mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1140 lines
38 KiB
1140 lines
38 KiB
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "codegen-inl.h"
|
|
#include "register-allocator-inl.h"
|
|
#include "scopes.h"
|
|
#include "virtual-frame-inl.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#define __ ACCESS_MASM(masm())
|
|
|
|
void VirtualFrame::Enter() {
|
|
// Registers live on entry to a JS frame:
|
|
// rsp: stack pointer, points to return address from this function.
|
|
// rbp: base pointer, points to previous JS, ArgumentsAdaptor, or
|
|
// Trampoline frame.
|
|
// rsi: context of this function call.
|
|
// rdi: pointer to this function object.
|
|
Comment cmnt(masm(), "[ Enter JS frame");
|
|
|
|
#ifdef DEBUG
|
|
if (FLAG_debug_code) {
|
|
// Verify that rdi contains a JS function. The following code
|
|
// relies on rax being available for use.
|
|
Condition not_smi = NegateCondition(masm()->CheckSmi(rdi));
|
|
__ Check(not_smi,
|
|
"VirtualFrame::Enter - rdi is not a function (smi check).");
|
|
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax);
|
|
__ Check(equal,
|
|
"VirtualFrame::Enter - rdi is not a function (map check).");
|
|
}
|
|
#endif
|
|
|
|
EmitPush(rbp);
|
|
|
|
__ movq(rbp, rsp);
|
|
|
|
// Store the context in the frame. The context is kept in rsi and a
|
|
// copy is stored in the frame. The external reference to rsi
|
|
// remains.
|
|
EmitPush(rsi);
|
|
|
|
// Store the function in the frame. The frame owns the register
|
|
// reference now (ie, it can keep it in rdi or spill it later).
|
|
Push(rdi);
|
|
SyncElementAt(element_count() - 1);
|
|
cgen()->allocator()->Unuse(rdi);
|
|
}
|
|
|
|
|
|
void VirtualFrame::Exit() {
|
|
Comment cmnt(masm(), "[ Exit JS frame");
|
|
// Record the location of the JS exit code for patching when setting
|
|
// break point.
|
|
__ RecordJSReturn();
|
|
|
|
// Avoid using the leave instruction here, because it is too
|
|
// short. We need the return sequence to be a least the size of a
|
|
// call instruction to support patching the exit code in the
|
|
// debugger. See GenerateReturnSequence for the full return sequence.
|
|
// TODO(X64): A patched call will be very long now. Make sure we
|
|
// have enough room.
|
|
__ movq(rsp, rbp);
|
|
stack_pointer_ = frame_pointer();
|
|
for (int i = element_count() - 1; i > stack_pointer_; i--) {
|
|
FrameElement last = elements_.RemoveLast();
|
|
if (last.is_register()) {
|
|
Unuse(last.reg());
|
|
}
|
|
}
|
|
|
|
EmitPop(rbp);
|
|
}
|
|
|
|
|
|
void VirtualFrame::AllocateStackSlots() {
|
|
int count = local_count();
|
|
if (count > 0) {
|
|
Comment cmnt(masm(), "[ Allocate space for locals");
|
|
// The locals are initialized to a constant (the undefined value), but
|
|
// we sync them with the actual frame to allocate space for spilling
|
|
// them later. First sync everything above the stack pointer so we can
|
|
// use pushes to allocate and initialize the locals.
|
|
SyncRange(stack_pointer_ + 1, element_count() - 1);
|
|
Handle<Object> undefined = Factory::undefined_value();
|
|
FrameElement initial_value =
|
|
FrameElement::ConstantElement(undefined, FrameElement::SYNCED);
|
|
if (count == 1) {
|
|
__ Push(undefined);
|
|
} else if (count < kLocalVarBound) {
|
|
// For less locals the unrolled loop is more compact.
|
|
__ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT);
|
|
for (int i = 0; i < count; i++) {
|
|
__ push(kScratchRegister);
|
|
}
|
|
} else {
|
|
// For more locals a loop in generated code is more compact.
