You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

719 lines
20 KiB

#include "node.h"
#include "node_buffer.h"
#include "async-wrap.h"
#include "async-wrap-inl.h"
#include "env.h"
#include "env-inl.h"
#include "util.h"
#include "util-inl.h"
#include "v8.h"
#include "zlib.h"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
namespace node {
using v8::Array;
using v8::Context;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Integer;
using v8::Local;
using v8::Number;
using v8::Object;
using v8::Value;
enum node_zlib_mode {
NONE,
DEFLATE,
INFLATE,
GZIP,
GUNZIP,
DEFLATERAW,
INFLATERAW,
UNZIP
};
#define GZIP_HEADER_ID1 0x1f
#define GZIP_HEADER_ID2 0x8b
void InitZlib(v8::Local<v8::Object> target);
/**
* Deflate/Inflate
*/
class ZCtx : public AsyncWrap {
public:
ZCtx(Environment* env, Local<Object> wrap, node_zlib_mode mode)
: AsyncWrap(env, wrap, AsyncWrap::PROVIDER_ZLIB),
dictionary_(nullptr),
dictionary_len_(0),
err_(0),
flush_(0),
init_done_(false),
level_(0),
memLevel_(0),
mode_(mode),
strategy_(0),
windowBits_(0),
write_in_progress_(false),
pending_close_(false),
refs_(0),
gzip_id_bytes_read_(0) {
MakeWeak<ZCtx>(this);
}
~ZCtx() override {
CHECK_EQ(false, write_in_progress_ && "write in progress");
Close();
}
void Close() {
if (write_in_progress_) {
pending_close_ = true;
return;
}
pending_close_ = false;
CHECK(init_done_ && "close before init");
CHECK_LE(mode_, UNZIP);
if (mode_ == DEFLATE || mode_ == GZIP || mode_ == DEFLATERAW) {
(void)deflateEnd(&strm_);
int64_t change_in_bytes = -static_cast<int64_t>(kDeflateContextSize);
env()->isolate()->AdjustAmountOfExternalAllocatedMemory(change_in_bytes);
} else if (mode_ == INFLATE || mode_ == GUNZIP || mode_ == INFLATERAW ||
mode_ == UNZIP) {
(void)inflateEnd(&strm_);
int64_t change_in_bytes = -static_cast<int64_t>(kInflateContextSize);
env()->isolate()->AdjustAmountOfExternalAllocatedMemory(change_in_bytes);
}
mode_ = NONE;
if (dictionary_ != nullptr) {
delete[] dictionary_;
dictionary_ = nullptr;
}
}
static void Close(const FunctionCallbackInfo<Value>& args) {
ZCtx* ctx;
ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());
ctx->Close();
}
// write(flush, in, in_off, in_len, out, out_off, out_len)
template <bool async>
static void Write(const FunctionCallbackInfo<Value>& args) {
CHECK_EQ(args.Length(), 7);
ZCtx* ctx;
ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());
CHECK(ctx->init_done_ && "write before init");
CHECK(ctx->mode_ != NONE && "already finalized");
CHECK_EQ(false, ctx->write_in_progress_ && "write already in progress");
CHECK_EQ(false, ctx->pending_close_ && "close is pending");
ctx->write_in_progress_ = true;
ctx->Ref();
CHECK_EQ(false, args[0]->IsUndefined() && "must provide flush value");
unsigned int flush = args[0]->Uint32Value();
if (flush != Z_NO_FLUSH &&
flush != Z_PARTIAL_FLUSH &&
flush != Z_SYNC_FLUSH &&
flush != Z_FULL_FLUSH &&
flush != Z_FINISH &&
flush != Z_BLOCK) {
CHECK(0 && "Invalid flush value");
}
Bytef *in;
Bytef *out;
size_t in_off, in_len, out_off, out_len;
Environment* env = ctx->env();
if (args[1]->IsNull()) {
// just a flush
in = nullptr;
in_len = 0;
in_off = 0;
} else {
CHECK(Buffer::HasInstance(args[1]));
Local<Object> in_buf;
in_buf = args[1]->ToObject(env->isolate());
in_off = args[2]->Uint32Value();
in_len = args[3]->Uint32Value();
CHECK(Buffer::IsWithinBounds(in_off, in_len, Buffer::Length(in_buf)));
in = reinterpret_cast<Bytef *>(Buffer::Data(in_buf) + in_off);
}
CHECK(Buffer::HasInstance(args[4]));
Local<Object> out_buf = args[4]->ToObject(env->isolate());
