NODE_SET_PROTOTYPE_METHOD(t, "receivedShutdown", ReceivedShutdown);
NODE_SET_PROTOTYPE_METHOD(t, "endParser", EndParser);
#ifdef OPENSSL_NPN_NEGOTIATED
NODE_SET_PROTOTYPE_METHOD(t, "getNegotiatedProtocol", GetNegotiatedProto);
NODE_SET_PROTOTYPE_METHOD(t, "setNPNProtocols", SetNPNProtocols);
#endif // OPENSSL_NPN_NEGOTIATED
}
template <class Base>
SSL_SESSION* SSLWrap<Base>::GetSessionCallback(SSL* s,
unsigned char* key,
int len,
int* copy) {
HandleScope scope(node_isolate);
Base* w = static_cast<Base*>(SSL_get_app_data(s));
*copy = 0;
SSL_SESSION* sess = w->next_sess_;
w->next_sess_ = NULL;
return sess;
}
template <class Base>
int SSLWrap<Base>::NewSessionCallback(SSL* s, SSL_SESSION* sess) {
HandleScope scope(node_isolate);
Base* w = static_cast<Base*>(SSL_get_app_data(s));
if (!w->session_callbacks_)
return 0;
// Check if session is small enough to be stored
int size = i2d_SSL_SESSION(sess, NULL);
if (size > SecureContext::kMaxSessionSize)
return 0;
// Serialize session
Local<Object> buff = Buffer::New(size);
unsigned char* serialized = reinterpret_cast<unsigned char*>(
Buffer::Data(buff));
memset(serialized, 0, size);
i2d_SSL_SESSION(sess, &serialized);
Local<Object> session = Buffer::New(reinterpret_cast<char*>(sess->session_id),
sess->session_id_length);
Local<Value> argv[] = { session, buff };
if (onnewsession_sym.IsEmpty())
onnewsession_sym = FIXED_ONE_BYTE_STRING(node_isolate, "onnewsession");
MakeCallback(w->handle(node_isolate),
onnewsession_sym,
ARRAY_SIZE(argv),
argv);
return 0;
}
template <class Base>
void SSLWrap<Base>::OnClientHello(void* arg,
const ClientHelloParser::ClientHello& hello) {
HandleScope scope(node_isolate);
Base* w = static_cast<Base*>(arg);
if (onclienthello_sym.IsEmpty())
onclienthello_sym = FIXED_ONE_BYTE_STRING(node_isolate, "onclienthello");
if (sessionid_sym.IsEmpty())
sessionid_sym = FIXED_ONE_BYTE_STRING(node_isolate, "sessionId");
if (servername_sym.IsEmpty())
servername_sym = FIXED_ONE_BYTE_STRING(node_isolate, "servername");
if (tls_ticket_sym.IsEmpty())
tls_ticket_sym = FIXED_ONE_BYTE_STRING(node_isolate, "tlsTicket");
Local<Object> hello_obj = Object::New();
Local<Object> buff = Buffer::New(
reinterpret_cast<const char*>(hello.session_id()),
hello.session_size());
hello_obj->Set(sessionid_sym, buff);
if (hello.servername() == NULL) {
hello_obj->Set(servername_sym, String::Empty(node_isolate));
} else {
Local<String> servername = OneByteString(node_isolate,
hello.servername(),
hello.servername_size());
hello_obj->Set(servername_sym, servername);
}
hello_obj->Set(tls_ticket_sym, Boolean::New(hello.has_ticket()));
Local<Value> argv[] = { hello_obj };
MakeCallback(w->handle(node_isolate),
onclienthello_sym,
ARRAY_SIZE(argv),
argv);
}
// TODO(indutny): Split it into multiple smaller functions
template <class Base>
void SSLWrap<Base>::GetPeerCertificate(
const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
Local<Object> info = Object::New();
X509* peer_cert = SSL_get_peer_certificate(w->ssl_);
if (peer_cert != NULL) {
BIO* bio = BIO_new(BIO_s_mem());
BUF_MEM* mem;
if (X509_NAME_print_ex(bio,
X509_get_subject_name(peer_cert),
0,
X509_NAME_FLAGS) > 0) {
BIO_get_mem_ptr(bio, &mem);
info->Set(subject_symbol,
OneByteString(node_isolate, mem->data, mem->length));
}
(void) BIO_reset(bio);
X509_NAME* issuer_name = X509_get_issuer_name(peer_cert);
if (X509_NAME_print_ex(bio, issuer_name, 0, X509_NAME_FLAGS) > 0) {
BIO_get_mem_ptr(bio, &mem);
info->Set(issuer_symbol,
OneByteString(node_isolate, mem->data, mem->length));
}
(void) BIO_reset(bio);
int index = X509_get_ext_by_NID(peer_cert, NID_subject_alt_name, -1);
if (index >= 0) {
X509_EXTENSION* ext;
int rv;
ext = X509_get_ext(peer_cert, index);
assert(ext != NULL);
rv = X509V3_EXT_print(bio, ext, 0, 0);
assert(rv == 1);
BIO_get_mem_ptr(bio, &mem);
info->Set(subjectaltname_symbol,
OneByteString(node_isolate, mem->data, mem->length));
(void) BIO_reset(bio);
}
EVP_PKEY* pkey = X509_get_pubkey(peer_cert);
RSA* rsa = NULL;
if (pkey != NULL)
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa != NULL) {
BN_print(bio, rsa->n);
BIO_get_mem_ptr(bio, &mem);
info->Set(modulus_symbol,
OneByteString(node_isolate, mem->data, mem->length));
(void) BIO_reset(bio);
BN_print(bio, rsa->e);
BIO_get_mem_ptr(bio, &mem);
info->Set(exponent_symbol,
OneByteString(node_isolate, mem->data, mem->length));
(void) BIO_reset(bio);
}
if (pkey != NULL) {
EVP_PKEY_free(pkey);
pkey = NULL;
}
if (rsa != NULL) {
RSA_free(rsa);
rsa = NULL;
}
ASN1_TIME_print(bio, X509_get_notBefore(peer_cert));
BIO_get_mem_ptr(bio, &mem);
info->Set(valid_from_symbol,
OneByteString(node_isolate, mem->data, mem->length));
(void) BIO_reset(bio);
ASN1_TIME_print(bio, X509_get_notAfter(peer_cert));
BIO_get_mem_ptr(bio, &mem);
info->Set(valid_to_symbol,
OneByteString(node_isolate, mem->data, mem->length));
BIO_free_all(bio);
unsigned int md_size, i;
unsigned char md[EVP_MAX_MD_SIZE];
if (X509_digest(peer_cert, EVP_sha1(), md, &md_size)) {
const char hex[] = "0123456789ABCDEF";
char fingerprint[EVP_MAX_MD_SIZE * 3];
// TODO(indutny): Unify it with buffer's code
for (i = 0; i < md_size; i++) {
fingerprint[3*i] = hex[(md[i] & 0xf0) >> 4];
fingerprint[(3*i)+1] = hex[(md[i] & 0x0f)];
fingerprint[(3*i)+2] = ':';
}
if (md_size > 0) {
fingerprint[(3*(md_size-1))+2] = '\0';
} else {
fingerprint[0] = '\0';
}
info->Set(fingerprint_symbol, OneByteString(node_isolate, fingerprint));
}
STACK_OF(ASN1_OBJECT)* eku = static_cast<STACK_OF(ASN1_OBJECT)*>(
X509_get_ext_d2i(peer_cert, NID_ext_key_usage, NULL, NULL));
if (eku != NULL) {
Local<Array> ext_key_usage = Array::New();
char buf[256];
int j = 0;
for (int i = 0; i < sk_ASN1_OBJECT_num(eku); i++) {
if (OBJ_obj2txt(buf, sizeof(buf), sk_ASN1_OBJECT_value(eku, i), 1) >= 0)
ext_key_usage->Set(j++, OneByteString(node_isolate, buf));
}
sk_ASN1_OBJECT_pop_free(eku, ASN1_OBJECT_free);
info->Set(ext_key_usage_symbol, ext_key_usage);
}
X509_free(peer_cert);
}
args.GetReturnValue().Set(info);
}
template <class Base>
void SSLWrap<Base>::GetSession(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
SSL_SESSION* sess = SSL_get_session(w->ssl_);
if (sess == NULL)
return;
int slen = i2d_SSL_SESSION(sess, NULL);
assert(slen > 0);
unsigned char* sbuf = new unsigned char[slen];
unsigned char* p = sbuf;
i2d_SSL_SESSION(sess, &p);
args.GetReturnValue().Set(Encode(sbuf, slen, BINARY));
delete[] sbuf;
}
template <class Base>
void SSLWrap<Base>::SetSession(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
if (args.Length() < 1 ||
(!args[0]->IsString() && !Buffer::HasInstance(args[0]))) {
return ThrowTypeError("Bad argument");
}
ASSERT_IS_BUFFER(args[0]);
ssize_t slen = Buffer::Length(args[0]);
if (slen < 0)
return ThrowTypeError("Bad argument");
char* sbuf = new char[slen];
ssize_t wlen = DecodeWrite(sbuf, slen, args[0], BINARY);
assert(wlen == slen);
const unsigned char* p = reinterpret_cast<const unsigned char*>(sbuf);
SSL_SESSION* sess = d2i_SSL_SESSION(NULL, &p, wlen);
delete[] sbuf;
if (sess == NULL)
return;
int r = SSL_set_session(w->ssl_, sess);
SSL_SESSION_free(sess);
if (!r)
return ThrowError("SSL_set_session error");
}
template <class Base>
void SSLWrap<Base>::LoadSession(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
if (args.Length() >= 1 && Buffer::HasInstance(args[0])) {
ssize_t slen = Buffer::Length(args[0]);
char* sbuf = Buffer::Data(args[0]);
const unsigned char* p = reinterpret_cast<unsigned char*>(sbuf);
SSL_SESSION* sess = d2i_SSL_SESSION(NULL, &p, slen);
// Setup next session and move hello to the BIO buffer
if (w->next_sess_ != NULL)
SSL_SESSION_free(w->next_sess_);
w->next_sess_ = sess;
Local<Object> info = Object::New();
#ifndef OPENSSL_NO_TLSEXT
if (servername_sym.IsEmpty())
servername_sym = FIXED_ONE_BYTE_STRING(node_isolate, "servername");
if (sess->tlsext_hostname == NULL) {
info->Set(servername_sym, False(node_isolate));
} else {
info->Set(servername_sym,
OneByteString(node_isolate, sess->tlsext_hostname));
}
#endif
args.GetReturnValue().Set(info);
}
}
template <class Base>
void SSLWrap<Base>::IsSessionReused(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
bool yes = SSL_session_reused(w->ssl_);
args.GetReturnValue().Set(yes);
}
template <class Base>
void SSLWrap<Base>::ReceivedShutdown(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
bool yes = SSL_get_shutdown(w->ssl_) == SSL_RECEIVED_SHUTDOWN;
args.GetReturnValue().Set(yes);
}
template <class Base>
void SSLWrap<Base>::EndParser(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
w->hello_parser_.End();
}
template <class Base>
void SSLWrap<Base>::IsInitFinished(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
bool yes = SSL_is_init_finished(w->ssl_);
args.GetReturnValue().Set(yes);
}
#define CASE_X509_ERR(CODE) case X509_V_ERR_##CODE: reason = #CODE; break;
template <class Base>
void SSLWrap<Base>::VerifyError(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
// XXX(indutny) Do this check in JS land?