|
|
Label alloc_locals_loop;
|
|
Result cnt = cgen()->allocator()->Allocate();
|
|
ASSERT(cnt.is_valid());
|
|
__ movq(cnt.reg(), Immediate(count));
|
|
__ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT);
|
|
__ bind(&alloc_locals_loop);
|
|
__ push(kScratchRegister);
|
|
__ decl(cnt.reg());
|
|
__ j(not_zero, &alloc_locals_loop);
|
|
}
|
|
for (int i = 0; i < count; i++) {
|
|
elements_.Add(initial_value);
|
|
stack_pointer_++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void VirtualFrame::SaveContextRegister() {
|
|
ASSERT(elements_[context_index()].is_memory());
|
|
__ movq(Operand(rbp, fp_relative(context_index())), rsi);
|
|
}
|
|
|
|
|
|
void VirtualFrame::RestoreContextRegister() {
|
|
ASSERT(elements_[context_index()].is_memory());
|
|
__ movq(rsi, Operand(rbp, fp_relative(context_index())));
|
|
}
|
|
|
|
|
|
void VirtualFrame::PushReceiverSlotAddress() {
|
|
Result temp = cgen()->allocator()->Allocate();
|
|
ASSERT(temp.is_valid());
|
|
__ lea(temp.reg(), ParameterAt(-1));
|
|
Push(&temp);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPop(Register reg) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
stack_pointer_--;
|
|
elements_.RemoveLast();
|
|
__ pop(reg);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPop(const Operand& operand) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
stack_pointer_--;
|
|
elements_.RemoveLast();
|
|
__ pop(operand);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPush(Register reg, TypeInfo info) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
elements_.Add(FrameElement::MemoryElement(info));
|
|
stack_pointer_++;
|
|
__ push(reg);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPush(const Operand& operand, TypeInfo info) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
elements_.Add(FrameElement::MemoryElement(info));
|
|
stack_pointer_++;
|
|
__ push(operand);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPush(Immediate immediate, TypeInfo info) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
elements_.Add(FrameElement::MemoryElement(info));
|
|
stack_pointer_++;
|
|
__ push(immediate);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPush(Smi* smi_value) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
elements_.Add(FrameElement::MemoryElement(TypeInfo::Smi()));
|
|
stack_pointer_++;
|
|
__ Push(smi_value);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPush(Handle<Object> value) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
TypeInfo info = TypeInfo::TypeFromValue(value);
|
|
elements_.Add(FrameElement::MemoryElement(info));
|
|
stack_pointer_++;
|
|
__ Push(value);
|
|
}
|
|
|
|
|
|
void VirtualFrame::EmitPush(Heap::RootListIndex index, TypeInfo info) {
|
|
ASSERT(stack_pointer_ == element_count() - 1);
|
|
elements_.Add(FrameElement::MemoryElement(info));
|
|
stack_pointer_++;
|
|
__ PushRoot(index);
|
|
}
|
|
|
|
|
|
void VirtualFrame::Drop(int count) {
|
|
ASSERT(count >= 0);
|
|
ASSERT(height() >= count);
|
|
int num_virtual_elements = (element_count() - 1) - stack_pointer_;
|
|
|
|
// Emit code to lower the stack pointer if necessary.
|
|
if (num_virtual_elements < count) {
|
|
int num_dropped = count - num_virtual_elements;
|
|
stack_pointer_ -= num_dropped;
|
|
__ addq(rsp, Immediate(num_dropped * kPointerSize));
|
|
}
|
|
|
|
// Discard elements from the virtual frame and free any registers.
|
|
for (int i = 0; i < count; i++) {
|
|
FrameElement dropped = elements_.RemoveLast();
|
|
if (dropped.is_register()) {
|
|
Unuse(dropped.reg());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int VirtualFrame::InvalidateFrameSlotAt(int index) {
|
|
FrameElement original = elements_[index];
|
|
|
|
// Is this element the backing store of any copies?
|
|
int new_backing_index = kIllegalIndex;
|
|
if (original.is_copied()) {
|
|
// Verify it is copied, and find first copy.
|
|
for (int i = index + 1; i < element_count(); i++) {
|
|
if (elements_[i].is_copy() && elements_[i].index() == index) {
|
|
new_backing_index = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_backing_index == kIllegalIndex) {
|
|
// No copies found, return kIllegalIndex.
|
|
if (original.is_register()) {
|
|
Unuse(original.reg());
|
|
}
|
|
elements_[index] = FrameElement::InvalidElement();
|
|
return kIllegalIndex;
|
|
}
|
|
|
|
// This is the backing store of copies.
|
|
Register backing_reg;
|
|
if (original.is_memory()) {
|
|
Result fresh = cgen()->allocator()->Allocate();
|
|
ASSERT(fresh.is_valid());
|
|
Use(fresh.reg(), new_backing_index);
|
|
backing_reg = fresh.reg();
|
|
__ movq(backing_reg, Operand(rbp, fp_relative(index)));
|
|
} else {
|
|
// The original was in a register.
|
|
backing_reg = original.reg();
|
|
set_register_location(backing_reg, new_backing_index);
|
|
}
|
|
// Invalidate the element at index.
|
|
elements_[index] = FrameElement::InvalidElement();
|
|
// Set the new backing element.
|
|
if (elements_[new_backing_index].is_synced()) {
|
|
elements_[new_backing_index] =
|
|
FrameElement::RegisterElement(backing_reg,
|
|
FrameElement::SYNCED,
|
|
original.type_info());
|
|
} else {
|
|
elements_[new_backing_index] =
|
|
FrameElement::RegisterElement(backing_reg,
|
|
FrameElement::NOT_SYNCED,
|
|
original.type_info());
|
|
}
|
|
// Update the other copies.
