You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1998 lines
67 KiB

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "codegen.h"
#include "deoptimizer.h"
#include "disasm.h"
#include "full-codegen.h"
#include "global-handles.h"
#include "macro-assembler.h"
#include "prettyprinter.h"
namespace v8 {
namespace internal {
DeoptimizerData::DeoptimizerData() {
eager_deoptimization_entry_code_ = NULL;
lazy_deoptimization_entry_code_ = NULL;
current_ = NULL;
deoptimizing_code_list_ = NULL;
#ifdef ENABLE_DEBUGGER_SUPPORT
deoptimized_frame_info_ = NULL;
#endif
}
DeoptimizerData::~DeoptimizerData() {
if (eager_deoptimization_entry_code_ != NULL) {
Isolate::Current()->memory_allocator()->Free(
eager_deoptimization_entry_code_);
eager_deoptimization_entry_code_ = NULL;
}
if (lazy_deoptimization_entry_code_ != NULL) {
Isolate::Current()->memory_allocator()->Free(
lazy_deoptimization_entry_code_);
lazy_deoptimization_entry_code_ = NULL;
}
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void DeoptimizerData::Iterate(ObjectVisitor* v) {
if (deoptimized_frame_info_ != NULL) {
deoptimized_frame_info_->Iterate(v);
}
}
#endif
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
type,
bailout_id,
from,
fp_to_sp_delta,
NULL);
ASSERT(isolate->deoptimizer_data()->current_ == NULL);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
Deoptimizer* result = isolate->deoptimizer_data()->current_;
ASSERT(result != NULL);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = NULL;
return result;
}
int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
if (jsframe_index == 0) return 0;
int frame_index = 0;
while (jsframe_index >= 0) {
FrameDescription* frame = output_[frame_index];
if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
jsframe_index--;
}
frame_index++;
}
return frame_index - 1;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
ASSERT(frame->is_optimized());
ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
// Get the function and code from the frame.
JSFunction* function = JSFunction::cast(frame->function());
Code* code = frame->LookupCode();
// Locate the deoptimization point in the code. As we are at a call the
// return address must be at a place in the code with deoptimization support.
SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
int deoptimization_index = safepoint_entry.deoptimization_index();
ASSERT(deoptimization_index != Safepoint::kNoDeoptimizationIndex);
// Always use the actual stack slots when calculating the fp to sp
// delta adding two for the function and context.
unsigned stack_slots = code->stack_slots();
unsigned fp_to_sp_delta = ((stack_slots + 2) * kPointerSize);
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
Deoptimizer::DEBUGGER,
deoptimization_index,
frame->pc(),
fp_to_sp_delta,
code);
Address tos = frame->fp() - fp_to_sp_delta;
deoptimizer->FillInputFrame(tos, frame);
// Calculate the output frames.
Deoptimizer::ComputeOutputFrames(deoptimizer);
// Create the GC safe output frame information and register it for GC
// handling.
ASSERT_LT(jsframe_index, deoptimizer->jsframe_count());
// Convert JS frame index into frame index.
int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
bool has_arguments_adaptor =
frame_index > 0 &&
deoptimizer->output_[frame_index - 1]->GetFrameType() ==
StackFrame::ARGUMENTS_ADAPTOR;
int construct_offset = has_arguments_adaptor ? 2 : 1;
bool has_construct_stub =
frame_index >= construct_offset &&
deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
StackFrame::CONSTRUCT;
DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
frame_index,
has_arguments_adaptor,
has_construct_stub);
isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
// Get the "simulated" top and size for the requested frame.
FrameDescription* parameters_frame =
deoptimizer->output_[
has_arguments_adaptor ? (frame_index - 1) : frame_index];
uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize;
Address parameters_top = reinterpret_cast<Address>(
parameters_frame->GetTop() + (parameters_frame->GetFrameSize() -
parameters_size));
uint32_t expressions_size = info->expression_count() * kPointerSize;
Address expressions_top = reinterpret_cast<Address>(
deoptimizer->output_[frame_index]->GetTop());
// Done with the GC-unsafe frame descriptions. This re-enables allocation.
deoptimizer->DeleteFrameDescriptions();
// Allocate a heap number for the doubles belonging to this frame.
deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
parameters_top, parameters_size, expressions_top, expressions_size, info);
// Finished using the deoptimizer instance.
delete deoptimizer;
return info;
}
void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == info);
delete info;
isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
}
#endif
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
int count,
BailoutType type) {
TableEntryGenerator generator(masm, type, count);
generator.Generate();
}
class DeoptimizingVisitor : public OptimizedFunctionVisitor {
public:
virtual void EnterContext(Context* context) {
if (FLAG_trace_deopt) {
PrintF("[deoptimize context: %" V8PRIxPTR "]\n",
reinterpret_cast<intptr_t>(context));
}
}
virtual void VisitFunction(JSFunction* function) {
Deoptimizer::DeoptimizeFunction(function);
}
virtual void LeaveContext(Context* context) {
context->ClearOptimizedFunctions();
}
};
void Deoptimizer::DeoptimizeAll() {
AssertNoAllocation no_allocation;
if (FLAG_trace_deopt) {
PrintF("[deoptimize all contexts]\n");
}
DeoptimizingVisitor visitor;
VisitAllOptimizedFunctions(&visitor);
}
void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) {
AssertNoAllocation no_allocation;
DeoptimizingVisitor visitor;
VisitAllOptimizedFunctionsForGlobalObject(object, &visitor);
}
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
Context* context, OptimizedFunctionVisitor* visitor) {
Isolate* isolate = context->GetIsolate();
ZoneScope zone_scope(isolate->runtime_zone(), DELETE_ON_EXIT);
AssertNoAllocation no_allocation;
ASSERT(context->IsNativeContext());
visitor->EnterContext(context);
// Create a snapshot of the optimized functions list. This is needed because
// visitors might remove more than one link from the list at once.