X509* peer_cert = SSL_get_peer_certificate(w->ssl_);
if (peer_cert == NULL) {
// We requested a certificate and they did not send us one.
// Definitely an error.
// XXX(indutny) is this the right error message?
Local<String> s =
FIXED_ONE_BYTE_STRING(node_isolate, "UNABLE_TO_GET_ISSUER_CERT");
return args.GetReturnValue().Set(Exception::Error(s));
}
X509_free(peer_cert);
long x509_verify_error = SSL_get_verify_result(w->ssl_);
const char* reason = NULL;
Local<String> s;
switch (x509_verify_error) {
case X509_V_OK:
return args.GetReturnValue().SetNull();
CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT)
CASE_X509_ERR(UNABLE_TO_GET_CRL)
CASE_X509_ERR(UNABLE_TO_DECRYPT_CERT_SIGNATURE)
CASE_X509_ERR(UNABLE_TO_DECRYPT_CRL_SIGNATURE)
CASE_X509_ERR(UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)
CASE_X509_ERR(CERT_SIGNATURE_FAILURE)
CASE_X509_ERR(CRL_SIGNATURE_FAILURE)
CASE_X509_ERR(CERT_NOT_YET_VALID)
CASE_X509_ERR(CERT_HAS_EXPIRED)
CASE_X509_ERR(CRL_NOT_YET_VALID)
CASE_X509_ERR(CRL_HAS_EXPIRED)
CASE_X509_ERR(ERROR_IN_CERT_NOT_BEFORE_FIELD)
CASE_X509_ERR(ERROR_IN_CERT_NOT_AFTER_FIELD)
CASE_X509_ERR(ERROR_IN_CRL_LAST_UPDATE_FIELD)
CASE_X509_ERR(ERROR_IN_CRL_NEXT_UPDATE_FIELD)
CASE_X509_ERR(OUT_OF_MEM)
CASE_X509_ERR(DEPTH_ZERO_SELF_SIGNED_CERT)
CASE_X509_ERR(SELF_SIGNED_CERT_IN_CHAIN)
CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT_LOCALLY)
CASE_X509_ERR(UNABLE_TO_VERIFY_LEAF_SIGNATURE)
CASE_X509_ERR(CERT_CHAIN_TOO_LONG)
CASE_X509_ERR(CERT_REVOKED)
CASE_X509_ERR(INVALID_CA)
CASE_X509_ERR(PATH_LENGTH_EXCEEDED)
CASE_X509_ERR(INVALID_PURPOSE)
CASE_X509_ERR(CERT_UNTRUSTED)
CASE_X509_ERR(CERT_REJECTED)
default:
s = OneByteString(node_isolate,
X509_verify_cert_error_string(x509_verify_error));
break;
}
if (s.IsEmpty())
s = OneByteString(node_isolate, reason);
args.GetReturnValue().Set(Exception::Error(s));
}
#undef CASE_X509_ERR
template <class Base>
void SSLWrap<Base>::GetCurrentCipher(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
OPENSSL_CONST SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_);
if (c == NULL)
return;
Local<Object> info = Object::New();
const char* cipher_name = SSL_CIPHER_get_name(c);
info->Set(name_symbol, OneByteString(node_isolate, cipher_name));
const char* cipher_version = SSL_CIPHER_get_version(c);
info->Set(version_symbol, OneByteString(node_isolate, cipher_version));
args.GetReturnValue().Set(info);
}
#ifdef OPENSSL_NPN_NEGOTIATED
template <class Base>
int SSLWrap<Base>::AdvertiseNextProtoCallback(SSL* s,
const unsigned char** data,
unsigned int* len,
void* arg) {
Base* w = static_cast<Base*>(arg);
if (w->npn_protos_.IsEmpty()) {
// No initialization - no NPN protocols
*data = reinterpret_cast<const unsigned char*>("");
*len = 0;
} else {
Local<Object> obj = PersistentToLocal(node_isolate, w->npn_protos_);
*data = reinterpret_cast<const unsigned char*>(Buffer::Data(obj));
*len = Buffer::Length(obj);
}
return SSL_TLSEXT_ERR_OK;
}
template <class Base>
int SSLWrap<Base>::SelectNextProtoCallback(SSL* s,
unsigned char** out,
unsigned char* outlen,
const unsigned char* in,
unsigned int inlen,
void* arg) {
Base* w = static_cast<Base*>(arg);
// Release old protocol handler if present
w->selected_npn_proto_.Dispose();
if (w->npn_protos_.IsEmpty()) {
// We should at least select one protocol
// If server is using NPN
*out = reinterpret_cast<unsigned char*>(const_cast<char*>("http/1.1"));
*outlen = 8;
// set status: unsupported
w->selected_npn_proto_.Reset(node_isolate, False(node_isolate));
return SSL_TLSEXT_ERR_OK;
}
Local<Object> obj = PersistentToLocal(node_isolate, w->npn_protos_);
const unsigned char* npn_protos =
reinterpret_cast<const unsigned char*>(Buffer::Data(obj));
size_t len = Buffer::Length(obj);
int status = SSL_select_next_proto(out, outlen, in, inlen, npn_protos, len);
Handle<Value> result;
switch (status) {
case OPENSSL_NPN_UNSUPPORTED:
result = Null(node_isolate);
break;
case OPENSSL_NPN_NEGOTIATED:
result = OneByteString(node_isolate, *out, *outlen);
break;
case OPENSSL_NPN_NO_OVERLAP:
result = False(node_isolate);
break;
default:
break;
}
if (!result.IsEmpty())
w->selected_npn_proto_.Reset(node_isolate, result);
return SSL_TLSEXT_ERR_OK;
}
template <class Base>
void SSLWrap<Base>::GetNegotiatedProto(
const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
if (w->is_client()) {
if (w->selected_npn_proto_.IsEmpty() == false) {
args.GetReturnValue().Set(w->selected_npn_proto_);
}
return;
}
const unsigned char* npn_proto;
unsigned int npn_proto_len;
SSL_get0_next_proto_negotiated(w->ssl_, &npn_proto, &npn_proto_len);
if (!npn_proto)
return args.GetReturnValue().Set(false);
args.GetReturnValue().Set(
OneByteString(node_isolate, npn_proto, npn_proto_len));
}
template <class Base>
void SSLWrap<Base>::SetNPNProtocols(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Base* w = ObjectWrap::Unwrap<Base>(args.This());
if (args.Length() < 1 || !Buffer::HasInstance(args[0]))
return ThrowTypeError("Must give a Buffer as first argument");
w->npn_protos_.Reset(node_isolate, args[0].As<Object>());
}
#endif // OPENSSL_NPN_NEGOTIATED
void Connection::OnClientHelloParseEnd(void* arg) {
Connection* conn = static_cast<Connection*>(arg);
// Write all accumulated data
int r = BIO_write(conn->bio_read_,
reinterpret_cast<char*>(conn->hello_data_),
conn->hello_offset_);
conn->HandleBIOError(conn->bio_read_, "BIO_write", r);
conn->SetShutdownFlags();
}
#ifdef SSL_PRINT_DEBUG
# define DEBUG_PRINT(...) fprintf (stderr, __VA_ARGS__)
#else
# define DEBUG_PRINT(...)
#endif
int Connection::HandleBIOError(BIO *bio, const char* func, int rv) {
if (rv >= 0) return rv;
int retry = BIO_should_retry(bio);
(void) retry; // unused if !defined(SSL_PRINT_DEBUG)
if (BIO_should_write(bio)) {
DEBUG_PRINT("[%p] BIO: %s want write. should retry %d\n",
ssl_,
func,
retry);
return 0;
} else if (BIO_should_read(bio)) {
DEBUG_PRINT("[%p] BIO: %s want read. should retry %d\n", ssl_, func, retry);
return 0;
} else {
static char ssl_error_buf[512];
ERR_error_string_n(rv, ssl_error_buf, sizeof(ssl_error_buf));
HandleScope scope(node_isolate);
Local<Value> exception =
Exception::Error(OneByteString(node_isolate, ssl_error_buf));
handle(node_isolate)->Set(
FIXED_ONE_BYTE_STRING(node_isolate, "error"), exception);
DEBUG_PRINT("[%p] BIO: %s failed: (%d) %s\n",
ssl_,
func,
rv,
ssl_error_buf);
return rv;
}
return 0;
}
int Connection::HandleSSLError(const char* func,
int rv,
ZeroStatus zs,
SyscallStatus ss) {
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence unused variable warning.