out_off = args[5]->Uint32Value();
out_len = args[6]->Uint32Value();
CHECK(Buffer::IsWithinBounds(out_off, out_len, Buffer::Length(out_buf)));
out = reinterpret_cast<Bytef *>(Buffer::Data(out_buf) + out_off);
// build up the work request
uv_work_t* work_req = &(ctx->work_req_);
ctx->strm_.avail_in = in_len;
ctx->strm_.next_in = in;
ctx->strm_.avail_out = out_len;
ctx->strm_.next_out = out;
ctx->flush_ = flush;
if (!async) {
// sync version
ctx->env()->PrintSyncTrace();
Process(work_req);
if (CheckError(ctx))
AfterSync(ctx, args);
return;
}
// async version
uv_queue_work(ctx->env()->event_loop(),
work_req,
ZCtx::Process,
ZCtx::After);
args.GetReturnValue().Set(ctx->object());
}
static void AfterSync(ZCtx* ctx, const FunctionCallbackInfo<Value>& args) {
Environment* env = ctx->env();
Local<Integer> avail_out = Integer::New(env->isolate(),
ctx->strm_.avail_out);
Local<Integer> avail_in = Integer::New(env->isolate(),
ctx->strm_.avail_in);
ctx->write_in_progress_ = false;
Local<Array> result = Array::New(env->isolate(), 2);
result->Set(0, avail_in);
result->Set(1, avail_out);
args.GetReturnValue().Set(result);
ctx->Unref();
}
// thread pool!
// This function may be called multiple times on the uv_work pool
// for a single write() call, until all of the input bytes have
// been consumed.
static void Process(uv_work_t* work_req) {
ZCtx *ctx = ContainerOf(&ZCtx::work_req_, work_req);
const Bytef* next_expected_header_byte = nullptr;
// If the avail_out is left at 0, then it means that it ran out
// of room. If there was avail_out left over, then it means
// that all of the input was consumed.
switch (ctx->mode_) {
case DEFLATE:
case GZIP:
case DEFLATERAW:
ctx->err_ = deflate(&ctx->strm_, ctx->flush_);
break;
case UNZIP:
if (ctx->strm_.avail_in > 0) {
next_expected_header_byte = ctx->strm_.next_in;
}
switch (ctx->gzip_id_bytes_read_) {
case 0:
if (next_expected_header_byte == nullptr) {
break;
}
if (*next_expected_header_byte == GZIP_HEADER_ID1) {
ctx->gzip_id_bytes_read_ = 1;
next_expected_header_byte++;
if (ctx->strm_.avail_in == 1) {
// The only available byte was already read.
break;
}
} else {
ctx->mode_ = INFLATE;
break;
}
// fallthrough
case 1:
if (next_expected_header_byte == nullptr) {
break;
}
if (*next_expected_header_byte == GZIP_HEADER_ID2) {
ctx->gzip_id_bytes_read_ = 2;
ctx->mode_ = GUNZIP;
} else {
// There is no actual difference between INFLATE and INFLATERAW
// (after initialization).
ctx->mode_ = INFLATE;
}
break;
default:
CHECK(0 && "invalid number of gzip magic number bytes read");
}
// fallthrough
case INFLATE:
case GUNZIP:
case INFLATERAW:
ctx->err_ = inflate(&ctx->strm_, ctx->flush_);
// If data was encoded with dictionary (INFLATERAW will have it set in
// SetDictionary, don't repeat that here)
if (ctx->mode_ != INFLATERAW &&
ctx->err_ == Z_NEED_DICT &&
ctx->dictionary_ != nullptr) {
// Load it
ctx->err_ = inflateSetDictionary(&ctx->strm_,
ctx->dictionary_,
ctx->dictionary_len_);
if (ctx->err_ == Z_OK) {
// And try to decode again
ctx->err_ = inflate(&ctx->strm_, ctx->flush_);
} else if (ctx->err_ == Z_DATA_ERROR) {
// Both inflateSetDictionary() and inflate() return Z_DATA_ERROR.
// Make it possible for After() to tell a bad dictionary from bad
// input.
ctx->err_ = Z_NEED_DICT;
}
}
while (ctx->strm_.avail_in > 0 &&
ctx->mode_ == GUNZIP &&
ctx->err_ == Z_STREAM_END &&
ctx->strm_.next_in[0] != 0x00) {
// Bytes remain in input buffer. Perhaps this is another compressed
// member in the same archive, or just trailing garbage.
