You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

510 lines
15 KiB

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "src/counters-inl.h"
#include "src/counters.h"
#include "src/handles-inl.h"
#include "src/objects-inl.h"
#include "src/tracing/tracing-category-observer.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
namespace {
class MockHistogram : public Histogram {
public:
void AddSample(int value) { samples_.push_back(value); }
std::vector<int>* samples() { return &samples_; }
private:
std::vector<int> samples_;
};
class AggregatedMemoryHistogramTest : public ::testing::Test {
public:
AggregatedMemoryHistogramTest() {
aggregated_ = AggregatedMemoryHistogram<MockHistogram>(&mock_);
}
virtual ~AggregatedMemoryHistogramTest() {}
void AddSample(double current_ms, double current_value) {
aggregated_.AddSample(current_ms, current_value);
}
std::vector<int>* samples() { return mock_.samples(); }
private:
AggregatedMemoryHistogram<MockHistogram> aggregated_;
MockHistogram mock_;
};
class RuntimeCallStatsTest : public ::testing::Test {
public:
RuntimeCallStatsTest() {
FLAG_runtime_stats =
v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE;
}
virtual ~RuntimeCallStatsTest() {}
RuntimeCallStats* stats() { return &stats_; }
RuntimeCallStats::CounterId counter_id() {
return &RuntimeCallStats::TestCounter1;
}
RuntimeCallStats::CounterId counter_id2() {
return &RuntimeCallStats::TestCounter2;
}
RuntimeCallStats::CounterId counter_id3() {
return &RuntimeCallStats::TestCounter3;
}
RuntimeCallCounter* counter() { return &(stats()->*counter_id()); }
RuntimeCallCounter* counter2() { return &(stats()->*counter_id2()); }
RuntimeCallCounter* counter3() { return &(stats()->*counter_id3()); }
void Sleep(int32_t milliseconds) {
base::ElapsedTimer timer;
base::TimeDelta delta = base::TimeDelta::FromMilliseconds(milliseconds);
timer.Start();
while (!timer.HasExpired(delta)) {
base::OS::Sleep(base::TimeDelta::FromMicroseconds(0));
}
}
const uint32_t kEpsilonMs = 20;
private:
RuntimeCallStats stats_;
};
} // namespace
TEST_F(AggregatedMemoryHistogramTest, OneSample1) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, OneSample2) {
FLAG_histogram_interval = 10;
AddSample(10, 500);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, OneSample3) {
FLAG_histogram_interval = 10;
AddSample(10, 500);
AddSample(15, 500);
AddSample(15, 1000);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, OneSample4) {
FLAG_histogram_interval = 10;
AddSample(10, 500);
AddSample(15, 750);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples1) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
EXPECT_EQ(1000, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples2) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(20, 1000);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
EXPECT_EQ(1000, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples3) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(20, 1000);
AddSample(20, 500);
AddSample(30, 500);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
EXPECT_EQ(500, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples4) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(30, 0);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
EXPECT_EQ(250, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples5) {
FLAG_histogram_interval = 10;
AddSample(10, 0);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(250, (*samples())[0]);
EXPECT_EQ(750, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples6) {
FLAG_histogram_interval = 10;
AddSample(10, 0);
AddSample(15, 1000);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ((500 + 1000) / 2, (*samples())[0]);
EXPECT_EQ(1000, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples7) {
FLAG_histogram_interval = 10;
AddSample(10, 0);
AddSample(15, 1000);
AddSample(25, 0);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ((500 + 750) / 2, (*samples())[0]);