|
|
for (int i = new_backing_index + 1; i < element_count(); i++) {
|
|
if (elements_[i].is_copy() && elements_[i].index() == index) {
|
|
elements_[i].set_index(new_backing_index);
|
|
elements_[new_backing_index].set_copied();
|
|
}
|
|
}
|
|
return new_backing_index;
|
|
}
|
|
|
|
|
|
void VirtualFrame::TakeFrameSlotAt(int index) {
|
|
ASSERT(index >= 0);
|
|
ASSERT(index <= element_count());
|
|
FrameElement original = elements_[index];
|
|
int new_backing_store_index = InvalidateFrameSlotAt(index);
|
|
if (new_backing_store_index != kIllegalIndex) {
|
|
elements_.Add(CopyElementAt(new_backing_store_index));
|
|
return;
|
|
}
|
|
|
|
switch (original.type()) {
|
|
case FrameElement::MEMORY: {
|
|
// Emit code to load the original element's data into a register.
|
|
// Push that register as a FrameElement on top of the frame.
|
|
Result fresh = cgen()->allocator()->Allocate();
|
|
ASSERT(fresh.is_valid());
|
|
FrameElement new_element =
|
|
FrameElement::RegisterElement(fresh.reg(),
|
|
FrameElement::NOT_SYNCED,
|
|
original.type_info());
|
|
Use(fresh.reg(), element_count());
|
|
elements_.Add(new_element);
|
|
__ movq(fresh.reg(), Operand(rbp, fp_relative(index)));
|
|
break;
|
|
}
|
|
case FrameElement::REGISTER:
|
|
Use(original.reg(), element_count());
|
|
// Fall through.
|
|
case FrameElement::CONSTANT:
|
|
case FrameElement::COPY:
|
|
original.clear_sync();
|
|
elements_.Add(original);
|
|
break;
|
|
case FrameElement::INVALID:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void VirtualFrame::StoreToFrameSlotAt(int index) {
|
|
// Store the value on top of the frame to the virtual frame slot at
|
|
// a given index. The value on top of the frame is left in place.
|
|
// This is a duplicating operation, so it can create copies.
|
|
ASSERT(index >= 0);
|
|
ASSERT(index < element_count());
|
|
|
|
int top_index = element_count() - 1;
|
|
FrameElement top = elements_[top_index];
|
|
FrameElement original = elements_[index];
|
|
if (top.is_copy() && top.index() == index) return;
|
|
ASSERT(top.is_valid());
|
|
|
|
InvalidateFrameSlotAt(index);
|
|
|
|
// InvalidateFrameSlotAt can potentially change any frame element, due
|
|
// to spilling registers to allocate temporaries in order to preserve
|
|
// the copy-on-write semantics of aliased elements. Reload top from
|
|
// the frame.
|
|
top = elements_[top_index];
|
|
|
|
if (top.is_copy()) {
|
|
// There are two cases based on the relative positions of the
|
|
// stored-to slot and the backing slot of the top element.
|
|
int backing_index = top.index();
|
|
ASSERT(backing_index != index);
|
|
if (backing_index < index) {
|
|
// 1. The top element is a copy of a slot below the stored-to
|
|
// slot. The stored-to slot becomes an unsynced copy of that
|
|
// same backing slot.
|
|
elements_[index] = CopyElementAt(backing_index);
|
|
} else {
|
|
// 2. The top element is a copy of a slot above the stored-to
|
|
// slot. The stored-to slot becomes the new (unsynced) backing
|
|
// slot and both the top element and the element at the former
|
|
// backing slot become copies of it. The sync state of the top
|
|
// and former backing elements is preserved.
|
|
FrameElement backing_element = elements_[backing_index];
|
|
ASSERT(backing_element.is_memory() || backing_element.is_register());
|
|
if (backing_element.is_memory()) {
|
|
// Because sets of copies are canonicalized to be backed by
|
|
// their lowest frame element, and because memory frame
|
|
// elements are backed by the corresponding stack address, we
|
|
// have to move the actual value down in the stack.
|
|
//
|
|
// TODO(209): considering allocating the stored-to slot to the
|
|
// temp register. Alternatively, allow copies to appear in
|
|
// any order in the frame and lazily move the value down to
|
|
// the slot.
|
|
__ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
|
|
__ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
|
|
} else {
|
|
set_register_location(backing_element.reg(), index);
|
|
if (backing_element.is_synced()) {
|
|
// If the element is a register, we will not actually move
|
|
// anything on the stack but only update the virtual frame
|
|
// element.
|
|
backing_element.clear_sync();
|
|
}
|
|
}
|
|
elements_[index] = backing_element;
|
|
|
|
// The old backing element becomes a copy of the new backing
|
|
// element.
|
|
FrameElement new_element = CopyElementAt(index);
|
|
elements_[backing_index] = new_element;
|
|
if (backing_element.is_synced()) {
|
|
elements_[backing_index].set_sync();
|
|
}
|
|
|
|
// All the copies of the old backing element (including the top
|
|
// element) become copies of the new backing element.
|
|
for (int i = backing_index + 1; i < element_count(); i++) {
|
|
if (elements_[i].is_copy() && elements_[i].index() == backing_index) {
|
|
elements_[i].set_index(index);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Move the top element to the stored-to slot and replace it (the
|
|
// top element) with a copy.
|
|
elements_[index] = top;
|
|
if (top.is_memory()) {
|
|
// TODO(209): consider allocating the stored-to slot to the temp
|
|
// register. Alternatively, allow copies to appear in any order
|
|
// in the frame and lazily move the value down to the slot.