if (rv > 0)
return rv;
if (rv == 0 && zs == kZeroIsNotAnError)
return rv;
int err = SSL_get_error(ssl_, rv);
if (err == SSL_ERROR_NONE) {
return 0;
} else if (err == SSL_ERROR_WANT_WRITE) {
DEBUG_PRINT("[%p] SSL: %s want write\n", ssl_, func);
return 0;
} else if (err == SSL_ERROR_WANT_READ) {
DEBUG_PRINT("[%p] SSL: %s want read\n", ssl_, func);
return 0;
} else if (err == SSL_ERROR_ZERO_RETURN) {
Local<Value> exception =
Exception::Error(FIXED_ONE_BYTE_STRING(node_isolate, "ZERO_RETURN"));
handle(node_isolate)->Set(
FIXED_ONE_BYTE_STRING(node_isolate, "error"), exception);
return rv;
} else if (err == SSL_ERROR_SYSCALL && ss == kIgnoreSyscall) {
return 0;
} else {
HandleScope scope(node_isolate);
BUF_MEM* mem;
BIO *bio;
assert(err == SSL_ERROR_SSL || err == SSL_ERROR_SYSCALL);
// XXX We need to drain the error queue for this thread or else OpenSSL
// has the possibility of blocking connections? This problem is not well
// understood. And we should be somehow propagating these errors up
// into JavaScript. There is no test which demonstrates this problem.
// https://github.com/joyent/node/issues/1719
bio = BIO_new(BIO_s_mem());
if (bio != NULL) {
ERR_print_errors(bio);
BIO_get_mem_ptr(bio, &mem);
Local<Value> exception =
Exception::Error(OneByteString(node_isolate, mem->data, mem->length));
handle(node_isolate)->Set(
FIXED_ONE_BYTE_STRING(node_isolate, "error"), exception);
BIO_free_all(bio);
}
return rv;
}
return 0;
}
void Connection::ClearError() {
#ifndef NDEBUG
HandleScope scope(node_isolate);
// We should clear the error in JS-land
Local<String> error_key = FIXED_ONE_BYTE_STRING(node_isolate, "error");
Local<Value> error = handle(node_isolate)->Get(error_key);
assert(error->BooleanValue() == false);
#endif // NDEBUG
}
void Connection::SetShutdownFlags() {
HandleScope scope(node_isolate);
int flags = SSL_get_shutdown(ssl_);
if (flags & SSL_SENT_SHUTDOWN) {
Local<String> sent_shutdown_key =
FIXED_ONE_BYTE_STRING(node_isolate, "sentShutdown");
handle(node_isolate)->Set(sent_shutdown_key, True(node_isolate));
}
if (flags & SSL_RECEIVED_SHUTDOWN) {
Local<String> received_shutdown_key =
FIXED_ONE_BYTE_STRING(node_isolate, "receivedShutdown");
handle(node_isolate)->Set(received_shutdown_key, True(node_isolate));
}
}
void Connection::Initialize(Handle<Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(Connection::New);
t->InstanceTemplate()->SetInternalFieldCount(1);
t->SetClassName(FIXED_ONE_BYTE_STRING(node_isolate, "Connection"));
NODE_SET_PROTOTYPE_METHOD(t, "encIn", Connection::EncIn);
NODE_SET_PROTOTYPE_METHOD(t, "clearOut", Connection::ClearOut);
NODE_SET_PROTOTYPE_METHOD(t, "clearIn", Connection::ClearIn);
NODE_SET_PROTOTYPE_METHOD(t, "encOut", Connection::EncOut);
NODE_SET_PROTOTYPE_METHOD(t, "clearPending", Connection::ClearPending);
NODE_SET_PROTOTYPE_METHOD(t, "encPending", Connection::EncPending);
NODE_SET_PROTOTYPE_METHOD(t, "start", Connection::Start);
NODE_SET_PROTOTYPE_METHOD(t, "shutdown", Connection::Shutdown);
NODE_SET_PROTOTYPE_METHOD(t, "close", Connection::Close);
SSLWrap<Connection>::AddMethods(t);
#ifdef OPENSSL_NPN_NEGOTIATED
NODE_SET_PROTOTYPE_METHOD(t,
"getNegotiatedProtocol",
Connection::GetNegotiatedProto);
NODE_SET_PROTOTYPE_METHOD(t,
"setNPNProtocols",
Connection::SetNPNProtocols);
#endif
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
NODE_SET_PROTOTYPE_METHOD(t, "getServername", Connection::GetServername);
NODE_SET_PROTOTYPE_METHOD(t, "setSNICallback", Connection::SetSNICallback);
#endif
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Connection"),
t->GetFunction());
}
int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) {
// Quoting SSL_set_verify(3ssl):
//
// The VerifyCallback function is used to control the behaviour when
// the SSL_VERIFY_PEER flag is set. It must be supplied by the
// application and receives two arguments: preverify_ok indicates,
// whether the verification of the certificate in question was passed
// (preverify_ok=1) or not (preverify_ok=0). x509_ctx is a pointer to
// the complete context used for the certificate chain verification.
//
// The certificate chain is checked starting with the deepest nesting
// level (the root CA certificate) and worked upward to the peer's
// certificate. At each level signatures and issuer attributes are
// checked. Whenever a verification error is found, the error number is
// stored in x509_ctx and VerifyCallback is called with preverify_ok=0.
// By applying X509_CTX_store_* functions VerifyCallback can locate the
// certificate in question and perform additional steps (see EXAMPLES).
// If no error is found for a certificate, VerifyCallback is called
// with preverify_ok=1 before advancing to the next level.
//
// The return value of VerifyCallback controls the strategy of the
// further verification process. If VerifyCallback returns 0, the
// verification process is immediately stopped with "verification
// failed" state. If SSL_VERIFY_PEER is set, a verification failure
// alert is sent to the peer and the TLS/SSL handshake is terminated. If
// VerifyCallback returns 1, the verification process is continued. If
// VerifyCallback always returns 1, the TLS/SSL handshake will not be
// terminated with respect to verification failures and the connection
// will be established. The calling process can however retrieve the
// error code of the last verification error using
// SSL_get_verify_result(3) or by maintaining its own error storage
// managed by VerifyCallback.
//
// If no VerifyCallback is specified, the default callback will be
// used. Its return value is identical to preverify_ok, so that any
// verification failure will lead to a termination of the TLS/SSL
// handshake with an alert message, if SSL_VERIFY_PEER is set.
//
// Since we cannot perform I/O quickly enough in this callback, we ignore
// all preverify_ok errors and let the handshake continue. It is
// imparative that the user use Connection::VerifyError after the
// 'secure' callback has been made.
return 1;
}
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
int Connection::SelectSNIContextCallback_(SSL *s, int *ad, void* arg) {
HandleScope scope(node_isolate);
Connection* conn = static_cast<Connection*>(SSL_get_app_data(s));
const char* servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
if (servername) {
conn->servername_.Reset(node_isolate,
OneByteString(node_isolate, servername));
// Call the SNI callback and use its return value as context
if (!conn->sniObject_.IsEmpty()) {
conn->sniContext_.Dispose();
Local<Value> arg = PersistentToLocal(node_isolate, conn->servername_);
Local<Value> ret = MakeCallback(conn->sniObject_, "onselect", 1, &arg);
// If ret is SecureContext
if (HasInstance(secure_context_constructor, ret)) {
conn->sniContext_.Reset(node_isolate, ret);
SecureContext* sc = ObjectWrap::Unwrap<SecureContext>(ret.As<Object>());
SSL_set_SSL_CTX(s, sc->ctx_);
} else {
return SSL_TLSEXT_ERR_NOACK;
}
}
}
return SSL_TLSEXT_ERR_OK;
}
#endif
void Connection::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
if (args.Length() < 1 || !args[0]->IsObject()) {
return ThrowError("First argument must be a crypto module Credentials");
}
SecureContext* sc = ObjectWrap::Unwrap<SecureContext>(args[0]->ToObject());
bool is_server = args[1]->BooleanValue();
Connection* conn = new Connection(
sc,
is_server ? SSLWrap<Connection>::kServer : SSLWrap<Connection>::kClient);
conn->Wrap(args.This());
conn->ssl_ = SSL_new(sc->ctx_);
conn->bio_read_ = BIO_new(NodeBIO::GetMethod());
conn->bio_write_ = BIO_new(NodeBIO::GetMethod());
SSL_set_app_data(conn->ssl_, conn);
if (is_server)
SSL_set_info_callback(conn->ssl_, SSLInfoCallback);
#ifdef OPENSSL_NPN_NEGOTIATED
if (is_server) {
// Server should advertise NPN protocols
SSL_CTX_set_next_protos_advertised_cb(
sc->ctx_,
SSLWrap<Connection>::AdvertiseNextProtoCallback,
NULL);
} else {
// Client should select protocol from advertised
// If server supports NPN
SSL_CTX_set_next_proto_select_cb(
sc->ctx_,
SSLWrap<Connection>::SelectNextProtoCallback,
NULL);
}
#endif
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
if (is_server) {
SSL_CTX_set_tlsext_servername_callback(sc->ctx_, SelectSNIContextCallback_);
} else {
const String::Utf8Value servername(args[2]);
SSL_set_tlsext_host_name(conn->ssl_, *servername);
}
#endif
SSL_set_bio(conn->ssl_, conn->bio_read_, conn->bio_write_);
#ifdef SSL_MODE_RELEASE_BUFFERS
long mode = SSL_get_mode(conn->ssl_);
SSL_set_mode(conn->ssl_, mode | SSL_MODE_RELEASE_BUFFERS);
#endif
int verify_mode;
if (is_server) {
bool request_cert = args[2]->BooleanValue();
if (!request_cert) {
// Note reject_unauthorized ignored.