// Trailing zero bytes are okay, though, since they are frequently
// used for padding.
Reset(ctx);
ctx->err_ = inflate(&ctx->strm_, ctx->flush_);
}
break;
default:
CHECK(0 && "wtf?");
}
// pass any errors back to the main thread to deal with.
// now After will emit the output, and
// either schedule another call to Process,
// or shift the queue and call Process.
}
static bool CheckError(ZCtx* ctx) {
// Acceptable error states depend on the type of zlib stream.
switch (ctx->err_) {
case Z_OK:
case Z_BUF_ERROR:
if (ctx->strm_.avail_out != 0 && ctx->flush_ == Z_FINISH) {
ZCtx::Error(ctx, "unexpected end of file");
return false;
}
case Z_STREAM_END:
// normal statuses, not fatal
break;
case Z_NEED_DICT:
if (ctx->dictionary_ == nullptr)
ZCtx::Error(ctx, "Missing dictionary");
else
ZCtx::Error(ctx, "Bad dictionary");
return false;
default:
// something else.
ZCtx::Error(ctx, "Zlib error");
return false;
}
return true;
}
// v8 land!
static void After(uv_work_t* work_req, int status) {
CHECK_EQ(status, 0);
ZCtx* ctx = ContainerOf(&ZCtx::work_req_, work_req);
Environment* env = ctx->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
if (!CheckError(ctx))
return;
Local<Integer> avail_out = Integer::New(env->isolate(),
ctx->strm_.avail_out);
Local<Integer> avail_in = Integer::New(env->isolate(),
ctx->strm_.avail_in);
ctx->write_in_progress_ = false;
// call the write() cb
Local<Value> args[2] = { avail_in, avail_out };
ctx->MakeCallback(env->callback_string(), arraysize(args), args);
ctx->Unref();
if (ctx->pending_close_)
ctx->Close();
}
static void Error(ZCtx* ctx, const char* message) {
Environment* env = ctx->env();
// If you hit this assertion, you forgot to enter the v8::Context first.
CHECK_EQ(env->context(), env->isolate()->GetCurrentContext());
if (ctx->strm_.msg != nullptr) {
message = ctx->strm_.msg;
}
HandleScope scope(env->isolate());
Local<Value> args[2] = {
OneByteString(env->isolate(), message),
Number::New(env->isolate(), ctx->err_)
};
ctx->MakeCallback(env->onerror_string(), arraysize(args), args);
// no hope of rescue.
if (ctx->write_in_progress_)
ctx->Unref();
ctx->write_in_progress_ = false;
if (ctx->pending_close_)
ctx->Close();
}
static void New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
if (args.Length() < 1 || !args[0]->IsInt32()) {
return env->ThrowTypeError("Bad argument");
}
node_zlib_mode mode = static_cast<node_zlib_mode>(args[0]->Int32Value());
if (mode < DEFLATE || mode > UNZIP) {
return env->ThrowTypeError("Bad argument");
}
new ZCtx(env, args.This(), mode);
}
// just pull the ints out of the args and call the other Init
static void Init(const FunctionCallbackInfo<Value>& args) {
CHECK((args.Length() == 4 || args.Length() == 5) &&
"init(windowBits, level, memLevel, strategy, [dictionary])");
ZCtx* ctx;
ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());
int windowBits = args[0]->Uint32Value();
CHECK((windowBits >= 8 && windowBits <= 15) && "invalid windowBits");
int level = args[1]->Int32Value();
CHECK((level >= -1 && level <= 9) && "invalid compression level");
int memLevel = args[2]->Uint32Value();
CHECK((memLevel >= 1 && memLevel <= 9) && "invalid memlevel");
int strategy = args[3]->Uint32Value();
CHECK((strategy == Z_FILTERED ||