ZoneList<JSFunction*> snapshot(1, isolate->runtime_zone());
Object* element = context->OptimizedFunctionsListHead();
while (!element->IsUndefined()) {
JSFunction* element_function = JSFunction::cast(element);
snapshot.Add(element_function, isolate->runtime_zone());
element = element_function->next_function_link();
}
// Run through the snapshot of optimized functions and visit them.
for (int i = 0; i < snapshot.length(); ++i) {
visitor->VisitFunction(snapshot.at(i));
}
visitor->LeaveContext(context);
}
void Deoptimizer::VisitAllOptimizedFunctionsForGlobalObject(
JSObject* object, OptimizedFunctionVisitor* visitor) {
AssertNoAllocation no_allocation;
if (object->IsJSGlobalProxy()) {
Object* proto = object->GetPrototype();
ASSERT(proto->IsJSGlobalObject());
VisitAllOptimizedFunctionsForContext(
GlobalObject::cast(proto)->native_context(), visitor);
} else if (object->IsGlobalObject()) {
VisitAllOptimizedFunctionsForContext(
GlobalObject::cast(object)->native_context(), visitor);
}
}
void Deoptimizer::VisitAllOptimizedFunctions(
OptimizedFunctionVisitor* visitor) {
AssertNoAllocation no_allocation;
// Run through the list of all native contexts and deoptimize.
Object* context = Isolate::Current()->heap()->native_contexts_list();
while (!context->IsUndefined()) {
// GC can happen when the context is not fully initialized,
// so the global field of the context can be undefined.
Object* global = Context::cast(context)->get(Context::GLOBAL_OBJECT_INDEX);
if (!global->IsUndefined()) {
VisitAllOptimizedFunctionsForGlobalObject(JSObject::cast(global),
visitor);
}
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::HandleWeakDeoptimizedCode(
v8::Persistent<v8::Value> obj, void* data) {
DeoptimizingCodeListNode* node =
reinterpret_cast<DeoptimizingCodeListNode*>(data);
RemoveDeoptimizingCode(*node->code());
#ifdef DEBUG
node = Isolate::Current()->deoptimizer_data()->deoptimizing_code_list_;
while (node != NULL) {
ASSERT(node != reinterpret_cast<DeoptimizingCodeListNode*>(data));
node = node->next();
}
#endif
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
Deoptimizer::Deoptimizer(Isolate* isolate,
JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Code* optimized_code)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
bailout_type_(type),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
has_alignment_padding_(0),
input_(NULL),
output_count_(0),
jsframe_count_(0),
output_(NULL),
deferred_arguments_objects_values_(0),
deferred_arguments_objects_(0),
deferred_heap_numbers_(0) {
if (FLAG_trace_deopt && type != OSR) {
if (type == DEBUGGER) {
PrintF("**** DEOPT FOR DEBUGGER: ");
} else {
PrintF("**** DEOPT: ");
}
function->PrintName();
PrintF(" at bailout #%u, address 0x%" V8PRIxPTR ", frame size %d\n",
bailout_id,
reinterpret_cast<intptr_t>(from),
fp_to_sp_delta - (2 * kPointerSize));
} else if (FLAG_trace_osr && type == OSR) {
PrintF("**** OSR: ");
function->PrintName();
PrintF(" at ast id #%u, address 0x%" V8PRIxPTR ", frame size %d\n",
bailout_id,
reinterpret_cast<intptr_t>(from),
fp_to_sp_delta - (2 * kPointerSize));
}
function->shared()->increment_deopt_count();
// Find the optimized code.
if (type == EAGER) {
ASSERT(from == NULL);
optimized_code_ = function_->code();
if (FLAG_trace_deopt && FLAG_code_comments) {
// Print instruction associated with this bailout.
const char* last_comment = NULL;
int mask = RelocInfo::ModeMask(RelocInfo::COMMENT)
| RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
for (RelocIterator it(optimized_code_, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->rmode() == RelocInfo::COMMENT) {
last_comment = reinterpret_cast<const char*>(info->data());
}
if (info->rmode() == RelocInfo::RUNTIME_ENTRY) {
unsigned id = Deoptimizer::GetDeoptimizationId(
info->target_address(), Deoptimizer::EAGER);
if (id == bailout_id && last_comment != NULL) {
PrintF(" %s\n", last_comment);
break;
}
}
}
}
} else if (type == LAZY) {
optimized_code_ = FindDeoptimizingCodeFromAddress(from);
ASSERT(optimized_code_ != NULL);
} else if (type == OSR) {
// The function has already been optimized and we're transitioning
// from the unoptimized shared version to the optimized one in the
// function. The return address (from) points to unoptimized code.