verify_mode = SSL_VERIFY_NONE;
} else {
bool reject_unauthorized = args[3]->BooleanValue();
verify_mode = SSL_VERIFY_PEER;
if (reject_unauthorized) verify_mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
} else {
// Note request_cert and reject_unauthorized are ignored for clients.
verify_mode = SSL_VERIFY_NONE;
}
// Always allow a connection. We'll reject in javascript.
SSL_set_verify(conn->ssl_, verify_mode, VerifyCallback);
if (is_server) {
SSL_set_accept_state(conn->ssl_);
} else {
SSL_set_connect_state(conn->ssl_);
}
}
void Connection::SSLInfoCallback(const SSL *ssl_, int where, int ret) {
// Be compatible with older versions of OpenSSL. SSL_get_app_data() wants
// a non-const SSL* in OpenSSL <= 0.9.7e.
SSL* ssl = const_cast<SSL*>(ssl_);
if (where & SSL_CB_HANDSHAKE_START) {
HandleScope scope(node_isolate);
Connection* conn = static_cast<Connection*>(SSL_get_app_data(ssl));
if (onhandshakestart_sym.IsEmpty()) {
onhandshakestart_sym =
FIXED_ONE_BYTE_STRING(node_isolate, "onhandshakestart");
}
MakeCallback(conn->handle(node_isolate), onhandshakestart_sym, 0, NULL);
}
if (where & SSL_CB_HANDSHAKE_DONE) {
HandleScope scope(node_isolate);
Connection* conn = static_cast<Connection*>(SSL_get_app_data(ssl));
if (onhandshakedone_sym.IsEmpty()) {
onhandshakedone_sym =
FIXED_ONE_BYTE_STRING(node_isolate, "onhandshakedone");
}
MakeCallback(conn->handle(node_isolate), onhandshakedone_sym, 0, NULL);
}
}
void Connection::EncIn(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (args.Length() < 3) {
return ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (off + len > buffer_length) {
return ThrowError("off + len > buffer.length");
}
int bytes_written;
char* data = buffer_data + off;
if (conn->is_server() && !conn->hello_parser_.IsEnded()) {
// Just accumulate data, everything will be pushed to BIO later
if (conn->hello_parser_.IsPaused()) {
bytes_written = 0;
} else {
// Copy incoming data to the internal buffer
// (which has a size of the biggest possible TLS frame)
size_t available = sizeof(conn->hello_data_) - conn->hello_offset_;
size_t copied = len < available ? len : available;
memcpy(conn->hello_data_ + conn->hello_offset_, data, copied);
conn->hello_offset_ += copied;
conn->hello_parser_.Parse(conn->hello_data_, conn->hello_offset_);
bytes_written = copied;
}
} else {
bytes_written = BIO_write(conn->bio_read_, data, len);
conn->HandleBIOError(conn->bio_read_, "BIO_write", bytes_written);
conn->SetShutdownFlags();
}
args.GetReturnValue().Set(bytes_written);
}
void Connection::ClearOut(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (args.Length() < 3) {
return ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (off + len > buffer_length) {
return ThrowError("off + len > buffer.length");
}
if (!SSL_is_init_finished(conn->ssl_)) {
int rv;
if (conn->is_server()) {
rv = SSL_accept(conn->ssl_);
conn->HandleSSLError("SSL_accept:ClearOut",
rv,
kZeroIsAnError,
kSyscallError);
} else {
rv = SSL_connect(conn->ssl_);
conn->HandleSSLError("SSL_connect:ClearOut",
rv,
kZeroIsAnError,
kSyscallError);
}
if (rv < 0) {
return args.GetReturnValue().Set(rv);
}
}
int bytes_read = SSL_read(conn->ssl_, buffer_data + off, len);
conn->HandleSSLError("SSL_read:ClearOut",
bytes_read,
kZeroIsNotAnError,
kSyscallError);
conn->SetShutdownFlags();
args.GetReturnValue().Set(bytes_read);
}
void Connection::ClearPending(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
int bytes_pending = BIO_pending(conn->bio_read_);
args.GetReturnValue().Set(bytes_pending);
}
void Connection::EncPending(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
int bytes_pending = BIO_pending(conn->bio_write_);
args.GetReturnValue().Set(bytes_pending);
}
void Connection::EncOut(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (args.Length() < 3) {
return ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (off + len > buffer_length) {
return ThrowError("off + len > buffer.length");
}
int bytes_read = BIO_read(conn->bio_write_, buffer_data + off, len);
conn->HandleBIOError(conn->bio_write_, "BIO_read:EncOut", bytes_read);
conn->SetShutdownFlags();
args.GetReturnValue().Set(bytes_read);
}
void Connection::ClearIn(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (args.Length() < 3) {
return ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (off + len > buffer_length) {
return ThrowError("off + len > buffer.length");
}
if (!SSL_is_init_finished(conn->ssl_)) {
int rv;
if (conn->is_server()) {
rv = SSL_accept(conn->ssl_);
conn->HandleSSLError("SSL_accept:ClearIn",
rv,
kZeroIsAnError,
kSyscallError);
} else {
rv = SSL_connect(conn->ssl_);
conn->HandleSSLError("SSL_connect:ClearIn",
rv,
kZeroIsAnError,
kSyscallError);
}
if (rv < 0) {
return args.GetReturnValue().Set(rv);
}
}
int bytes_written = SSL_write(conn->ssl_, buffer_data + off, len);
conn->HandleSSLError("SSL_write:ClearIn",
bytes_written,
len == 0 ? kZeroIsNotAnError : kZeroIsAnError,
kSyscallError);
conn->SetShutdownFlags();
args.GetReturnValue().Set(bytes_written);
}
void Connection::Start(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
int rv = 0;
if (!SSL_is_init_finished(conn->ssl_)) {
if (conn->is_server()) {
rv = SSL_accept(conn->ssl_);
conn->HandleSSLError("SSL_accept:Start",
rv,
kZeroIsAnError,
kSyscallError);
} else {
rv = SSL_connect(conn->ssl_);
conn->HandleSSLError("SSL_connect:Start",
rv,
kZeroIsAnError,
kSyscallError);
}
}
args.GetReturnValue().Set(rv);
}
void Connection::Shutdown(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (conn->ssl_ == NULL) {
return args.GetReturnValue().Set(false);
}
int rv = SSL_shutdown(conn->ssl_);
conn->HandleSSLError("SSL_shutdown", rv, kZeroIsNotAnError, kIgnoreSyscall);
conn->SetShutdownFlags();
args.GetReturnValue().Set(rv);
}
void Connection::Close(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (conn->ssl_ != NULL) {
SSL_free(conn->ssl_);
conn->ssl_ = NULL;
}
}
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
void Connection::GetServername(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (conn->is_server() && !conn->servername_.IsEmpty()) {
args.GetReturnValue().Set(conn->servername_);
} else {
args.GetReturnValue().Set(false);
}
}
void Connection::SetSNICallback(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Connection* conn = Connection::Unwrap(args.This());
if (args.Length() < 1 || !args[0]->IsFunction()) {
return ThrowError("Must give a Function as first argument");
}
Local<Object> obj = Object::New();
obj->Set(FIXED_ONE_BYTE_STRING(node_isolate, "onselect"), args[0]);
conn->sniObject_.Reset(node_isolate, obj);
}
#endif
void CipherBase::Initialize(Handle<Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", Init);
NODE_SET_PROTOTYPE_METHOD(t, "initiv", InitIv);
NODE_SET_PROTOTYPE_METHOD(t, "update", Update);
NODE_SET_PROTOTYPE_METHOD(t, "final", Final);
NODE_SET_PROTOTYPE_METHOD(t, "setAutoPadding", SetAutoPadding);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "CipherBase"),
t->GetFunction());
}
void CipherBase::New(const FunctionCallbackInfo<Value>& args) {
assert(args.IsConstructCall() == true);
HandleScope scope(node_isolate);
CipherBase* cipher = new CipherBase(args[0]->IsTrue() ? kCipher : kDecipher);
cipher->Wrap(args.This());
}
void CipherBase::Init(const char* cipher_type,
const char* key_buf,
int key_buf_len) {
HandleScope scope(node_isolate);
assert(cipher_ == NULL);
cipher_ = EVP_get_cipherbyname(cipher_type);
if (cipher_ == NULL) {
return ThrowError("Unknown cipher");
}
unsigned char key[EVP_MAX_KEY_LENGTH];
unsigned char iv[EVP_MAX_IV_LENGTH];
int key_len = EVP_BytesToKey(cipher_,
EVP_md5(),
NULL,
reinterpret_cast<const unsigned char*>(key_buf),
key_buf_len,
1,
key,
iv);
EVP_CIPHER_CTX_init(&ctx_);
EVP_CipherInit_ex(&ctx_, cipher_, NULL, NULL, NULL, kind_ == kCipher);
if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) {
EVP_CIPHER_CTX_cleanup(&ctx_);
return ThrowError("Invalid key length");
}
EVP_CipherInit_ex(&ctx_,
NULL,
NULL,
reinterpret_cast<unsigned char*>(key),
reinterpret_cast<unsigned char*>(iv),
kind_ == kCipher);
initialised_ = true;
}
void CipherBase::Init(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
CipherBase* cipher = ObjectWrap::Unwrap<CipherBase>(args.This());
if (args.Length() < 2 ||
!(args[0]->IsString() && Buffer::HasInstance(args[1]))) {