EXPECT_EQ((250 + 500) / 2, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples8) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(15, 0);
AddSample(25, 1000);
AddSample(30, 0);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ((500 + 250) / 2, (*samples())[0]);
EXPECT_EQ((750 + 500) / 2, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, ManySamples1) {
FLAG_histogram_interval = 10;
const int kMaxSamples = 1000;
AddSample(0, 0);
AddSample(10 * kMaxSamples, 10 * kMaxSamples);
EXPECT_EQ(static_cast<unsigned>(kMaxSamples), samples()->size());
for (int i = 0; i < kMaxSamples; i++) {
EXPECT_EQ(i * 10 + 5, (*samples())[i]);
}
}
TEST_F(AggregatedMemoryHistogramTest, ManySamples2) {
FLAG_histogram_interval = 10;
const int kMaxSamples = 1000;
AddSample(0, 0);
AddSample(10 * (2 * kMaxSamples), 10 * (2 * kMaxSamples));
EXPECT_EQ(static_cast<unsigned>(kMaxSamples), samples()->size());
for (int i = 0; i < kMaxSamples; i++) {
EXPECT_EQ(i * 10 + 5, (*samples())[i]);
}
}
#define EXPECT_IN_RANGE(start, value, end) \
EXPECT_LE(start, value); \
EXPECT_GE(end, value)
TEST_F(RuntimeCallStatsTest, RuntimeCallTimer) {
RuntimeCallTimer timer;
Sleep(50);
RuntimeCallStats::Enter(stats(), &timer, counter_id());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_TRUE(timer.IsStarted());
EXPECT_EQ(&timer, stats()->current_timer());
Sleep(100);
RuntimeCallStats::Leave(stats(), &timer);
Sleep(50);
EXPECT_FALSE(timer.IsStarted());
EXPECT_EQ(1, counter()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs);
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerSubTimer) {
RuntimeCallTimer timer;
RuntimeCallTimer timer2;
RuntimeCallStats::Enter(stats(), &timer, counter_id());
EXPECT_TRUE(timer.IsStarted());
EXPECT_FALSE(timer2.IsStarted());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_EQ(&timer, stats()->current_timer());
Sleep(50);
RuntimeCallStats::Enter(stats(), &timer2, counter_id2());
// timer 1 is paused, while timer 2 is active.
EXPECT_TRUE(timer2.IsStarted());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(counter2(), timer2.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_EQ(&timer, timer2.parent());
EXPECT_EQ(&timer2, stats()->current_timer());
Sleep(100);
RuntimeCallStats::Leave(stats(), &timer2);
// The subtimer subtracts its time from the parent timer.
EXPECT_TRUE(timer.IsStarted());
EXPECT_FALSE(timer2.IsStarted());
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_EQ(0, counter()->time().InMilliseconds());
EXPECT_IN_RANGE(100, counter2()->time().InMilliseconds(), 100 + kEpsilonMs);
EXPECT_EQ(&timer, stats()->current_timer());
Sleep(100);
RuntimeCallStats::Leave(stats(), &timer);
EXPECT_FALSE(timer.IsStarted());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_IN_RANGE(150, counter()->time().InMilliseconds(), 150 + kEpsilonMs);
EXPECT_IN_RANGE(100, counter2()->time().InMilliseconds(), 100 + kEpsilonMs);
EXPECT_EQ(nullptr, stats()->current_timer());
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerRecursive) {
RuntimeCallTimer timer;
RuntimeCallTimer timer2;
RuntimeCallStats::Enter(stats(), &timer, counter_id());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_TRUE(timer.IsStarted());
EXPECT_EQ(&timer, stats()->current_timer());
RuntimeCallStats::Enter(stats(), &timer2, counter_id());
EXPECT_EQ(counter(), timer2.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_EQ(&timer, timer2.parent());
EXPECT_TRUE(timer2.IsStarted());
EXPECT_EQ(&timer2, stats()->current_timer());
Sleep(50);
RuntimeCallStats::Leave(stats(), &timer2);
EXPECT_EQ(nullptr, timer.parent());
EXPECT_FALSE(timer2.IsStarted());
EXPECT_TRUE(timer.IsStarted());
EXPECT_EQ(1, counter()->count());
EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs);
Sleep(100);
RuntimeCallStats::Leave(stats(), &timer);
EXPECT_FALSE(timer.IsStarted());
EXPECT_EQ(2, counter()->count());
EXPECT_IN_RANGE(150, counter()->time().InMilliseconds(),
150 + 2 * kEpsilonMs);
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScope) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
}
Sleep(100);
EXPECT_EQ(1, counter()->count());
EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs);
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
}
EXPECT_EQ(2, counter()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(),
100 + 2 * kEpsilonMs);
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScopeRecursive) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter()->time().InMilliseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
}
EXPECT_EQ(1, counter()->count());
EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs);
}
EXPECT_EQ(2, counter()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(),
100 + 2 * kEpsilonMs);
}
TEST_F(RuntimeCallStatsTest, RenameTimer) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter()->time().InMilliseconds());
EXPECT_EQ(0, counter2()->time().InMilliseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
}
CHANGE_CURRENT_RUNTIME_COUNTER(stats(), TestCounter2);
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs);
EXPECT_IN_RANGE(0, counter2()->time().InMilliseconds(), 0);
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs);
EXPECT_IN_RANGE(50, counter2()->time().InMilliseconds(), 50 + kEpsilonMs);
}
TEST_F(RuntimeCallStatsTest, BasicPrintAndSnapshot) {
std::ostringstream out;
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter3()->count());
EXPECT_EQ(0, counter()->time().InMilliseconds());
EXPECT_EQ(0, counter2()->time().InMilliseconds());
EXPECT_EQ(0, counter3()->time().InMilliseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
stats()->Print(out);
}
stats()->Print(out);
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter3()->count());
EXPECT_IN_RANGE(50, counter()->time().InMilliseconds(), 50 + kEpsilonMs);
EXPECT_EQ(0, counter2()->time().InMilliseconds());
EXPECT_EQ(0, counter3()->time().InMilliseconds());
}
TEST_F(RuntimeCallStatsTest, PrintAndSnapshot) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter()->time().InMilliseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id2());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter2()->time().InMilliseconds());
Sleep(50);
// This calls Snapshot on the current active timer and sychronizes and
// commits the whole timer stack.
std::ostringstream out;
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(),
100 + kEpsilonMs);
EXPECT_IN_RANGE(50, counter2()->time().InMilliseconds(), 50 + kEpsilonMs);
// Calling Print several times shouldn't have a (big) impact on the
// measured times.
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(),
100 + kEpsilonMs);
EXPECT_IN_RANGE(50, counter2()->time().InMilliseconds(), 50 + kEpsilonMs);
Sleep(50);
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(),
100 + kEpsilonMs);
EXPECT_IN_RANGE(100, counter2()->time().InMilliseconds(),
100 + kEpsilonMs);
Sleep(50);
}
Sleep(50);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_IN_RANGE(100, counter()->time().InMilliseconds(), 100 + kEpsilonMs);
EXPECT_IN_RANGE(150, counter2()->time().InMilliseconds(), 150 + kEpsilonMs);
Sleep(50);
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_IN_RANGE(200, counter()->time().InMilliseconds(), 200 + kEpsilonMs);
EXPECT_IN_RANGE(150, counter2()->time().InMilliseconds(),
150 + 2 * kEpsilonMs);
}
TEST_F(RuntimeCallStatsTest, NestedScopes) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
{
RuntimeCallTimerScope scope(stats(), counter_id2());
Sleep(100);
{
RuntimeCallTimerScope scope(stats(), counter_id3());
Sleep(50);
}
Sleep(50);
{
RuntimeCallTimerScope scope(stats(), counter_id3());
Sleep(50);
}
Sleep(50);
}
Sleep(100);
{
RuntimeCallTimerScope scope(stats(), counter_id2());
Sleep(100);
}
Sleep(50);
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(2, counter2()->count());
EXPECT_EQ(2, counter3()->count());
EXPECT_IN_RANGE(250, counter()->time().InMilliseconds(), 250 + kEpsilonMs);
EXPECT_IN_RANGE(300, counter2()->time().InMilliseconds(), 300 + kEpsilonMs);
EXPECT_IN_RANGE(100, counter3()->time().InMilliseconds(), 100 + kEpsilonMs);
}
} // namespace internal
} // namespace v8