optimized_code_ = function_->code();
ASSERT(optimized_code_->kind() == Code::OPTIMIZED_FUNCTION);
ASSERT(!optimized_code_->contains(from));
} else if (type == DEBUGGER) {
optimized_code_ = optimized_code;
ASSERT(optimized_code_->contains(from));
}
ASSERT(HEAP->allow_allocation(false));
unsigned size = ComputeInputFrameSize();
input_ = new(size) FrameDescription(size, function);
input_->SetFrameType(StackFrame::JAVA_SCRIPT);
}
Deoptimizer::~Deoptimizer() {
ASSERT(input_ == NULL && output_ == NULL);
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = NULL;
output_ = NULL;
ASSERT(!HEAP->allow_allocation(true));
}
Address Deoptimizer::GetDeoptimizationEntry(int id, BailoutType type) {
ASSERT(id >= 0);
if (id >= kNumberOfEntries) return NULL;
MemoryChunk* base = NULL;
DeoptimizerData* data = Isolate::Current()->deoptimizer_data();
if (type == EAGER) {
if (data->eager_deoptimization_entry_code_ == NULL) {
data->eager_deoptimization_entry_code_ = CreateCode(type);
}
base = data->eager_deoptimization_entry_code_;
} else {
if (data->lazy_deoptimization_entry_code_ == NULL) {
data->lazy_deoptimization_entry_code_ = CreateCode(type);
}
base = data->lazy_deoptimization_entry_code_;
}
return
static_cast<Address>(base->area_start()) + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Address addr, BailoutType type) {
MemoryChunk* base = NULL;
DeoptimizerData* data = Isolate::Current()->deoptimizer_data();
if (type == EAGER) {
base = data->eager_deoptimization_entry_code_;
} else {
base = data->lazy_deoptimization_entry_code_;
}
if (base == NULL ||
addr < base->area_start() ||
addr >= base->area_start() +
(kNumberOfEntries * table_entry_size_)) {
return kNotDeoptimizationEntry;
}
ASSERT_EQ(0,
static_cast<int>(addr - base->area_start()) % table_entry_size_);
return static_cast<int>(addr - base->area_start()) / table_entry_size_;
}
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
BailoutId id,
SharedFunctionInfo* shared) {
// TODO(kasperl): For now, we do a simple linear search for the PC
// offset associated with the given node id. This should probably be
// changed to a binary search.
int length = data->DeoptPoints();
for (int i = 0; i < length; i++) {
if (data->AstId(i) == id) {
return data->PcAndState(i)->value();
}
}
PrintF("[couldn't find pc offset for node=%d]\n", id.ToInt());
PrintF("[method: %s]\n", *shared->DebugName()->ToCString());
// Print the source code if available.
HeapStringAllocator string_allocator;
StringStream stream(&string_allocator);
shared->SourceCodePrint(&stream, -1);
PrintF("[source:\n%s\n]", *stream.ToCString());
UNREACHABLE();
return -1;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
DeoptimizingCodeListNode* node =
isolate->deoptimizer_data()->deoptimizing_code_list_;
while (node != NULL) {
length++;
node = node->next();
}
return length;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
if (bailout_type_ == OSR) {
DoComputeOsrOutputFrame();
return;
}
// Print some helpful diagnostic information.
int64_t start = OS::Ticks();
if (FLAG_trace_deopt) {
PrintF("[deoptimizing%s: begin 0x%08" V8PRIxPTR " ",
(bailout_type_ == LAZY ? " (lazy)" : ""),
reinterpret_cast<intptr_t>(function_));
function_->PrintName();
PrintF(" @%d]\n", bailout_id_);
}
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationInputData* input_data =
DeoptimizationInputData::cast(optimized_code_->deoptimization_data());
BailoutId node_id = input_data->AstId(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
// Do the input frame to output frame(s) translation.
TranslationIterator iterator(translations, translation_index);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
ASSERT(Translation::BEGIN == opcode);
USE(opcode);
// Read the number of output frames and allocate an array for their
// descriptions.
int count = iterator.Next();
iterator.Next(); // Drop JS frames count.
ASSERT(output_ == NULL);
output_ = new FrameDescription*[count];
for (int i = 0; i < count; ++i) {
output_[i] = NULL;
}
output_count_ = count;
// Translate each output frame.
for (int i = 0; i < count; ++i) {
// Read the ast node id, function, and frame height for this output frame.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
switch (opcode) {
case Translation::JS_FRAME:
DoComputeJSFrame(&iterator, i);
jsframe_count_++;
break;
case Translation::ARGUMENTS_ADAPTOR_FRAME:
DoComputeArgumentsAdaptorFrame(&iterator, i);
break;
case Translation::CONSTRUCT_STUB_FRAME:
DoComputeConstructStubFrame(&iterator, i);
break;
case Translation::GETTER_STUB_FRAME:
DoComputeAccessorStubFrame(&iterator, i, false);
break;
case Translation::SETTER_STUB_FRAME:
DoComputeAccessorStubFrame(&iterator, i, true);
break;
case Translation::BEGIN:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
case Translation::ARGUMENTS_OBJECT:
case Translation::DUPLICATE:
UNREACHABLE();
break;
}
}
// Print some helpful diagnostic information.
if (FLAG_trace_deopt) {
double ms = static_cast<double>(OS::Ticks() - start) / 1000;
int index = output_count_ - 1; // Index of the topmost frame.
JSFunction* function = output_[index]->GetFunction();
PrintF("[deoptimizing: end 0x%08" V8PRIxPTR " ",
reinterpret_cast<intptr_t>(function));
function->PrintName();
PrintF(" => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
" took %0.3f ms]\n",
node_id.ToInt(),
output_[index]->GetPc(),
FullCodeGenerator::State2String(
static_cast<FullCodeGenerator::State>(
output_[index]->GetState()->value())),
has_alignment_padding_ ? "with padding" : "no padding",
ms);
}
}
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
ASSERT_NE(DEBUGGER, bailout_type_);
// Handlify all argument object values before triggering any allocation.
List<Handle<Object> > values(deferred_arguments_objects_values_.length());
for (int i = 0; i < deferred_arguments_objects_values_.length(); ++i) {
values.Add(Handle<Object>(deferred_arguments_objects_values_[i]));
}
// Play it safe and clear all unhandlified values before we continue.
deferred_arguments_objects_values_.Clear();
// Materialize all heap numbers before looking at arguments because when the
// output frames are used to materialize arguments objects later on they need
// to already contain valid heap numbers.
for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
HeapNumberMaterializationDescriptor d = deferred_heap_numbers_[i];
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
if (FLAG_trace_deopt) {
PrintF("Materializing a new heap number %p [%e] in slot %p\n",
reinterpret_cast<void*>(*num),
d.value(),
d.slot_address());
}
Memory::Object_at(d.slot_address()) = *num;
}
// Materialize arguments objects one frame at a time.