return ThrowError("Must give cipher-type, key");
}
const String::Utf8Value cipher_type(args[0]);
const char* key_buf = Buffer::Data(args[1]);
ssize_t key_buf_len = Buffer::Length(args[1]);
cipher->Init(*cipher_type, key_buf, key_buf_len);
}
void CipherBase::InitIv(const char* cipher_type,
const char* key,
int key_len,
const char* iv,
int iv_len) {
HandleScope scope(node_isolate);
cipher_ = EVP_get_cipherbyname(cipher_type);
if (cipher_ == NULL) {
return ThrowError("Unknown cipher");
}
/* OpenSSL versions up to 0.9.8l failed to return the correct
iv_length (0) for ECB ciphers */
if (EVP_CIPHER_iv_length(cipher_) != iv_len &&
!(EVP_CIPHER_mode(cipher_) == EVP_CIPH_ECB_MODE && iv_len == 0)) {
return ThrowError("Invalid IV length");
}
EVP_CIPHER_CTX_init(&ctx_);
EVP_CipherInit_ex(&ctx_, cipher_, NULL, NULL, NULL, kind_ == kCipher);
if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) {
EVP_CIPHER_CTX_cleanup(&ctx_);
return ThrowError("Invalid key length");
}
EVP_CipherInit_ex(&ctx_,
NULL,
NULL,
reinterpret_cast<const unsigned char*>(key),
reinterpret_cast<const unsigned char*>(iv),
kind_ == kCipher);
initialised_ = true;
}
void CipherBase::InitIv(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
CipherBase* cipher = ObjectWrap::Unwrap<CipherBase>(args.This());
if (args.Length() < 3 || !args[0]->IsString()) {
return ThrowError("Must give cipher-type, key, and iv as argument");
}
ASSERT_IS_BUFFER(args[1]);
ASSERT_IS_BUFFER(args[2]);
const String::Utf8Value cipher_type(args[0]);
ssize_t key_len = Buffer::Length(args[1]);
const char* key_buf = Buffer::Data(args[1]);
ssize_t iv_len = Buffer::Length(args[2]);
const char* iv_buf = Buffer::Data(args[2]);
cipher->InitIv(*cipher_type, key_buf, key_len, iv_buf, iv_len);
}
bool CipherBase::Update(const char* data,
int len,
unsigned char** out,
int* out_len) {
if (!initialised_) return 0;
*out_len = len + EVP_CIPHER_CTX_block_size(&ctx_);
*out = new unsigned char[*out_len];
return EVP_CipherUpdate(&ctx_,
*out,
out_len,
reinterpret_cast<const unsigned char*>(data),
len);
}
void CipherBase::Update(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
CipherBase* cipher = ObjectWrap::Unwrap<CipherBase>(args.This());
ASSERT_IS_STRING_OR_BUFFER(args[0]);
unsigned char* out = NULL;
bool r;
int out_len = 0;
// Only copy the data if we have to, because it's a string
if (args[0]->IsString()) {
Local<String> string = args[0].As<String>();
enum encoding encoding = ParseEncoding(args[1], BINARY);
if (!StringBytes::IsValidString(string, encoding))
return ThrowTypeError("Bad input string");
size_t buflen = StringBytes::StorageSize(string, encoding);
char* buf = new char[buflen];
size_t written = StringBytes::Write(buf, buflen, string, encoding);
r = cipher->Update(buf, written, &out, &out_len);
delete[] buf;
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = cipher->Update(buf, buflen, &out, &out_len);
}
if (!r) {
delete[] out;
return ThrowCryptoTypeError(ERR_get_error());
}
Local<Object> buf = Buffer::New(reinterpret_cast<char*>(out), out_len);
if (out) delete[] out;
args.GetReturnValue().Set(buf);
}
bool CipherBase::SetAutoPadding(bool auto_padding) {
if (!initialised_) return false;
return EVP_CIPHER_CTX_set_padding(&ctx_, auto_padding);
}
void CipherBase::SetAutoPadding(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
CipherBase* cipher = ObjectWrap::Unwrap<CipherBase>(args.This());
cipher->SetAutoPadding(args.Length() < 1 || args[0]->BooleanValue());
}
bool CipherBase::Final(unsigned char** out, int *out_len) {
if (!initialised_) return false;
*out = new unsigned char[EVP_CIPHER_CTX_block_size(&ctx_)];
bool r = EVP_CipherFinal_ex(&ctx_, *out, out_len);
EVP_CIPHER_CTX_cleanup(&ctx_);
initialised_ = false;
return r;
}
void CipherBase::Final(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
CipherBase* cipher = ObjectWrap::Unwrap<CipherBase>(args.This());
unsigned char* out_value = NULL;
int out_len = -1;
Local<Value> outString;
bool r = cipher->Final(&out_value, &out_len);
if (out_len <= 0 || !r) {
delete[] out_value;
out_value = NULL;
out_len = 0;
if (!r) return ThrowCryptoTypeError(ERR_get_error());
}
args.GetReturnValue().Set(
Buffer::New(reinterpret_cast<char*>(out_value), out_len));
}
void Hmac::Initialize(v8::Handle<v8::Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", HmacInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", HmacUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "digest", HmacDigest);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Hmac"), t->GetFunction());
}
void Hmac::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Hmac* hmac = new Hmac();
hmac->Wrap(args.This());
}
void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) {
HandleScope scope(node_isolate);
assert(md_ == NULL);
md_ = EVP_get_digestbyname(hash_type);
if (md_ == NULL) {
return ThrowError("Unknown message digest");
}
HMAC_CTX_init(&ctx_);
if (key_len == 0) {
HMAC_Init(&ctx_, "", 0, md_);
} else {
HMAC_Init(&ctx_, key, key_len, md_);
}
initialised_ = true;
}
void Hmac::HmacInit(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Hmac* hmac = ObjectWrap::Unwrap<Hmac>(args.This());
if (args.Length() < 2 || !args[0]->IsString()) {
return ThrowError("Must give hashtype string, key as arguments");
}
ASSERT_IS_BUFFER(args[1]);
const String::Utf8Value hash_type(args[0]);
const char* buffer_data = Buffer::Data(args[1]);
size_t buffer_length = Buffer::Length(args[1]);
hmac->HmacInit(*hash_type, buffer_data, buffer_length);
}
bool Hmac::HmacUpdate(const char* data, int len) {
if (!initialised_) return false;
HMAC_Update(&ctx_, reinterpret_cast<const unsigned char*>(data), len);
return true;
}
void Hmac::HmacUpdate(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Hmac* hmac = ObjectWrap::Unwrap<Hmac>(args.This());
ASSERT_IS_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
bool r;
if (args[0]->IsString()) {
Local<String> string = args[0].As<String>();
enum encoding encoding = ParseEncoding(args[1], BINARY);
if (!StringBytes::IsValidString(string, encoding))
return ThrowTypeError("Bad input string");
size_t buflen = StringBytes::StorageSize(string, encoding);
char* buf = new char[buflen];
size_t written = StringBytes::Write(buf, buflen, string, encoding);
r = hmac->HmacUpdate(buf, written);
delete[] buf;
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = hmac->HmacUpdate(buf, buflen);
}
if (!r) {
return ThrowTypeError("HmacUpdate fail");
}
}
bool Hmac::HmacDigest(unsigned char** md_value, unsigned int* md_len) {
if (!initialised_) return false;
*md_value = new unsigned char[EVP_MAX_MD_SIZE];
HMAC_Final(&ctx_, *md_value, md_len);
HMAC_CTX_cleanup(&ctx_);
initialised_ = false;
return true;
}
void Hmac::HmacDigest(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Hmac* hmac = ObjectWrap::Unwrap<Hmac>(args.This());
enum encoding encoding = BUFFER;
if (args.Length() >= 1) {
encoding = ParseEncoding(args[0]->ToString(), BUFFER);
}
unsigned char* md_value = NULL;
unsigned int md_len = 0;
bool r = hmac->HmacDigest(&md_value, &md_len);
if (!r) {
md_value = NULL;
md_len = 0;
}
Local<Value> rc = StringBytes::Encode(
reinterpret_cast<const char*>(md_value), md_len, encoding);
delete[] md_value;
args.GetReturnValue().Set(rc);
}
void Hash::Initialize(v8::Handle<v8::Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "update", HashUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "digest", HashDigest);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Hash"), t->GetFunction());
}
void Hash::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowError("Must give hashtype string as argument");
}
const String::Utf8Value hash_type(args[0]);
Hash* hash = new Hash();
if (!hash->HashInit(*hash_type)) {
delete hash;
return ThrowError("Digest method not supported");
}
hash->Wrap(args.This());
}
bool Hash::HashInit(const char* hash_type) {
assert(md_ == NULL);
md_ = EVP_get_digestbyname(hash_type);
if (md_ == NULL) return false;
EVP_MD_CTX_init(&mdctx_);
EVP_DigestInit_ex(&mdctx_, md_, NULL);
initialised_ = true;
return true;
}
bool Hash::HashUpdate(const char* data, int len) {
if (!initialised_) return false;
EVP_DigestUpdate(&mdctx_, data, len);
return true;
}
void Hash::HashUpdate(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Hash* hash = ObjectWrap::Unwrap<Hash>(args.This());