|
|
FrameElement new_top = CopyElementAt(index);
|
|
new_top.set_sync();
|
|
elements_[top_index] = new_top;
|
|
|
|
// The sync state of the former top element is correct (synced).
|
|
// Emit code to move the value down in the frame.
|
|
__ movq(kScratchRegister, Operand(rsp, 0));
|
|
__ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
|
|
} else if (top.is_register()) {
|
|
set_register_location(top.reg(), index);
|
|
// The stored-to slot has the (unsynced) register reference and
|
|
// the top element becomes a copy. The sync state of the top is
|
|
// preserved.
|
|
FrameElement new_top = CopyElementAt(index);
|
|
if (top.is_synced()) {
|
|
new_top.set_sync();
|
|
elements_[index].clear_sync();
|
|
}
|
|
elements_[top_index] = new_top;
|
|
} else {
|
|
// The stored-to slot holds the same value as the top but
|
|
// unsynced. (We do not have copies of constants yet.)
|
|
ASSERT(top.is_constant());
|
|
elements_[index].clear_sync();
|
|
}
|
|
}
|
|
|
|
|
|
void VirtualFrame::MakeMergable() {
|
|
for (int i = 0; i < element_count(); i++) {
|
|
FrameElement element = elements_[i];
|
|
|
|
// In all cases we have to reset the number type information
|
|
// to unknown for a mergable frame because of incoming back edges.
|
|
if (element.is_constant() || element.is_copy()) {
|
|
if (element.is_synced()) {
|
|
// Just spill.
|
|
elements_[i] = FrameElement::MemoryElement(TypeInfo::Unknown());
|
|
} else {
|
|
// Allocate to a register.
|
|
FrameElement backing_element; // Invalid if not a copy.
|
|
if (element.is_copy()) {
|
|
backing_element = elements_[element.index()];
|
|
}
|
|
Result fresh = cgen()->allocator()->Allocate();
|
|
ASSERT(fresh.is_valid()); // A register was spilled if all were in use.
|
|
elements_[i] =
|
|
FrameElement::RegisterElement(fresh.reg(),
|
|
FrameElement::NOT_SYNCED,
|
|
TypeInfo::Unknown());
|
|
Use(fresh.reg(), i);
|
|
|
|
// Emit a move.
|
|
if (element.is_constant()) {
|
|
__ Move(fresh.reg(), element.handle());
|
|
} else {
|
|
ASSERT(element.is_copy());
|
|
// Copies are only backed by register or memory locations.
|
|
if (backing_element.is_register()) {
|
|
// The backing store may have been spilled by allocating,
|
|
// but that's OK. If it was, the value is right where we
|
|
// want it.
|
|
if (!fresh.reg().is(backing_element.reg())) {
|
|
__ movq(fresh.reg(), backing_element.reg());
|
|
}
|
|
} else {
|
|
ASSERT(backing_element.is_memory());
|
|
__ movq(fresh.reg(), Operand(rbp, fp_relative(element.index())));
|
|
}
|
|
}
|
|
}
|
|
// No need to set the copied flag --- there are no copies.
|
|
} else {
|
|
// Clear the copy flag of non-constant, non-copy elements.
|
|
// They cannot be copied because copies are not allowed.
|
|
// The copy flag is not relied on before the end of this loop,
|
|
// including when registers are spilled.
|
|
elements_[i].clear_copied();
|
|
elements_[i].set_type_info(TypeInfo::Unknown());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void VirtualFrame::MergeTo(VirtualFrame* expected) {
|
|
Comment cmnt(masm(), "[ Merge frame");
|
|
// We should always be merging the code generator's current frame to an
|
|
// expected frame.
|
|
ASSERT(cgen()->frame() == this);
|
|
|
|
// Adjust the stack pointer upward (toward the top of the virtual
|
|
// frame) if necessary.
|
|
if (stack_pointer_ < expected->stack_pointer_) {
|
|
int difference = expected->stack_pointer_ - stack_pointer_;
|
|
stack_pointer_ = expected->stack_pointer_;
|
|
__ subq(rsp, Immediate(difference * kPointerSize));
|
|
}
|
|
|
|
MergeMoveRegistersToMemory(expected);
|
|
MergeMoveRegistersToRegisters(expected);
|
|
MergeMoveMemoryToRegisters(expected);
|
|
|
|
// Adjust the stack pointer downward if necessary.
|
|
if (stack_pointer_ > expected->stack_pointer_) {
|
|
int difference = stack_pointer_ - expected->stack_pointer_;
|
|
stack_pointer_ = expected->stack_pointer_;
|
|
__ addq(rsp, Immediate(difference * kPointerSize));
|
|
}
|
|
|
|
// At this point, the frames should be identical.
|
|
ASSERT(Equals(expected));
|
|
}
|
|
|
|
|
|
void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) {
|
|
ASSERT(stack_pointer_ >= expected->stack_pointer_);
|
|
|
|
// Move registers, constants, and copies to memory. Perform moves
|
|
// from the top downward in the frame in order to leave the backing
|
|
// stores of copies in registers.