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
if (frame_index != 0) it->Advance();
JavaScriptFrame* frame = it->frame();
Handle<JSFunction> function(JSFunction::cast(frame->function()), isolate_);
Handle<JSObject> arguments;
for (int i = frame->ComputeExpressionsCount() - 1; i >= 0; --i) {
if (frame->GetExpression(i) == isolate_->heap()->arguments_marker()) {
ArgumentsObjectMaterializationDescriptor descriptor =
deferred_arguments_objects_.RemoveLast();
const int length = descriptor.arguments_length();
if (arguments.is_null()) {
if (frame->has_adapted_arguments()) {
// Use the arguments adapter frame we just built to materialize the
// arguments object. FunctionGetArguments can't throw an exception,
// so cast away the doubt with an assert.
arguments = Handle<JSObject>(JSObject::cast(
Accessors::FunctionGetArguments(*function,
NULL)->ToObjectUnchecked()));
values.RewindBy(length);
} else {
// Construct an arguments object and copy the parameters to a newly
// allocated arguments object backing store.
arguments =
isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array =
isolate_->factory()->NewFixedArray(length);
ASSERT(array->length() == length);
for (int i = length - 1; i >= 0 ; --i) {
array->set(i, *values.RemoveLast());
}
arguments->set_elements(*array);
}
}
frame->SetExpression(i, *arguments);
ASSERT_EQ(Memory::Object_at(descriptor.slot_address()), *arguments);
if (FLAG_trace_deopt) {
PrintF("Materializing %sarguments object for %p: ",
frame->has_adapted_arguments() ? "(adapted) " : "",
reinterpret_cast<void*>(descriptor.slot_address()));
arguments->ShortPrint();
PrintF("\n");
}
}
}
}
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
Address parameters_top,
uint32_t parameters_size,
Address expressions_top,
uint32_t expressions_size,
DeoptimizedFrameInfo* info) {
ASSERT_EQ(DEBUGGER, bailout_type_);
Address parameters_bottom = parameters_top + parameters_size;
Address expressions_bottom = expressions_top + expressions_size;
for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
HeapNumberMaterializationDescriptor d = deferred_heap_numbers_[i];
// Check of the heap number to materialize actually belong to the frame
// being extracted.
Address slot = d.slot_address();
if (parameters_top <= slot && slot < parameters_bottom) {
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
int index = (info->parameters_count() - 1) -
static_cast<int>(slot - parameters_top) / kPointerSize;
if (FLAG_trace_deopt) {
PrintF("Materializing a new heap number %p [%e] in slot %p"
"for parameter slot #%d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.slot_address(),
index);
}
info->SetParameter(index, *num);
} else if (expressions_top <= slot && slot < expressions_bottom) {
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
int index = info->expression_count() - 1 -
static_cast<int>(slot - expressions_top) / kPointerSize;
if (FLAG_trace_deopt) {
PrintF("Materializing a new heap number %p [%e] in slot %p"
"for expression slot #%d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.slot_address(),
index);
}
info->SetExpression(index, *num);
}
}
}
#endif
void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator,
int frame_index,
unsigned output_offset) {
disasm::NameConverter converter;
// A GC-safe temporary placeholder that we can put in the output frame.
const intptr_t kPlaceholder = reinterpret_cast<intptr_t>(Smi::FromInt(0));
// Ignore commands marked as duplicate and act on the first non-duplicate.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
while (opcode == Translation::DUPLICATE) {
opcode = static_cast<Translation::Opcode>(iterator->Next());
iterator->Skip(Translation::NumberOfOperandsFor(opcode));
opcode = static_cast<Translation::Opcode>(iterator->Next());
}
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::DUPLICATE:
UNREACHABLE();
return;
case Translation::REGISTER: {
int input_reg = iterator->Next();
intptr_t input_value = input_->GetRegister(input_reg);
if (FLAG_trace_deopt) {
PrintF(
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ",
output_[frame_index]->GetTop() + output_offset,
output_offset,
input_value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
output_[frame_index]->SetFrameSlot(output_offset, input_value);
return;
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
intptr_t value = input_->GetRegister(input_reg);
bool is_smi = Smi::IsValid(value);
if (FLAG_trace_deopt) {
PrintF(
" 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
converter.NameOfCPURegister(input_reg),
is_smi ? "smi" : "heap number");
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<int32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (FLAG_trace_deopt) {
PrintF(
" 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIuPTR
" ; uint %s (%s)\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
converter.NameOfCPURegister(input_reg),
is_smi ? "smi" : "heap number");
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<uint32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
double value = input_->GetDoubleRegister(input_reg);
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
DoubleRegister::AllocationIndexToString(input_reg));
}
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
return;
}
case Translation::STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset =
input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t input_value = input_->GetFrameSlot(input_offset);
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF("[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
output_offset,
input_value,
input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
output_[frame_index]->SetFrameSlot(output_offset, input_value);
return;
}
case Translation::INT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset =
input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t value = input_->GetFrameSlot(input_offset);
bool is_smi = Smi::IsValid(value);
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF("[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n",
output_offset,
value,
input_offset,
is_smi ? "smi" : "heap number");
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<int32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::UINT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset =
input_->GetOffsetFromSlotIndex(input_slot_index);
uintptr_t value =
static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF("[top + %d] <- %" V8PRIuPTR " ; [sp + %d] (uint32 %s)\n",
output_offset,
value,
input_offset,
is_smi ? "smi" : "heap number");
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<uint32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::DOUBLE_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset =
input_->GetOffsetFromSlotIndex(input_slot_index);
double value = input_->GetDoubleFrameSlot(input_offset);
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
input_offset);
}
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
return;
}
case Translation::LITERAL: {
Object* literal = ComputeLiteral(iterator->Next());
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
literal->ShortPrint();
PrintF(" ; literal\n");
}
intptr_t value = reinterpret_cast<intptr_t>(literal);
output_[frame_index]->SetFrameSlot(output_offset, value);
return;
}
case Translation::ARGUMENTS_OBJECT: {
int args_index = iterator->Next() + 1; // Skip receiver.