ASSERT_IS_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
bool r;
if (args[0]->IsString()) {
Local<String> string = args[0].As<String>();
enum encoding encoding = ParseEncoding(args[1], BINARY);
if (!StringBytes::IsValidString(string, encoding))
return ThrowTypeError("Bad input string");
size_t buflen = StringBytes::StorageSize(string, encoding);
char* buf = new char[buflen];
size_t written = StringBytes::Write(buf, buflen, string, encoding);
r = hash->HashUpdate(buf, written);
delete[] buf;
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = hash->HashUpdate(buf, buflen);
}
if (!r) {
return ThrowTypeError("HashUpdate fail");
}
}
void Hash::HashDigest(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Hash* hash = ObjectWrap::Unwrap<Hash>(args.This());
if (!hash->initialised_) {
return ThrowError("Not initialized");
}
enum encoding encoding = BUFFER;
if (args.Length() >= 1) {
encoding = ParseEncoding(args[0]->ToString(), BUFFER);
}
unsigned char md_value[EVP_MAX_MD_SIZE];
unsigned int md_len;
EVP_DigestFinal_ex(&hash->mdctx_, md_value, &md_len);
EVP_MD_CTX_cleanup(&hash->mdctx_);
hash->initialised_ = false;
Local<Value> rc = StringBytes::Encode(
reinterpret_cast<const char*>(md_value), md_len, encoding);
args.GetReturnValue().Set(rc);
}
void Sign::Initialize(v8::Handle<v8::Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", SignInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", SignUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "sign", SignFinal);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Sign"), t->GetFunction());
}
void Sign::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Sign* sign = new Sign();
sign->Wrap(args.This());
}
void Sign::SignInit(const char* sign_type) {
HandleScope scope(node_isolate);
assert(md_ == NULL);
md_ = EVP_get_digestbyname(sign_type);
if (!md_) {
return ThrowError("Uknown message digest");
}
EVP_MD_CTX_init(&mdctx_);
EVP_SignInit_ex(&mdctx_, md_, NULL);
initialised_ = true;
}
void Sign::SignInit(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Sign* sign = ObjectWrap::Unwrap<Sign>(args.This());
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowError("Must give signtype string as argument");
}
const String::Utf8Value sign_type(args[0]);
sign->SignInit(*sign_type);
}
bool Sign::SignUpdate(const char* data, int len) {
if (!initialised_) return false;
EVP_SignUpdate(&mdctx_, data, len);
return true;
}
void Sign::SignUpdate(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Sign* sign = ObjectWrap::Unwrap<Sign>(args.This());
ASSERT_IS_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
int r;
if (args[0]->IsString()) {
Local<String> string = args[0].As<String>();
enum encoding encoding = ParseEncoding(args[1], BINARY);
if (!StringBytes::IsValidString(string, encoding))
return ThrowTypeError("Bad input string");
size_t buflen = StringBytes::StorageSize(string, encoding);
char* buf = new char[buflen];
size_t written = StringBytes::Write(buf, buflen, string, encoding);
r = sign->SignUpdate(buf, written);
delete[] buf;
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = sign->SignUpdate(buf, buflen);
}
if (!r) {
return ThrowTypeError("SignUpdate fail");
}
}
bool Sign::SignFinal(unsigned char** md_value,
unsigned int *md_len,
const char* key_pem,
int key_pem_len) {
if (!initialised_) return false;
BIO* bp = NULL;
EVP_PKEY* pkey = NULL;
bp = BIO_new(BIO_s_mem());
if (!BIO_write(bp, key_pem, key_pem_len)) return false;
pkey = PEM_read_bio_PrivateKey(bp, NULL, NULL, NULL);
if (pkey == NULL) return 0;
EVP_SignFinal(&mdctx_, *md_value, md_len, pkey);
EVP_MD_CTX_cleanup(&mdctx_);
initialised_ = false;
EVP_PKEY_free(pkey);
BIO_free_all(bp);
return true;
}
void Sign::SignFinal(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Sign* sign = ObjectWrap::Unwrap<Sign>(args.This());
unsigned char* md_value;
unsigned int md_len;
enum encoding encoding = BUFFER;
if (args.Length() >= 2) {
encoding = ParseEncoding(args[1]->ToString(), BUFFER);
}
ASSERT_IS_BUFFER(args[0]);
ssize_t len = Buffer::Length(args[0]);
char* buf = Buffer::Data(args[0]);
md_len = 8192; // Maximum key size is 8192 bits
md_value = new unsigned char[md_len];
bool r = sign->SignFinal(&md_value, &md_len, buf, len);
if (!r) {
delete[] md_value;
md_value = NULL;
md_len = 0;
}
Local<Value> rc = StringBytes::Encode(
reinterpret_cast<const char*>(md_value), md_len, encoding);
delete[] md_value;
args.GetReturnValue().Set(rc);
}
void Verify::Initialize(v8::Handle<v8::Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", VerifyInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", VerifyUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "verify", VerifyFinal);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Verify"), t->GetFunction());
}
void Verify::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Verify* verify = new Verify();
verify->Wrap(args.This());
}
void Verify::VerifyInit(const char* verify_type) {
HandleScope scope(node_isolate);
assert(md_ == NULL);
md_ = EVP_get_digestbyname(verify_type);
if (md_ == NULL) {
return ThrowError("Unknown message digest");
}
EVP_MD_CTX_init(&mdctx_);
EVP_VerifyInit_ex(&mdctx_, md_, NULL);
initialised_ = true;
}
void Verify::VerifyInit(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Verify* verify = ObjectWrap::Unwrap<Verify>(args.This());
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowError("Must give verifytype string as argument");
}
const String::Utf8Value verify_type(args[0]);
verify->VerifyInit(*verify_type);
}
bool Verify::VerifyUpdate(const char* data, int len) {
if (!initialised_) return false;
EVP_VerifyUpdate(&mdctx_, data, len);
return true;
}
void Verify::VerifyUpdate(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Verify* verify = ObjectWrap::Unwrap<Verify>(args.This());
ASSERT_IS_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
bool r;
if (args[0]->IsString()) {
Local<String> string = args[0].As<String>();
enum encoding encoding = ParseEncoding(args[1], BINARY);
if (!StringBytes::IsValidString(string, encoding))
return ThrowTypeError("Bad input string");
size_t buflen = StringBytes::StorageSize(string, encoding);
char* buf = new char[buflen];
size_t written = StringBytes::Write(buf, buflen, string, encoding);
r = verify->VerifyUpdate(buf, written);
delete[] buf;
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = verify->VerifyUpdate(buf, buflen);
}
if (!r) {
return ThrowTypeError("VerifyUpdate fail");
}
}
bool Verify::VerifyFinal(const char* key_pem,
int key_pem_len,
const char* sig,
int siglen) {
HandleScope scope(node_isolate);
if (!initialised_) {
ThrowError("Verify not initalised");
return false;
}
EVP_PKEY* pkey = NULL;
BIO* bp = NULL;
X509* x509 = NULL;
bool fatal = true;
int r = 0;
bp = BIO_new(BIO_s_mem());
if (bp == NULL)
goto exit;
if (!BIO_write(bp, key_pem, key_pem_len))
goto exit;
// Check if this is a PKCS#8 or RSA public key before trying as X.509.
// Split this out into a separate function once we have more than one
// consumer of public keys.
if (strncmp(key_pem, PUBLIC_KEY_PFX, PUBLIC_KEY_PFX_LEN) == 0) {
pkey = PEM_read_bio_PUBKEY(bp, NULL, NULL, NULL);
if (pkey == NULL)
goto exit;
} else if (strncmp(key_pem, PUBRSA_KEY_PFX, PUBRSA_KEY_PFX_LEN) == 0) {
RSA* rsa = PEM_read_bio_RSAPublicKey(bp, NULL, NULL, NULL);
if (rsa) {
pkey = EVP_PKEY_new();
if (pkey) EVP_PKEY_set1_RSA(pkey, rsa);
RSA_free(rsa);
}
if (pkey == NULL)
goto exit;
} else {
// X.509 fallback
x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL);
if (x509 == NULL)
goto exit;
pkey = X509_get_pubkey(x509);
if (pkey == NULL)
goto exit;
}
fatal = false;
r = EVP_VerifyFinal(&mdctx_,
reinterpret_cast<const unsigned char*>(sig),
siglen,
pkey);
exit:
if (pkey != NULL)
EVP_PKEY_free(pkey);
if (bp != NULL)
BIO_free_all(bp);
if (x509 != NULL)
X509_free(x509);
EVP_MD_CTX_cleanup(&mdctx_);
initialised_ = false;
if (fatal) {
unsigned long err = ERR_get_error();
ThrowCryptoError(err);
return false;
}
return r == 1;
}
void Verify::VerifyFinal(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Verify* verify = ObjectWrap::Unwrap<Verify>(args.This());
ASSERT_IS_BUFFER(args[0]);
char* kbuf = Buffer::Data(args[0]);
ssize_t klen = Buffer::Length(args[0]);
ASSERT_IS_STRING_OR_BUFFER(args[1]);
// BINARY works for both buffers and binary strings.