|
|
for (int i = element_count() - 1; i >= 0; i--) {
|
|
FrameElement target = expected->elements_[i];
|
|
if (target.is_register()) continue; // Handle registers later.
|
|
if (target.is_memory()) {
|
|
FrameElement source = elements_[i];
|
|
switch (source.type()) {
|
|
case FrameElement::INVALID:
|
|
// Not a legal merge move.
|
|
UNREACHABLE();
|
|
break;
|
|
|
|
case FrameElement::MEMORY:
|
|
// Already in place.
|
|
break;
|
|
|
|
case FrameElement::REGISTER:
|
|
Unuse(source.reg());
|
|
if (!source.is_synced()) {
|
|
__ movq(Operand(rbp, fp_relative(i)), source.reg());
|
|
}
|
|
break;
|
|
|
|
case FrameElement::CONSTANT:
|
|
if (!source.is_synced()) {
|
|
__ Move(Operand(rbp, fp_relative(i)), source.handle());
|
|
}
|
|
break;
|
|
|
|
case FrameElement::COPY:
|
|
if (!source.is_synced()) {
|
|
int backing_index = source.index();
|
|
FrameElement backing_element = elements_[backing_index];
|
|
if (backing_element.is_memory()) {
|
|
__ movq(kScratchRegister,
|
|
Operand(rbp, fp_relative(backing_index)));
|
|
__ movq(Operand(rbp, fp_relative(i)), kScratchRegister);
|
|
} else {
|
|
ASSERT(backing_element.is_register());
|
|
__ movq(Operand(rbp, fp_relative(i)), backing_element.reg());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
elements_[i] = target;
|
|
}
|
|
}
|
|
|
|
|
|
void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) {
|
|
// We have already done X-to-memory moves.
|
|
ASSERT(stack_pointer_ >= expected->stack_pointer_);
|
|
|
|
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
|
|
// Move the right value into register i if it is currently in a register.
|
|
int index = expected->register_location(i);
|
|
int use_index = register_location(i);
|
|
// Skip if register i is unused in the target or else if source is
|
|
// not a register (this is not a register-to-register move).
|
|
if (index == kIllegalIndex || !elements_[index].is_register()) continue;
|
|
|
|
Register target = RegisterAllocator::ToRegister(i);
|
|
Register source = elements_[index].reg();
|
|
if (index != use_index) {
|
|
if (use_index == kIllegalIndex) { // Target is currently unused.
|
|
// Copy contents of source from source to target.
|
|
// Set frame element register to target.
|
|
Use(target, index);
|
|
Unuse(source);
|
|
__ movq(target, source);
|
|
} else {
|
|
// Exchange contents of registers source and target.
|
|
// Nothing except the register backing use_index has changed.
|
|
elements_[use_index].set_reg(source);
|
|
set_register_location(target, index);
|
|
set_register_location(source, use_index);
|
|
__ xchg(source, target);
|
|
}
|
|
}
|
|
|
|
if (!elements_[index].is_synced() &&
|
|
expected->elements_[index].is_synced()) {
|
|
__ movq(Operand(rbp, fp_relative(index)), target);
|
|
}
|
|
elements_[index] = expected->elements_[index];
|
|
}
|
|
}
|
|
|
|
|
|
void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame* expected) {
|
|
// Move memory, constants, and copies to registers. This is the
|
|
// final step and since it is not done from the bottom up, but in
|
|
// register code order, we have special code to ensure that the backing
|
|
// elements of copies are in their correct locations when we
|
|
// encounter the copies.
|
|
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
|
|
int index = expected->register_location(i);
|
|
if (index != kIllegalIndex) {
|
|
FrameElement source = elements_[index];
|
|
FrameElement target = expected->elements_[index];
|
|
Register target_reg = RegisterAllocator::ToRegister(i);
|
|
ASSERT(target.reg().is(target_reg));
|
|
switch (source.type()) {
|
|
case FrameElement::INVALID: // Fall through.
|
|
UNREACHABLE();
|
|
break;
|
|
case FrameElement::REGISTER:
|
|
ASSERT(source.Equals(target));
|
|
// Go to next iteration. Skips Use(target_reg) and syncing
|
|
// below. It is safe to skip syncing because a target
|
|
// register frame element would only be synced if all source
|
|
// elements were.
|
|
continue;
|
|
break;
|
|
case FrameElement::MEMORY:
|
|
ASSERT(index <= stack_pointer_);
|
|
__ movq(target_reg, Operand(rbp, fp_relative(index)));
|
|
break;
|
|
|
|
case FrameElement::CONSTANT:
|
|
__ Move(target_reg, source.handle());
|
|
break;
|
|
|
|
case FrameElement::COPY: {
|
|
int backing_index = source.index();
|
|
FrameElement backing = elements_[backing_index];
|
|
ASSERT(backing.is_memory() || backing.is_register());
|
|
if (backing.is_memory()) {
|
|
ASSERT(backing_index <= stack_pointer_);
|
|
// Code optimization if backing store should also move
|
|
// to a register: move backing store to its register first.