int args_length = iterator->Next() - 1; // Skip receiver.
if (FLAG_trace_deopt) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
isolate_->heap()->arguments_marker()->ShortPrint();
PrintF(" ; arguments object\n");
}
// Use the arguments marker value as a sentinel and fill in the arguments
// object after the deoptimized frame is built.
intptr_t value = reinterpret_cast<intptr_t>(
isolate_->heap()->arguments_marker());
AddArgumentsObject(
output_[frame_index]->GetTop() + output_offset, args_length);
output_[frame_index]->SetFrameSlot(output_offset, value);
// We save the tagged argument values on the side and materialize the
// actual arguments object after the deoptimized frame is built.
for (int i = 0; i < args_length; i++) {
unsigned input_offset = input_->GetOffsetFromSlotIndex(args_index + i);
intptr_t input_value = input_->GetFrameSlot(input_offset);
AddArgumentsObjectValue(input_value);
}
return;
}
}
}
static bool ObjectToInt32(Object* obj, int32_t* value) {
if (obj->IsSmi()) {
*value = Smi::cast(obj)->value();
return true;
}
if (obj->IsHeapNumber()) {
double num = HeapNumber::cast(obj)->value();
if (FastI2D(FastD2I(num)) != num) {
if (FLAG_trace_osr) {
PrintF("**** %g could not be converted to int32 ****\n",
HeapNumber::cast(obj)->value());
}
return false;
}
*value = FastD2I(num);
return true;
}
return false;
}
static bool ObjectToUint32(Object* obj, uint32_t* value) {
if (obj->IsSmi()) {
if (Smi::cast(obj)->value() < 0) return false;
*value = static_cast<uint32_t>(Smi::cast(obj)->value());
return true;
}
if (obj->IsHeapNumber()) {
double num = HeapNumber::cast(obj)->value();
if ((num < 0) || (FastUI2D(FastD2UI(num)) != num)) {
if (FLAG_trace_osr) {
PrintF("**** %g could not be converted to uint32 ****\n",
HeapNumber::cast(obj)->value());
}
return false;
}
*value = FastD2UI(num);
return true;
}
return false;
}
bool Deoptimizer::DoOsrTranslateCommand(TranslationIterator* iterator,
int* input_offset) {
disasm::NameConverter converter;
FrameDescription* output = output_[0];
// The input values are all part of the unoptimized frame so they
// are all tagged pointers.
uintptr_t input_value = input_->GetFrameSlot(*input_offset);
Object* input_object = reinterpret_cast<Object*>(input_value);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
bool duplicate = (opcode == Translation::DUPLICATE);
if (duplicate) {
opcode = static_cast<Translation::Opcode>(iterator->Next());
}
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::DUPLICATE:
UNREACHABLE(); // Malformed input.
return false;
case Translation::REGISTER: {
int output_reg = iterator->Next();
if (FLAG_trace_osr) {
PrintF(" %s <- 0x%08" V8PRIxPTR " ; [sp + %d]\n",
converter.NameOfCPURegister(output_reg),
input_value,
*input_offset);
}
output->SetRegister(output_reg, input_value);
break;
}
case Translation::INT32_REGISTER: {
int32_t int32_value = 0;
if (!ObjectToInt32(input_object, &int32_value)) return false;
int output_reg = iterator->Next();
if (FLAG_trace_osr) {
PrintF(" %s <- %d (int32) ; [sp + %d]\n",
converter.NameOfCPURegister(output_reg),
int32_value,
*input_offset);
}
output->SetRegister(output_reg, int32_value);
break;
}
case Translation::UINT32_REGISTER: {
uint32_t uint32_value = 0;
if (!ObjectToUint32(input_object, &uint32_value)) return false;
int output_reg = iterator->Next();
if (FLAG_trace_osr) {
PrintF(" %s <- %u (uint32) ; [sp + %d]\n",
converter.NameOfCPURegister(output_reg),
uint32_value,
*input_offset);
}
output->SetRegister(output_reg, static_cast<int32_t>(uint32_value));
}
case Translation::DOUBLE_REGISTER: {
// Abort OSR if we don't have a number.
if (!input_object->IsNumber()) return false;
int output_reg = iterator->Next();
double double_value = input_object->Number();
if (FLAG_trace_osr) {
PrintF(" %s <- %g (double) ; [sp + %d]\n",
DoubleRegister::AllocationIndexToString(output_reg),
double_value,
*input_offset);
}
output->SetDoubleRegister(output_reg, double_value);
break;
}
case Translation::STACK_SLOT: {
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
output_offset,
input_value,
*input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
output->SetFrameSlot(output_offset, input_value);
break;
}
case Translation::INT32_STACK_SLOT: {
int32_t int32_value = 0;
if (!ObjectToInt32(input_object, &int32_value)) return false;
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- %d (int32) ; [sp + %d]\n",
output_offset,
int32_value,
*input_offset);
}
output->SetFrameSlot(output_offset, int32_value);
break;
}
case Translation::UINT32_STACK_SLOT: {
uint32_t uint32_value = 0;
if (!ObjectToUint32(input_object, &uint32_value)) return false;
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- %u (uint32) ; [sp + %d]\n",
output_offset,
uint32_value,
*input_offset);
}
output->SetFrameSlot(output_offset, static_cast<int32_t>(uint32_value));
break;
}
case Translation::DOUBLE_STACK_SLOT: {
static const int kLowerOffset = 0 * kPointerSize;
static const int kUpperOffset = 1 * kPointerSize;
// Abort OSR if we don't have a number.