enum encoding encoding = BINARY;
if (args.Length() >= 3) {
encoding = ParseEncoding(args[2]->ToString(), BINARY);
}
ssize_t hlen = StringBytes::Size(args[1], encoding);
// only copy if we need to, because it's a string.
char* hbuf;
if (args[1]->IsString()) {
hbuf = new char[hlen];
ssize_t hwritten = StringBytes::Write(hbuf, hlen, args[1], encoding);
assert(hwritten == hlen);
} else {
hbuf = Buffer::Data(args[1]);
}
bool rc = verify->VerifyFinal(kbuf, klen, hbuf, hlen);
if (args[1]->IsString()) {
delete[] hbuf;
}
args.GetReturnValue().Set(rc);
}
void DiffieHellman::Initialize(v8::Handle<v8::Object> target) {
HandleScope scope(node_isolate);
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "generateKeys", GenerateKeys);
NODE_SET_PROTOTYPE_METHOD(t, "computeSecret", ComputeSecret);
NODE_SET_PROTOTYPE_METHOD(t, "getPrime", GetPrime);
NODE_SET_PROTOTYPE_METHOD(t, "getGenerator", GetGenerator);
NODE_SET_PROTOTYPE_METHOD(t, "getPublicKey", GetPublicKey);
NODE_SET_PROTOTYPE_METHOD(t, "getPrivateKey", GetPrivateKey);
NODE_SET_PROTOTYPE_METHOD(t, "setPublicKey", SetPublicKey);
NODE_SET_PROTOTYPE_METHOD(t, "setPrivateKey", SetPrivateKey);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "DiffieHellman"),
t->GetFunction());
Local<FunctionTemplate> t2 = FunctionTemplate::New(DiffieHellmanGroup);
t2->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t2, "generateKeys", GenerateKeys);
NODE_SET_PROTOTYPE_METHOD(t2, "computeSecret", ComputeSecret);
NODE_SET_PROTOTYPE_METHOD(t2, "getPrime", GetPrime);
NODE_SET_PROTOTYPE_METHOD(t2, "getGenerator", GetGenerator);
NODE_SET_PROTOTYPE_METHOD(t2, "getPublicKey", GetPublicKey);
NODE_SET_PROTOTYPE_METHOD(t2, "getPrivateKey", GetPrivateKey);
target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "DiffieHellmanGroup"),
t2->GetFunction());
}
bool DiffieHellman::Init(int primeLength) {
dh = DH_new();
DH_generate_parameters_ex(dh, primeLength, DH_GENERATOR_2, 0);
bool result = VerifyContext();
if (!result) return false;
initialised_ = true;
return true;
}
bool DiffieHellman::Init(const char* p, int p_len) {
dh = DH_new();
dh->p = BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, 0);
dh->g = BN_new();
if (!BN_set_word(dh->g, 2)) return false;
bool result = VerifyContext();
if (!result) return false;
initialised_ = true;
return true;
}
bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) {
dh = DH_new();
dh->p = BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, 0);
dh->g = BN_bin2bn(reinterpret_cast<const unsigned char*>(g), g_len, 0);
initialised_ = true;
return true;
}
void DiffieHellman::DiffieHellmanGroup(
const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman = new DiffieHellman();
if (args.Length() != 1 || !args[0]->IsString()) {
return ThrowError("No group name given");
}
const String::Utf8Value group_name(args[0]);
for (unsigned int i = 0; i < ARRAY_SIZE(modp_groups); ++i) {
const modp_group* it = modp_groups + i;
if (strcasecmp(*group_name, it->name) != 0)
continue;
diffieHellman->Init(it->prime,
it->prime_size,
it->gen,
it->gen_size);
diffieHellman->Wrap(args.This());
return;
}
ThrowError("Unknown group");
}
void DiffieHellman::New(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman = new DiffieHellman();
bool initialized = false;
if (args.Length() > 0) {
if (args[0]->IsInt32()) {
initialized = diffieHellman->Init(args[0]->Int32Value());
} else {
initialized = diffieHellman->Init(Buffer::Data(args[0]),
Buffer::Length(args[0]));
}
}
if (!initialized) {
return ThrowError("Initialization failed");
}
diffieHellman->Wrap(args.This());
}
void DiffieHellman::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
if (!DH_generate_key(diffieHellman->dh)) {
return ThrowError("Key generation failed");
}
int dataSize = BN_num_bytes(diffieHellman->dh->pub_key);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->pub_key,
reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetPrime(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
int dataSize = BN_num_bytes(diffieHellman->dh->p);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->p, reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetGenerator(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
int dataSize = BN_num_bytes(diffieHellman->dh->g);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->g, reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
if (diffieHellman->dh->pub_key == NULL) {
return ThrowError("No public key - did you forget to generate one?");
}
int dataSize = BN_num_bytes(diffieHellman->dh->pub_key);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->pub_key,
reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
if (diffieHellman->dh->priv_key == NULL) {
return ThrowError("No private key - did you forget to generate one?");
}
int dataSize = BN_num_bytes(diffieHellman->dh->priv_key);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->priv_key,
reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
BIGNUM* key = NULL;
if (args.Length() == 0) {
return ThrowError("First argument must be other party's public key");
} else {
ASSERT_IS_BUFFER(args[0]);
key = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0])),
Buffer::Length(args[0]),
0);
}
int dataSize = DH_size(diffieHellman->dh);
char* data = new char[dataSize];
int size = DH_compute_key(reinterpret_cast<unsigned char*>(data),
key,
diffieHellman->dh);
if (size == -1) {
int checkResult;
int checked;
checked = DH_check_pub_key(diffieHellman->dh, key, &checkResult);
BN_free(key);
delete[] data;
if (!checked) {
return ThrowError("Invalid key");
} else if (checkResult) {
if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) {
return ThrowError("Supplied key is too small");
} else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) {
return ThrowError("Supplied key is too large");
} else {
return ThrowError("Invalid key");
}
} else {
return ThrowError("Invalid key");
}
}
BN_free(key);
assert(size >= 0);
// DH_size returns number of bytes in a prime number
// DH_compute_key returns number of bytes in a remainder of exponent, which
// may have less bytes than a prime number. Therefore add 0-padding to the
// allocated buffer.
if (size != dataSize) {
assert(dataSize > size);
memmove(data + dataSize - size, data, size);
memset(data, 0, dataSize - size);
}
args.GetReturnValue().Set(Encode(data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
if (args.Length() == 0) {
return ThrowError("First argument must be public key");
} else {
ASSERT_IS_BUFFER(args[0]);
diffieHellman->dh->pub_key = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0])),
Buffer::Length(args[0]), 0);
}
}
void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
DiffieHellman* diffieHellman =
ObjectWrap::Unwrap<DiffieHellman>(args.This());
if (!diffieHellman->initialised_) {
return ThrowError("Not initialized");
}
if (args.Length() == 0) {
return ThrowError("First argument must be private key");
} else {
ASSERT_IS_BUFFER(args[0]);
diffieHellman->dh->priv_key = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0])),
Buffer::Length(args[0]),
0);
}
}
bool DiffieHellman::VerifyContext() {
int codes;
if (!DH_check(dh, &codes)) return false;
if (codes & DH_CHECK_P_NOT_SAFE_PRIME) return false;
if (codes & DH_CHECK_P_NOT_PRIME) return false;
if (codes & DH_UNABLE_TO_CHECK_GENERATOR) return false;
if (codes & DH_NOT_SUITABLE_GENERATOR) return false;
return true;
}
struct pbkdf2_req {
uv_work_t work_req;
int err;
char* pass;
size_t passlen;
char* salt;
size_t saltlen;
size_t iter;
char* key;
size_t keylen;
Persistent<Object> obj;
};
void EIO_PBKDF2(pbkdf2_req* req) {
req->err = PKCS5_PBKDF2_HMAC_SHA1(
req->pass,
req->passlen,
(unsigned char*)req->salt,
req->saltlen,
req->iter,
req->keylen,
(unsigned char*)req->key);
memset(req->pass, 0, req->passlen);
memset(req->salt, 0, req->saltlen);
}
void EIO_PBKDF2(uv_work_t* work_req) {
pbkdf2_req* req = container_of(work_req, pbkdf2_req, work_req);
EIO_PBKDF2(req);
}
void EIO_PBKDF2After(pbkdf2_req* req, Local<Value> argv[2]) {
if (req->err) {
argv[0] = Undefined(node_isolate);
argv[1] = Encode(req->key, req->keylen, BUFFER);
memset(req->key, 0, req->keylen);
} else {
argv[0] = Exception::Error(
FIXED_ONE_BYTE_STRING(node_isolate, "PBKDF2 error"));
argv[1] = Undefined(node_isolate);
}
delete[] req->pass;
delete[] req->salt;
delete[] req->key;
delete req;
}
void EIO_PBKDF2After(uv_work_t* work_req, int status) {
assert(status == 0);
pbkdf2_req* req = container_of(work_req, pbkdf2_req, work_req);
HandleScope scope(node_isolate);
// Create a new Local that's associated with the current HandleScope.
// PersistentToLocal() returns a handle that gets zeroed when we call
// Dispose() so don't use that.