|
|
if (expected->elements_[backing_index].is_register()) {
|
|
FrameElement new_backing = expected->elements_[backing_index];
|
|
Register new_backing_reg = new_backing.reg();
|
|
ASSERT(!is_used(new_backing_reg));
|
|
elements_[backing_index] = new_backing;
|
|
Use(new_backing_reg, backing_index);
|
|
__ movq(new_backing_reg,
|
|
Operand(rbp, fp_relative(backing_index)));
|
|
__ movq(target_reg, new_backing_reg);
|
|
} else {
|
|
__ movq(target_reg, Operand(rbp, fp_relative(backing_index)));
|
|
}
|
|
} else {
|
|
__ movq(target_reg, backing.reg());
|
|
}
|
|
}
|
|
}
|
|
// Ensure the proper sync state.
|
|
if (target.is_synced() && !source.is_synced()) {
|
|
__ movq(Operand(rbp, fp_relative(index)), target_reg);
|
|
}
|
|
Use(target_reg, index);
|
|
elements_[index] = target;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Result VirtualFrame::Pop() {
|
|
FrameElement element = elements_.RemoveLast();
|
|
int index = element_count();
|
|
ASSERT(element.is_valid());
|
|
|
|
// Get number type information of the result.
|
|
TypeInfo info;
|
|
if (!element.is_copy()) {
|
|
info = element.type_info();
|
|
} else {
|
|
info = elements_[element.index()].type_info();
|
|
}
|
|
|
|
bool pop_needed = (stack_pointer_ == index);
|
|
if (pop_needed) {
|
|
stack_pointer_--;
|
|
if (element.is_memory()) {
|
|
Result temp = cgen()->allocator()->Allocate();
|
|
ASSERT(temp.is_valid());
|
|
__ pop(temp.reg());
|
|
temp.set_type_info(info);
|
|
return temp;
|
|
}
|
|
|
|
__ addq(rsp, Immediate(kPointerSize));
|
|
}
|
|
ASSERT(!element.is_memory());
|
|
|
|
// The top element is a register, constant, or a copy. Unuse
|
|
// registers and follow copies to their backing store.
|
|
if (element.is_register()) {
|
|
Unuse(element.reg());
|
|
} else if (element.is_copy()) {
|
|
ASSERT(element.index() < index);
|
|
index = element.index();
|
|
element = elements_[index];
|
|
}
|
|
ASSERT(!element.is_copy());
|
|
|
|
// The element is memory, a register, or a constant.
|
|
if (element.is_memory()) {
|
|
// Memory elements could only be the backing store of a copy.
|
|
// Allocate the original to a register.
|
|
ASSERT(index <= stack_pointer_);
|
|
Result temp = cgen()->allocator()->Allocate();
|
|
ASSERT(temp.is_valid());
|
|
Use(temp.reg(), index);
|
|
FrameElement new_element =
|
|
FrameElement::RegisterElement(temp.reg(),
|
|
FrameElement::SYNCED,
|
|
element.type_info());
|
|
// Preserve the copy flag on the element.
|
|
if (element.is_copied()) new_element.set_copied();
|
|
elements_[index] = new_element;
|
|
__ movq(temp.reg(), Operand(rbp, fp_relative(index)));
|
|
return Result(temp.reg(), info);
|
|
} else if (element.is_register()) {
|
|
return Result(element.reg(), info);
|
|
} else {
|
|
ASSERT(element.is_constant());
|
|
return Result(element.handle());
|
|
}
|
|
}
|
|
|
|
|
|
Result VirtualFrame::RawCallStub(CodeStub* stub) {
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
__ CallStub(stub);
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
return result;
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallStub(CodeStub* stub, Result* arg) {
|
|
PrepareForCall(0, 0);
|
|
arg->ToRegister(rax);
|
|
arg->Unuse();
|
|
return RawCallStub(stub);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1) {
|
|
PrepareForCall(0, 0);
|
|
|
|
if (arg0->is_register() && arg0->reg().is(rax)) {
|
|
if (arg1->is_register() && arg1->reg().is(rdx)) {
|
|
// Wrong registers.
|
|
__ xchg(rax, rdx);
|
|
} else {
|
|
// Register rdx is free for arg0, which frees rax for arg1.
|
|
arg0->ToRegister(rdx);
|
|
arg1->ToRegister(rax);
|
|
}
|
|
} else {
|
|
// Register rax is free for arg1, which guarantees rdx is free for
|
|
// arg0.
|
|
arg1->ToRegister(rax);
|
|
arg0->ToRegister(rdx);
|
|
}
|
|
|
|
arg0->Unuse();
|
|
arg1->Unuse();
|
|
return RawCallStub(stub);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallJSFunction(int arg_count) {
|
|
Result function = Pop();
|
|
|
|
// InvokeFunction requires function in rdi. Move it in there.
|
|
function.ToRegister(rdi);
|
|
function.Unuse();
|
|
|
|
// +1 for receiver.