if (!input_object->IsNumber()) return false;
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
double double_value = input_object->Number();
uint64_t int_value = BitCast<uint64_t, double>(double_value);
int32_t lower = static_cast<int32_t>(int_value);
int32_t upper = static_cast<int32_t>(int_value >> kBitsPerInt);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- 0x%08x (upper bits of %g) ; [sp + %d]\n",
output_offset + kUpperOffset,
upper,
double_value,
*input_offset);
PrintF(" [sp + %d] <- 0x%08x (lower bits of %g) ; [sp + %d]\n",
output_offset + kLowerOffset,
lower,
double_value,
*input_offset);
}
output->SetFrameSlot(output_offset + kLowerOffset, lower);
output->SetFrameSlot(output_offset + kUpperOffset, upper);
break;
}
case Translation::LITERAL: {
// Just ignore non-materialized literals.
iterator->Next();
break;
}
case Translation::ARGUMENTS_OBJECT: {
// Optimized code assumes that the argument object has not been
// materialized and so bypasses it when doing arguments access.
// We should have bailed out before starting the frame
// translation.
UNREACHABLE();
return false;
}
}
if (!duplicate) *input_offset -= kPointerSize;
return true;
}
void Deoptimizer::PatchStackCheckCode(Code* unoptimized_code,
Code* check_code,
Code* replacement_code) {
// Iterate over the stack check table and patch every stack check
// call to an unconditional call to the replacement code.
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
Address stack_check_cursor = unoptimized_code->instruction_start() +
unoptimized_code->stack_check_table_offset();
uint32_t table_length = Memory::uint32_at(stack_check_cursor);
stack_check_cursor += kIntSize;
for (uint32_t i = 0; i < table_length; ++i) {
uint32_t pc_offset = Memory::uint32_at(stack_check_cursor + kIntSize);
Address pc_after = unoptimized_code->instruction_start() + pc_offset;
PatchStackCheckCodeAt(unoptimized_code,
pc_after,
check_code,
replacement_code);
stack_check_cursor += 2 * kIntSize;
}
}
void Deoptimizer::RevertStackCheckCode(Code* unoptimized_code,
Code* check_code,
Code* replacement_code) {
// Iterate over the stack check table and revert the patched
// stack check calls.
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
Address stack_check_cursor = unoptimized_code->instruction_start() +
unoptimized_code->stack_check_table_offset();
uint32_t table_length = Memory::uint32_at(stack_check_cursor);
stack_check_cursor += kIntSize;
for (uint32_t i = 0; i < table_length; ++i) {
uint32_t pc_offset = Memory::uint32_at(stack_check_cursor + kIntSize);
Address pc_after = unoptimized_code->instruction_start() + pc_offset;
RevertStackCheckCodeAt(unoptimized_code,
pc_after,
check_code,
replacement_code);
stack_check_cursor += 2 * kIntSize;
}
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
unsigned fixed_size = ComputeFixedSize(function_);
// The fp-to-sp delta already takes the context and the function
// into account so we have to avoid double counting them (-2).
unsigned result = fixed_size + fp_to_sp_delta_ - (2 * kPointerSize);
#ifdef DEBUG
if (bailout_type_ == OSR) {
// TODO(kasperl): It would be nice if we could verify that the
// size matches with the stack height we can compute based on the
// environment at the OSR entry. The code for that his built into
// the DoComputeOsrOutputFrame function for now.
} else {
unsigned stack_slots = optimized_code_->stack_slots();
unsigned outgoing_size = ComputeOutgoingArgumentSize();
ASSERT(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
}
#endif
return result;
}
unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, and all the incoming arguments.
return ComputeIncomingArgumentSize(function) +
StandardFrameConstants::kFixedFrameSize;
}
unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
// The incoming arguments is the values for formal parameters and
// the receiver. Every slot contains a pointer.
unsigned arguments = function->shared()->formal_parameter_count() + 1;
return arguments * kPointerSize;
}
unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
optimized_code_->deoptimization_data());
unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
return height * kPointerSize;
}
Object* Deoptimizer::ComputeLiteral(int index) const {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
optimized_code_->deoptimization_data());
FixedArray* literals = data->LiteralArray();
return literals->get(index);
}
void Deoptimizer::AddArgumentsObject(intptr_t slot_address, int argc) {
ArgumentsObjectMaterializationDescriptor object_desc(
reinterpret_cast<Address>(slot_address), argc);
deferred_arguments_objects_.Add(object_desc);
}
void Deoptimizer::AddArgumentsObjectValue(intptr_t value) {
deferred_arguments_objects_values_.Add(reinterpret_cast<Object*>(value));
}
void Deoptimizer::AddDoubleValue(intptr_t slot_address, double value) {
HeapNumberMaterializationDescriptor value_desc(
reinterpret_cast<Address>(slot_address), value);
deferred_heap_numbers_.Add(value_desc);
}
MemoryChunk* Deoptimizer::CreateCode(BailoutType type) {
// We cannot run this if the serializer is enabled because this will
// cause us to emit relocation information for the external
// references. This is fine because the deoptimizer's code section
// isn't meant to be serialized at all.
ASSERT(!Serializer::enabled());
MacroAssembler masm(Isolate::Current(), NULL, 16 * KB);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, kNumberOfEntries, type);
CodeDesc desc;
masm.GetCode(&desc);
ASSERT(desc.reloc_size == 0);
MemoryChunk* chunk =
Isolate::Current()->memory_allocator()->AllocateChunk(desc.instr_size,
EXECUTABLE,
NULL);
ASSERT(chunk->area_size() >= desc.instr_size);
if (chunk == NULL) {
V8::FatalProcessOutOfMemory("Not enough memory for deoptimization table");
}
memcpy(chunk->area_start(), desc.buffer, desc.instr_size);
CPU::FlushICache(chunk->area_start(), desc.instr_size);
return chunk;
}
Code* Deoptimizer::FindDeoptimizingCodeFromAddress(Address addr) {
DeoptimizingCodeListNode* node =
Isolate::Current()->deoptimizer_data()->deoptimizing_code_list_;
while (node != NULL) {
if (node->code()->contains(addr)) return *node->code();
node = node->next();
}
return NULL;
}
void Deoptimizer::RemoveDeoptimizingCode(Code* code) {
DeoptimizerData* data = Isolate::Current()->deoptimizer_data();
ASSERT(data->deoptimizing_code_list_ != NULL);
// Run through the code objects to find this one and remove it.