Local<Object> obj = Local<Object>::New(node_isolate, req->obj);
req->obj.Dispose();
Local<Value> argv[2];
EIO_PBKDF2After(req, argv);
MakeCallback(obj, "ondone", ARRAY_SIZE(argv), argv);
}
void PBKDF2(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
const char* type_error = NULL;
char* pass = NULL;
char* salt = NULL;
ssize_t passlen = -1;
ssize_t saltlen = -1;
ssize_t keylen = -1;
ssize_t pass_written = -1;
ssize_t salt_written = -1;
ssize_t iter = -1;
pbkdf2_req* req = NULL;
if (args.Length() != 4 && args.Length() != 5) {
type_error = "Bad parameter";
goto err;
}
ASSERT_IS_BUFFER(args[0]);
passlen = Buffer::Length(args[0]);
if (passlen < 0) {
type_error = "Bad password";
goto err;
}
pass = new char[passlen];
pass_written = DecodeWrite(pass, passlen, args[0], BINARY);
assert(pass_written == passlen);
ASSERT_IS_BUFFER(args[1]);
saltlen = Buffer::Length(args[1]);
if (saltlen < 0) {
type_error = "Bad salt";
goto err;
}
salt = new char[saltlen];
salt_written = DecodeWrite(salt, saltlen, args[1], BINARY);
assert(salt_written == saltlen);
if (!args[2]->IsNumber()) {
type_error = "Iterations not a number";
goto err;
}
iter = args[2]->Int32Value();
if (iter < 0) {
type_error = "Bad iterations";
goto err;
}
if (!args[3]->IsNumber()) {
type_error = "Key length not a number";
goto err;
}
keylen = args[3]->Int32Value();
if (keylen < 0) {
type_error = "Bad key length";
goto err;
}
req = new pbkdf2_req;
req->err = 0;
req->pass = pass;
req->passlen = passlen;
req->salt = salt;
req->saltlen = saltlen;
req->iter = iter;
req->key = new char[keylen];
req->keylen = keylen;
if (args[4]->IsFunction()) {
Local<Object> obj = Object::New();
obj->Set(FIXED_ONE_BYTE_STRING(node_isolate, "ondone"), args[4]);
req->obj.Reset(node_isolate, obj);
uv_queue_work(uv_default_loop(),
&req->work_req,
EIO_PBKDF2,
EIO_PBKDF2After);
} else {
Local<Value> argv[2];
EIO_PBKDF2(req);
EIO_PBKDF2After(req, argv);
if (argv[0]->IsObject())
ThrowException(argv[0]);
else
args.GetReturnValue().Set(argv[1]);
}
return;
err:
delete[] salt;
delete[] pass;
return ThrowTypeError(type_error);
}
struct RandomBytesRequest {
~RandomBytesRequest();
Persistent<Object> obj_;
unsigned long error_; // openssl error code or zero
uv_work_t work_req_;
size_t size_;
char* data_;
};
RandomBytesRequest::~RandomBytesRequest() {
obj_.Dispose();
}
template <bool pseudoRandom>
void RandomBytesWork(uv_work_t* work_req) {
RandomBytesRequest* req = container_of(work_req,
RandomBytesRequest,
work_req_);
int r;
if (pseudoRandom == true) {
r = RAND_pseudo_bytes(reinterpret_cast<unsigned char*>(req->data_),
req->size_);
} else {
r = RAND_bytes(reinterpret_cast<unsigned char*>(req->data_), req->size_);
}
// RAND_bytes() returns 0 on error. RAND_pseudo_bytes() returns 0 when the
// result is not cryptographically strong - but that's not an error.
if (r == 0 && pseudoRandom == false) {
req->error_ = ERR_get_error();
} else if (r == -1) {
req->error_ = static_cast<unsigned long>(-1);
}
}
// don't call this function without a valid HandleScope
void RandomBytesCheck(RandomBytesRequest* req, Local<Value> argv[2]) {
if (req->error_) {
char errmsg[256] = "Operation not supported";
if (req->error_ != static_cast<unsigned long>(-1))
ERR_error_string_n(req->error_, errmsg, sizeof errmsg);
argv[0] = Exception::Error(OneByteString(node_isolate, errmsg));
argv[1] = Null(node_isolate);
} else {
argv[0] = Null(node_isolate);
argv[1] = Buffer::Use(req->data_, req->size_);
req->data_ = NULL;
}
free(req->data_);
}
void RandomBytesAfter(uv_work_t* work_req, int status) {
assert(status == 0);
RandomBytesRequest* req = container_of(work_req,
RandomBytesRequest,
work_req_);
HandleScope scope(node_isolate);
Local<Value> argv[2];
RandomBytesCheck(req, argv);
MakeCallback(req->obj_, "ondone", ARRAY_SIZE(argv), argv);
delete req;
}
template <bool pseudoRandom>
void RandomBytes(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
// maybe allow a buffer to write to? cuts down on object creation
// when generating random data in a loop
if (!args[0]->IsUint32()) {
return ThrowTypeError("Argument #1 must be number > 0");
}
const uint32_t size = args[0]->Uint32Value();
if (size > Buffer::kMaxLength) {
return ThrowTypeError("size > Buffer::kMaxLength");
}
RandomBytesRequest* req = new RandomBytesRequest();
req->error_ = 0;
req->size_ = size;
req->data_ = static_cast<char*>(malloc(size));
if (req->data_ == NULL) {
delete req;
V8::LowMemoryNotification();
return ThrowError("Out of memory");
}
if (args[1]->IsFunction()) {
Local<Object> obj = Object::New();
obj->Set(FIXED_ONE_BYTE_STRING(node_isolate, "ondone"), args[1]);
req->obj_.Reset(node_isolate, obj);
uv_queue_work(uv_default_loop(),
&req->work_req_,
RandomBytesWork<pseudoRandom>,
RandomBytesAfter);
args.GetReturnValue().Set(obj);
} else {
Local<Value> argv[2];
RandomBytesWork<pseudoRandom>(&req->work_req_);
RandomBytesCheck(req, argv);
delete req;
if (!argv[0]->IsNull())
ThrowException(argv[0]);
else
args.GetReturnValue().Set(argv[1]);
}
}
void GetSSLCiphers(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
SSL_CTX* ctx = SSL_CTX_new(TLSv1_server_method());
if (ctx == NULL) {
return ThrowError("SSL_CTX_new() failed.");
}
SSL* ssl = SSL_new(ctx);
if (ssl == NULL) {
SSL_CTX_free(ctx);
return ThrowError("SSL_new() failed.");
}
Local<Array> arr = Array::New();
STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl);
for (int i = 0; i < sk_SSL_CIPHER_num(ciphers); ++i) {
SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i);
arr->Set(i, OneByteString(node_isolate, SSL_CIPHER_get_name(cipher)));
}
SSL_free(ssl);
SSL_CTX_free(ctx);
args.GetReturnValue().Set(arr);
}
template <class TypeName>
static void array_push_back(const TypeName* md,
const char* from,
const char* to,
void* arg) {
Local<Array>& arr = *static_cast<Local<Array>*>(arg);
arr->Set(arr->Length(), OneByteString(node_isolate, from));
}
void GetCiphers(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Local<Array> arr = Array::New();
EVP_CIPHER_do_all_sorted(array_push_back<EVP_CIPHER>, &arr);
args.GetReturnValue().Set(arr);
}
void GetHashes(const FunctionCallbackInfo<Value>& args) {
HandleScope scope(node_isolate);
Local<Array> arr = Array::New();
EVP_MD_do_all_sorted(array_push_back<EVP_MD>, &arr);
args.GetReturnValue().Set(arr);
}
void InitCrypto(Handle<Object> target) {
HandleScope scope(node_isolate);
SSL_library_init();
OpenSSL_add_all_algorithms();
OpenSSL_add_all_digests();
SSL_load_error_strings();
ERR_load_crypto_strings();
crypto_lock_init();
CRYPTO_set_locking_callback(crypto_lock_cb);
CRYPTO_THREADID_set_callback(crypto_threadid_cb);
// Turn off compression. Saves memory - do it in userland.
#if !defined(OPENSSL_NO_COMP)
#if OPENSSL_VERSION_NUMBER < 0x00908000L
STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_method();
#else
STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_methods();
#endif
sk_SSL_COMP_zero(comp_methods);
assert(sk_SSL_COMP_num(comp_methods) == 0);
#endif
SecureContext::Initialize(target);
Connection::Initialize(target);
CipherBase::Initialize(target);
DiffieHellman::Initialize(target);
Hmac::Initialize(target);
Hash::Initialize(target);
Sign::Initialize(target);
Verify::Initialize(target);
NODE_SET_METHOD(target, "PBKDF2", PBKDF2);
NODE_SET_METHOD(target, "randomBytes", RandomBytes<false>);
NODE_SET_METHOD(target, "pseudoRandomBytes", RandomBytes<true>);
NODE_SET_METHOD(target, "getSSLCiphers", GetSSLCiphers);
NODE_SET_METHOD(target, "getCiphers", GetCiphers);
NODE_SET_METHOD(target, "getHashes", GetHashes);
subject_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "subject");
issuer_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "issuer");
valid_from_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "valid_from");
valid_to_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "valid_to");
subjectaltname_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "subjectaltname");
modulus_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "modulus");
exponent_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "exponent");
fingerprint_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "fingerprint");
name_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "name");
version_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "version");
ext_key_usage_symbol = FIXED_ONE_BYTE_STRING(node_isolate, "ext_key_usage");
}
} // namespace crypto
} // namespace node
NODE_MODULE(node_crypto, node::crypto::InitCrypto)