strategy == Z_HUFFMAN_ONLY ||
strategy == Z_RLE ||
strategy == Z_FIXED ||
strategy == Z_DEFAULT_STRATEGY) && "invalid strategy");
char* dictionary = nullptr;
size_t dictionary_len = 0;
if (args.Length() >= 5 && Buffer::HasInstance(args[4])) {
Local<Object> dictionary_ = args[4]->ToObject(args.GetIsolate());
dictionary_len = Buffer::Length(dictionary_);
dictionary = new char[dictionary_len];
memcpy(dictionary, Buffer::Data(dictionary_), dictionary_len);
}
Init(ctx, level, windowBits, memLevel, strategy,
dictionary, dictionary_len);
SetDictionary(ctx);
}
static void Params(const FunctionCallbackInfo<Value>& args) {
CHECK(args.Length() == 2 && "params(level, strategy)");
ZCtx* ctx;
ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());
Params(ctx, args[0]->Int32Value(), args[1]->Int32Value());
}
static void Reset(const FunctionCallbackInfo<Value> &args) {
ZCtx* ctx;
ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());
Reset(ctx);
SetDictionary(ctx);
}
static void Init(ZCtx *ctx, int level, int windowBits, int memLevel,
int strategy, char* dictionary, size_t dictionary_len) {
ctx->level_ = level;
ctx->windowBits_ = windowBits;
ctx->memLevel_ = memLevel;
ctx->strategy_ = strategy;
ctx->strm_.zalloc = Z_NULL;
ctx->strm_.zfree = Z_NULL;
ctx->strm_.opaque = Z_NULL;
ctx->flush_ = Z_NO_FLUSH;
ctx->err_ = Z_OK;
if (ctx->mode_ == GZIP || ctx->mode_ == GUNZIP) {
ctx->windowBits_ += 16;
}
if (ctx->mode_ == UNZIP) {
ctx->windowBits_ += 32;
}
if (ctx->mode_ == DEFLATERAW || ctx->mode_ == INFLATERAW) {
ctx->windowBits_ *= -1;
}
switch (ctx->mode_) {
case DEFLATE:
case GZIP:
case DEFLATERAW:
ctx->err_ = deflateInit2(&ctx->strm_,
ctx->level_,
Z_DEFLATED,
ctx->windowBits_,
ctx->memLevel_,
ctx->strategy_);
ctx->env()->isolate()
->AdjustAmountOfExternalAllocatedMemory(kDeflateContextSize);
break;
case INFLATE:
case GUNZIP:
case INFLATERAW:
case UNZIP:
ctx->err_ = inflateInit2(&ctx->strm_, ctx->windowBits_);
ctx->env()->isolate()
->AdjustAmountOfExternalAllocatedMemory(kInflateContextSize);
break;
default:
CHECK(0 && "wtf?");
}
ctx->dictionary_ = reinterpret_cast<Bytef *>(dictionary);
ctx->dictionary_len_ = dictionary_len;
ctx->write_in_progress_ = false;
ctx->init_done_ = true;
if (ctx->err_ != Z_OK) {
if (dictionary != nullptr) {
delete[] dictionary;
ctx->dictionary_ = nullptr;
}
ctx->mode_ = NONE;
ctx->env()->ThrowError("Init error");
}
}
static void SetDictionary(ZCtx* ctx) {
if (ctx->dictionary_ == nullptr)
return;
ctx->err_ = Z_OK;
switch (ctx->mode_) {
case DEFLATE:
case DEFLATERAW:
ctx->err_ = deflateSetDictionary(&ctx->strm_,
ctx->dictionary_,
ctx->dictionary_len_);
break;
case INFLATERAW:
// The other inflate cases will have the dictionary set when inflate()
// returns Z_NEED_DICT in Process()
ctx->err_ = inflateSetDictionary(&ctx->strm_,
ctx->dictionary_,
ctx->dictionary_len_);
break;
default:
break;
}
if (ctx->err_ != Z_OK) {
ZCtx::Error(ctx, "Failed to set dictionary");
}
}
static void Params(ZCtx* ctx, int level, int strategy) {
ctx->err_ = Z_OK;
switch (ctx->mode_) {
case DEFLATE:
case DEFLATERAW:
ctx->err_ = deflateParams(&ctx->strm_, level, strategy);
break;
default:
break;
}
if (ctx->err_ != Z_OK && ctx->err_ != Z_BUF_ERROR) {
ZCtx::Error(ctx, "Failed to set parameters");
}
}
static void Reset(ZCtx* ctx) {