|
|
PrepareForCall(arg_count + 1, arg_count + 1);
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
ParameterCount count(arg_count);
|
|
__ InvokeFunction(rdi, count, CALL_FUNCTION);
|
|
RestoreContextRegister();
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
return result;
|
|
}
|
|
|
|
|
|
void VirtualFrame::SyncElementBelowStackPointer(int index) {
|
|
// Emit code to write elements below the stack pointer to their
|
|
// (already allocated) stack address.
|
|
ASSERT(index <= stack_pointer_);
|
|
FrameElement element = elements_[index];
|
|
ASSERT(!element.is_synced());
|
|
switch (element.type()) {
|
|
case FrameElement::INVALID:
|
|
break;
|
|
|
|
case FrameElement::MEMORY:
|
|
// This function should not be called with synced elements.
|
|
// (memory elements are always synced).
|
|
UNREACHABLE();
|
|
break;
|
|
|
|
case FrameElement::REGISTER:
|
|
__ movq(Operand(rbp, fp_relative(index)), element.reg());
|
|
break;
|
|
|
|
case FrameElement::CONSTANT:
|
|
__ Move(Operand(rbp, fp_relative(index)), element.handle());
|
|
break;
|
|
|
|
case FrameElement::COPY: {
|
|
int backing_index = element.index();
|
|
FrameElement backing_element = elements_[backing_index];
|
|
if (backing_element.is_memory()) {
|
|
__ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
|
|
__ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
|
|
} else {
|
|
ASSERT(backing_element.is_register());
|
|
__ movq(Operand(rbp, fp_relative(index)), backing_element.reg());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
elements_[index].set_sync();
|
|
}
|
|
|
|
|
|
void VirtualFrame::SyncElementByPushing(int index) {
|
|
// Sync an element of the frame that is just above the stack pointer
|
|
// by pushing it.
|
|
ASSERT(index == stack_pointer_ + 1);
|
|
stack_pointer_++;
|
|
FrameElement element = elements_[index];
|
|
|
|
switch (element.type()) {
|
|
case FrameElement::INVALID:
|
|
__ Push(Smi::FromInt(0));
|
|
break;
|
|
|
|
case FrameElement::MEMORY:
|
|
// No memory elements exist above the stack pointer.
|
|
UNREACHABLE();
|
|
break;
|
|
|
|
case FrameElement::REGISTER:
|
|
__ push(element.reg());
|
|
break;
|
|
|
|
case FrameElement::CONSTANT:
|
|
__ Move(kScratchRegister, element.handle());
|
|
__ push(kScratchRegister);
|
|
break;
|
|
|
|
case FrameElement::COPY: {
|
|
int backing_index = element.index();
|
|
FrameElement backing = elements_[backing_index];
|
|
ASSERT(backing.is_memory() || backing.is_register());
|
|
if (backing.is_memory()) {
|
|
__ push(Operand(rbp, fp_relative(backing_index)));
|
|
} else {
|
|
__ push(backing.reg());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
elements_[index].set_sync();
|
|
}
|
|
|
|
|
|
// Clear the dirty bits for the range of elements in
|
|
// [min(stack_pointer_ + 1,begin), end].
|
|
void VirtualFrame::SyncRange(int begin, int end) {
|
|
ASSERT(begin >= 0);
|
|
ASSERT(end < element_count());
|
|
// Sync elements below the range if they have not been materialized
|
|
// on the stack.
|
|
int start = Min(begin, stack_pointer_ + 1);
|
|
|
|
// If positive we have to adjust the stack pointer.
|
|
int delta = end - stack_pointer_;
|
|
if (delta > 0) {
|
|
stack_pointer_ = end;
|
|
__ subq(rsp, Immediate(delta * kPointerSize));
|
|
}
|
|
|
|
for (int i = start; i <= end; i++) {
|
|
if (!elements_[i].is_synced()) SyncElementBelowStackPointer(i);
|
|
}
|
|
}
|
|
|
|
|
|
Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id,
|
|
InvokeFlag flag,
|
|
int arg_count) {
|
|
PrepareForCall(arg_count, arg_count);
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
__ InvokeBuiltin(id, flag);
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
return result;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Virtual frame stub and IC calling functions.
|
|
|
|
Result VirtualFrame::RawCallCodeObject(Handle<Code> code,
|
|
RelocInfo::Mode rmode) {
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
__ Call(code, rmode);
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
return result;
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallRuntime(Runtime::Function* f, int arg_count) {
|
|
PrepareForCall(arg_count, arg_count);
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
__ CallRuntime(f, arg_count);
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
return result;
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int arg_count) {
|
|
PrepareForCall(arg_count, arg_count);
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
__ CallRuntime(id, arg_count);
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
return result;
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
void VirtualFrame::DebugBreak() {
|
|
PrepareForCall(0, 0);
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
__ DebugBreak();
|
|
Result result = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(result.is_valid());
|
|
}
|
|
#endif
|
|
|
|
|
|
Result VirtualFrame::CallLoadIC(RelocInfo::Mode mode) {
|
|
// Name and receiver are on the top of the frame. The IC expects
|
|
// name in rcx and receiver on the stack. It does not drop the
|
|
// receiver.