DeoptimizingCodeListNode* prev = NULL;
DeoptimizingCodeListNode* current = data->deoptimizing_code_list_;
while (current != NULL) {
if (*current->code() == code) {
// Unlink from list. If prev is NULL we are looking at the first element.
if (prev == NULL) {
data->deoptimizing_code_list_ = current->next();
} else {
prev->set_next(current->next());
}
delete current;
return;
}
// Move to next in list.
prev = current;
current = current->next();
}
// Deoptimizing code is removed through weak callback. Each object is expected
// to be removed once and only once.
UNREACHABLE();
}
static Object* CutOutRelatedFunctionsList(Context* context,
Code* code,
Object* undefined) {
Object* result_list_head = undefined;
Object* head;
Object* current;
current = head = context->get(Context::OPTIMIZED_FUNCTIONS_LIST);
JSFunction* prev = NULL;
while (current != undefined) {
JSFunction* func = JSFunction::cast(current);
current = func->next_function_link();
if (func->code() == code) {
func->set_next_function_link(result_list_head);
result_list_head = func;
if (prev) {
prev->set_next_function_link(current);
} else {
head = current;
}
} else {
prev = func;
}
}
if (head != context->get(Context::OPTIMIZED_FUNCTIONS_LIST)) {
context->set(Context::OPTIMIZED_FUNCTIONS_LIST, head);
}
return result_list_head;
}
void Deoptimizer::ReplaceCodeForRelatedFunctions(JSFunction* function,
Code* code) {
Context* context = function->context()->native_context();
SharedFunctionInfo* shared = function->shared();
Object* undefined = Isolate::Current()->heap()->undefined_value();
Object* current = CutOutRelatedFunctionsList(context, code, undefined);
while (current != undefined) {
JSFunction* func = JSFunction::cast(current);
current = func->next_function_link();
func->set_code(shared->code());
func->set_next_function_link(undefined);
}
}
FrameDescription::FrameDescription(uint32_t frame_size,
JSFunction* function)
: frame_size_(frame_size),
function_(function),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
int FrameDescription::ComputeFixedSize() {
return StandardFrameConstants::kFixedFrameSize +
(ComputeParametersCount() + 1) * kPointerSize;
}
unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
if (slot_index >= 0) {
// Local or spill slots. Skip the fixed part of the frame
// including all arguments.
unsigned base = GetFrameSize() - ComputeFixedSize();
return base - ((slot_index + 1) * kPointerSize);
} else {
// Incoming parameter.
int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
unsigned base = GetFrameSize() - arg_size;
return base - ((slot_index + 1) * kPointerSize);
}
}
int FrameDescription::ComputeParametersCount() {
switch (type_) {
case StackFrame::JAVA_SCRIPT:
return function_->shared()->formal_parameter_count();
case StackFrame::ARGUMENTS_ADAPTOR: {
// Last slot contains number of incomming arguments as a smi.
// Can't use GetExpression(0) because it would cause infinite recursion.
return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
}
default:
UNREACHABLE();
return 0;
}
}
Object* FrameDescription::GetParameter(int index) {
ASSERT(index >= 0);
ASSERT(index < ComputeParametersCount());
// The slot indexes for incoming arguments are negative.
unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
unsigned FrameDescription::GetExpressionCount() {
ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned size = GetFrameSize() - ComputeFixedSize();
return size / kPointerSize;
}
Object* FrameDescription::GetExpression(int index) {
ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned offset = GetOffsetFromSlotIndex(index);
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
void TranslationBuffer::Add(int32_t value, Zone* zone) {
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = ((is_negative ? -value : value) << 1) |
static_cast<int32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
bits = next;
} while (bits != 0);
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
ASSERT(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
Handle<ByteArray> TranslationBuffer::CreateByteArray() {
int length = contents_.length();
Handle<ByteArray> result =
Isolate::Current()->factory()->NewByteArray(length, TENURED);
memcpy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
return result;
}
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginGetterStubFrame(int literal_id) {
buffer_->Add(GETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginSetterStubFrame(int literal_id) {
buffer_->Add(SETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginJSFrame(BailoutId node_id,
int literal_id,
unsigned height) {
buffer_->Add(JS_FRAME, zone());
buffer_->Add(node_id.ToInt(), zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER, zone());
buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL, zone());
buffer_->Add(literal_id, zone());
}
void Translation::StoreArgumentsObject(int args_index, int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_index, zone());
buffer_->Add(args_length, zone());
}
void Translation::MarkDuplicate() {
buffer_->Add(DUPLICATE, zone());
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case DUPLICATE:
return 0;
case GETTER_STUB_FRAME:
case SETTER_STUB_FRAME:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
return 1;
case BEGIN:
case ARGUMENTS_ADAPTOR_FRAME:
case CONSTRUCT_STUB_FRAME:
case ARGUMENTS_OBJECT:
return 2;
case JS_FRAME:
return 3;
}
UNREACHABLE();
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
switch (opcode) {
case BEGIN:
return "BEGIN";
case JS_FRAME:
return "JS_FRAME";
case ARGUMENTS_ADAPTOR_FRAME:
return "ARGUMENTS_ADAPTOR_FRAME";
case CONSTRUCT_STUB_FRAME:
return "CONSTRUCT_STUB_FRAME";
case GETTER_STUB_FRAME:
return "GETTER_STUB_FRAME";
case SETTER_STUB_FRAME:
return "SETTER_STUB_FRAME";
case REGISTER:
return "REGISTER";
case INT32_REGISTER:
return "INT32_REGISTER";
case UINT32_REGISTER:
return "UINT32_REGISTER";
case DOUBLE_REGISTER:
return "DOUBLE_REGISTER";
case STACK_SLOT:
return "STACK_SLOT";
case INT32_STACK_SLOT:
return "INT32_STACK_SLOT";
case UINT32_STACK_SLOT:
return "UINT32_STACK_SLOT";
case DOUBLE_STACK_SLOT:
return "DOUBLE_STACK_SLOT";
case LITERAL:
return "LITERAL";
case ARGUMENTS_OBJECT:
return "ARGUMENTS_OBJECT";
case DUPLICATE:
return "DUPLICATE";
}
UNREACHABLE();
return "";
}
#endif
DeoptimizingCodeListNode::DeoptimizingCodeListNode(Code* code): next_(NULL) {
GlobalHandles* global_handles = Isolate::Current()->global_handles();
// Globalize the code object and make it weak.