ctx->err_ = Z_OK;
switch (ctx->mode_) {
case DEFLATE:
case DEFLATERAW:
case GZIP:
ctx->err_ = deflateReset(&ctx->strm_);
break;
case INFLATE:
case INFLATERAW:
case GUNZIP:
ctx->err_ = inflateReset(&ctx->strm_);
break;
default:
break;
}
if (ctx->err_ != Z_OK) {
ZCtx::Error(ctx, "Failed to reset stream");
}
}
size_t self_size() const override { return sizeof(*this); }
private:
void Ref() {
if (++refs_ == 1) {
ClearWeak();
}
}
void Unref() {
CHECK_GT(refs_, 0);
if (--refs_ == 0) {
MakeWeak<ZCtx>(this);
}
}
static const int kDeflateContextSize = 16384; // approximate
static const int kInflateContextSize = 10240; // approximate
Bytef* dictionary_;
size_t dictionary_len_;
int err_;
int flush_;
bool init_done_;
int level_;
int memLevel_;
node_zlib_mode mode_;
int strategy_;
z_stream strm_;
int windowBits_;
uv_work_t work_req_;
bool write_in_progress_;
bool pending_close_;
unsigned int refs_;
unsigned int gzip_id_bytes_read_;
};
void InitZlib(Local<Object> target,
Local<Value> unused,
Local<Context> context,
void* priv) {
Environment* env = Environment::GetCurrent(context);
Local<FunctionTemplate> z = env->NewFunctionTemplate(ZCtx::New);
z->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(z, "write", ZCtx::Write<true>);
env->SetProtoMethod(z, "writeSync", ZCtx::Write<false>);
env->SetProtoMethod(z, "init", ZCtx::Init);
env->SetProtoMethod(z, "close", ZCtx::Close);
env->SetProtoMethod(z, "params", ZCtx::Params);
env->SetProtoMethod(z, "reset", ZCtx::Reset);
z->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "Zlib"));
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Zlib"), z->GetFunction());
// valid flush values.
NODE_DEFINE_CONSTANT(target, Z_NO_FLUSH);
NODE_DEFINE_CONSTANT(target, Z_PARTIAL_FLUSH);
NODE_DEFINE_CONSTANT(target, Z_SYNC_FLUSH);
NODE_DEFINE_CONSTANT(target, Z_FULL_FLUSH);
NODE_DEFINE_CONSTANT(target, Z_FINISH);
NODE_DEFINE_CONSTANT(target, Z_BLOCK);
// return/error codes
NODE_DEFINE_CONSTANT(target, Z_OK);
NODE_DEFINE_CONSTANT(target, Z_STREAM_END);
NODE_DEFINE_CONSTANT(target, Z_NEED_DICT);
NODE_DEFINE_CONSTANT(target, Z_ERRNO);
NODE_DEFINE_CONSTANT(target, Z_STREAM_ERROR);
NODE_DEFINE_CONSTANT(target, Z_DATA_ERROR);
NODE_DEFINE_CONSTANT(target, Z_MEM_ERROR);
NODE_DEFINE_CONSTANT(target, Z_BUF_ERROR);
NODE_DEFINE_CONSTANT(target, Z_VERSION_ERROR);
NODE_DEFINE_CONSTANT(target, Z_NO_COMPRESSION);
NODE_DEFINE_CONSTANT(target, Z_BEST_SPEED);
NODE_DEFINE_CONSTANT(target, Z_BEST_COMPRESSION);
NODE_DEFINE_CONSTANT(target, Z_DEFAULT_COMPRESSION);
NODE_DEFINE_CONSTANT(target, Z_FILTERED);
NODE_DEFINE_CONSTANT(target, Z_HUFFMAN_ONLY);
NODE_DEFINE_CONSTANT(target, Z_RLE);
NODE_DEFINE_CONSTANT(target, Z_FIXED);
NODE_DEFINE_CONSTANT(target, Z_DEFAULT_STRATEGY);
NODE_DEFINE_CONSTANT(target, ZLIB_VERNUM);
NODE_DEFINE_CONSTANT(target, DEFLATE);
NODE_DEFINE_CONSTANT(target, INFLATE);
NODE_DEFINE_CONSTANT(target, GZIP);
NODE_DEFINE_CONSTANT(target, GUNZIP);
NODE_DEFINE_CONSTANT(target, DEFLATERAW);
NODE_DEFINE_CONSTANT(target, INFLATERAW);
NODE_DEFINE_CONSTANT(target, UNZIP);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "ZLIB_VERSION"),
FIXED_ONE_BYTE_STRING(env->isolate(), ZLIB_VERSION));
}
} // namespace node
NODE_MODULE_CONTEXT_AWARE_BUILTIN(zlib, node::InitZlib)