|
|
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
|
|
Result name = Pop();
|
|
PrepareForCall(1, 0); // One stack arg, not callee-dropped.
|
|
name.ToRegister(rcx);
|
|
name.Unuse();
|
|
return RawCallCodeObject(ic, mode);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallKeyedLoadIC(RelocInfo::Mode mode) {
|
|
// Key and receiver are on top of the frame. The IC expects them on
|
|
// the stack. It does not drop them.
|
|
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
|
|
PrepareForCall(2, 0); // Two stack args, neither callee-dropped.
|
|
return RawCallCodeObject(ic, mode);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallKeyedStoreIC() {
|
|
// Value, key, and receiver are on the top of the frame. The IC
|
|
// expects value in rax and key and receiver on the stack. It does
|
|
// not drop the key and receiver.
|
|
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
|
|
Result value = Pop();
|
|
PrepareForCall(2, 0); // Two stack args, neither callee-dropped.
|
|
value.ToRegister(rax);
|
|
value.Unuse();
|
|
return RawCallCodeObject(ic, RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallCallIC(RelocInfo::Mode mode,
|
|
int arg_count,
|
|
int loop_nesting) {
|
|
// Function name, arguments, and receiver are found on top of the frame
|
|
// and dropped by the call. The IC expects the name in rcx and the rest
|
|
// on the stack, and drops them all.
|
|
InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP;
|
|
Handle<Code> ic = cgen()->ComputeCallInitialize(arg_count, in_loop);
|
|
Result name = Pop();
|
|
// Spill args, receiver, and function. The call will drop args and
|
|
// receiver.
|
|
PrepareForCall(arg_count + 1, arg_count + 1);
|
|
name.ToRegister(rcx);
|
|
name.Unuse();
|
|
return RawCallCodeObject(ic, mode);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallConstructor(int arg_count) {
|
|
// Arguments, receiver, and function are on top of the frame. The
|
|
// IC expects arg count in rax, function in rdi, and the arguments
|
|
// and receiver on the stack.
|
|
Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
|
|
// Duplicate the function before preparing the frame.
|
|
PushElementAt(arg_count + 1);
|
|
Result function = Pop();
|
|
PrepareForCall(arg_count + 1, arg_count + 1); // Spill args and receiver.
|
|
function.ToRegister(rdi);
|
|
|
|
// Constructors are called with the number of arguments in register
|
|
// rax for now. Another option would be to have separate construct
|
|
// call trampolines per different arguments counts encountered.
|
|
Result num_args = cgen()->allocator()->Allocate(rax);
|
|
ASSERT(num_args.is_valid());
|
|
__ movq(num_args.reg(), Immediate(arg_count));
|
|
|
|
function.Unuse();
|
|
num_args.Unuse();
|
|
return RawCallCodeObject(ic, RelocInfo::CONSTRUCT_CALL);
|
|
}
|
|
|
|
|
|
Result VirtualFrame::CallStoreIC() {
|
|
// Name, value, and receiver are on top of the frame. The IC
|
|
// expects name in rcx, value in rax, and receiver in edx.
|
|
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
|
|
Result name = Pop();
|
|
Result value = Pop();
|
|
Result receiver = Pop();
|
|
PrepareForCall(0, 0);
|
|
|
|
// Optimized for case in which name is a constant value.
|
|
if (name.is_register() && (name.reg().is(rdx) || name.reg().is(rax))) {
|
|
if (!is_used(rcx)) {
|
|
name.ToRegister(rcx);
|
|
} else if (!is_used(rbx)) {
|
|
name.ToRegister(rbx);
|
|
} else {
|
|
ASSERT(!is_used(rdi)); // Only three results are live, so rdi is free.
|
|
name.ToRegister(rdi);
|
|
}
|
|
}
|
|
// Now name is not in edx or eax, so we can fix them, then move name to ecx.
|
|
if (value.is_register() && value.reg().is(rdx)) {
|
|
if (receiver.is_register() && receiver.reg().is(rax)) {
|
|
// Wrong registers.
|
|
__ xchg(rax, rdx);
|
|
} else {
|
|
// Register rax is free for value, which frees rcx for receiver.
|
|
value.ToRegister(rax);
|
|
receiver.ToRegister(rdx);
|
|
}
|
|
} else {
|
|
// Register rcx is free for receiver, which guarantees rax is free for
|
|
// value.
|
|
receiver.ToRegister(rdx);
|
|
value.ToRegister(rax);
|
|
}
|
|
// Receiver and value are in the right place, so rcx is free for name.
|
|
name.ToRegister(rcx);
|
|
name.Unuse();
|
|
value.Unuse();
|
|
receiver.Unuse();
|
|
return RawCallCodeObject(ic, RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void VirtualFrame::PushTryHandler(HandlerType type) {
|
|
ASSERT(cgen()->HasValidEntryRegisters());
|
|
// Grow the expression stack by handler size less one (the return
|
|
// address is already pushed by a call instruction).
|
|
Adjust(kHandlerSize - 1);
|
|
__ PushTryHandler(IN_JAVASCRIPT, type);
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
} } // namespace v8::internal
|
|
|