code_ = Handle<Code>::cast(global_handles->Create(code));
global_handles->MakeWeak(reinterpret_cast<Object**>(code_.location()),
this,
Deoptimizer::HandleWeakDeoptimizedCode);
}
DeoptimizingCodeListNode::~DeoptimizingCodeListNode() {
GlobalHandles* global_handles = Isolate::Current()->global_handles();
global_handles->Destroy(reinterpret_cast<Object**>(code_.location()));
}
// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
SlotRef SlotRef::ComputeSlotForNextArgument(TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
// Peeled off before getting here.
break;
case Translation::ARGUMENTS_OBJECT:
// This can be only emitted for local slots not for argument slots.
break;
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::DUPLICATE:
// We are at safepoint which corresponds to call. All registers are
// saved by caller so there would be no live registers at this
// point. Thus these translation commands should not be used.
break;
case Translation::STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::TAGGED);
}
case Translation::INT32_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::INT32);
}
case Translation::UINT32_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::UINT32);
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::DOUBLE);
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
return SlotRef(data->LiteralArray()->get(literal_index));
}
}
UNREACHABLE();
return SlotRef();
}
void SlotRef::ComputeSlotsForArguments(Vector<SlotRef>* args_slots,
TranslationIterator* it,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
// Process the translation commands for the arguments.
// Skip the translation command for the receiver.
it->Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it->Next())));
// Compute slots for arguments.
for (int i = 0; i < args_slots->length(); ++i) {
(*args_slots)[i] = ComputeSlotForNextArgument(it, data, frame);
}
}
Vector<SlotRef> SlotRef::ComputeSlotMappingForArguments(
JavaScriptFrame* frame,
int inlined_jsframe_index,
int formal_parameter_count) {
AssertNoAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data =
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::BEGIN);
it.Next(); // Drop frame count.
int jsframe_count = it.Next();
USE(jsframe_count);
ASSERT(jsframe_count > inlined_jsframe_index);
int jsframes_to_skip = inlined_jsframe_index;
while (true) {
opcode = static_cast<Translation::Opcode>(it.Next());
if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
if (jsframes_to_skip == 0) {
ASSERT(Translation::NumberOfOperandsFor(opcode) == 2);
it.Skip(1); // literal id
int height = it.Next();
// We reached the arguments adaptor frame corresponding to the
// inlined function in question. Number of arguments is height - 1.
Vector<SlotRef> args_slots =
Vector<SlotRef>::New(height - 1); // Minus receiver.
ComputeSlotsForArguments(&args_slots, &it, data, frame);
return args_slots;
}
} else if (opcode == Translation::JS_FRAME) {
if (jsframes_to_skip == 0) {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
// We reached the frame corresponding to the inlined function
// in question. Process the translation commands for the
// arguments. Number of arguments is equal to the number of
// format parameter count.
Vector<SlotRef> args_slots =
Vector<SlotRef>::New(formal_parameter_count);
ComputeSlotsForArguments(&args_slots, &it, data, frame);
return args_slots;
}
jsframes_to_skip--;
}
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
UNREACHABLE();
return Vector<SlotRef>();
}
#ifdef ENABLE_DEBUGGER_SUPPORT
DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
int frame_index,
bool has_arguments_adaptor,
bool has_construct_stub) {
FrameDescription* output_frame = deoptimizer->output_[frame_index];
function_ = output_frame->GetFunction();
has_construct_stub_ = has_construct_stub;
expression_count_ = output_frame->GetExpressionCount();
expression_stack_ = new Object*[expression_count_];
// Get the source position using the unoptimized code.
Address pc = reinterpret_cast<Address>(output_frame->GetPc());
Code* code = Code::cast(Isolate::Current()->heap()->FindCodeObject(pc));
source_position_ = code->SourcePosition(pc);
for (int i = 0; i < expression_count_; i++) {
SetExpression(i, output_frame->GetExpression(i));
}
if (has_arguments_adaptor) {
output_frame = deoptimizer->output_[frame_index - 1];
ASSERT(output_frame->GetFrameType() == StackFrame::ARGUMENTS_ADAPTOR);
}
parameters_count_ = output_frame->ComputeParametersCount();
parameters_ = new Object*[parameters_count_];
for (int i = 0; i < parameters_count_; i++) {
SetParameter(i, output_frame->GetParameter(i));
}
}
DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
delete[] expression_stack_;
delete[] parameters_;
}
void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
v->VisitPointer(BitCast<Object**>(&function_));
v->VisitPointers(parameters_, parameters_ + parameters_count_);
v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
}
#endif // ENABLE_DEBUGGER_SUPPORT
} } // namespace v8::internal