You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5451 lines
157 KiB

#include "node.h"
#include "node_buffer.h"
#include "node_crypto.h"
#include "node_crypto_bio.h"
#include "node_crypto_groups.h"
#include "tls_wrap.h" // TLSWrap
#include "async-wrap.h"
#include "async-wrap-inl.h"
#include "env.h"
#include "env-inl.h"
#include "string_bytes.h"
#include "util.h"
#include "util-inl.h"
#include "v8.h"
// CNNIC Hash WhiteList is taken from
// https://hg.mozilla.org/mozilla-central/raw-file/98820360ab66/security/
// certverifier/CNNICHashWhitelist.inc
#include "CNNICHashWhitelist.inc"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#if defined(_MSC_VER)
#define strcasecmp _stricmp
#endif
#if OPENSSL_VERSION_NUMBER >= 0x10000000L
#define OPENSSL_CONST const
#else
#define OPENSSL_CONST
#endif
#define THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(val) \
do { \
if (!Buffer::HasInstance(val) && !val->IsString()) { \
return env->ThrowTypeError("Not a string or buffer"); \
} \
} while (0)
#define THROW_AND_RETURN_IF_NOT_BUFFER(val) \
do { \
if (!Buffer::HasInstance(val)) { \
return env->ThrowTypeError("Not a buffer"); \
} \
} while (0)
static const char PUBLIC_KEY_PFX[] = "-----BEGIN PUBLIC KEY-----";
static const int PUBLIC_KEY_PFX_LEN = sizeof(PUBLIC_KEY_PFX) - 1;
static const char PUBRSA_KEY_PFX[] = "-----BEGIN RSA PUBLIC KEY-----";
static const int PUBRSA_KEY_PFX_LEN = sizeof(PUBRSA_KEY_PFX) - 1;
static const char CERTIFICATE_PFX[] = "-----BEGIN CERTIFICATE-----";
static const int CERTIFICATE_PFX_LEN = sizeof(CERTIFICATE_PFX) - 1;
static const int X509_NAME_FLAGS = ASN1_STRFLGS_ESC_CTRL
| ASN1_STRFLGS_UTF8_CONVERT
| XN_FLAG_SEP_MULTILINE
| XN_FLAG_FN_SN;
namespace node {
namespace crypto {
using v8::Array;
using v8::Boolean;
using v8::Context;
using v8::DEFAULT;
using v8::DontDelete;
using v8::EscapableHandleScope;
using v8::Exception;
using v8::External;
using v8::False;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::Handle;
using v8::HandleScope;
using v8::Integer;
using v8::Isolate;
using v8::Local;
using v8::Null;
using v8::Object;
using v8::Persistent;
using v8::PropertyAttribute;
using v8::PropertyCallbackInfo;
using v8::ReadOnly;
using v8::String;
using v8::V8;
using v8::Value;
// Subject DER of CNNIC ROOT CA and CNNIC EV ROOT CA are taken from
// https://hg.mozilla.org/mozilla-central/file/98820360ab66/security/
// certverifier/NSSCertDBTrustDomain.cpp#l672
// C = CN, O = CNNIC, CN = CNNIC ROOT
static const uint8_t CNNIC_ROOT_CA_SUBJECT_DATA[] =
"\x30\x32\x31\x0B\x30\x09\x06\x03\x55\x04\x06\x13\x02\x43\x4E\x31\x0E\x30"
"\x0C\x06\x03\x55\x04\x0A\x13\x05\x43\x4E\x4E\x49\x43\x31\x13\x30\x11\x06"
"\x03\x55\x04\x03\x13\x0A\x43\x4E\x4E\x49\x43\x20\x52\x4F\x4F\x54";
static const uint8_t* cnnic_p = CNNIC_ROOT_CA_SUBJECT_DATA;
static X509_NAME* cnnic_name =
d2i_X509_NAME(nullptr, &cnnic_p, sizeof(CNNIC_ROOT_CA_SUBJECT_DATA)-1);
// C = CN, O = China Internet Network Information Center, CN = China
// Internet Network Information Center EV Certificates Root
static const uint8_t CNNIC_EV_ROOT_CA_SUBJECT_DATA[] =
"\x30\x81\x8A\x31\x0B\x30\x09\x06\x03\x55\x04\x06\x13\x02\x43\x4E\x31\x32"
"\x30\x30\x06\x03\x55\x04\x0A\x0C\x29\x43\x68\x69\x6E\x61\x20\x49\x6E\x74"
"\x65\x72\x6E\x65\x74\x20\x4E\x65\x74\x77\x6F\x72\x6B\x20\x49\x6E\x66\x6F"
"\x72\x6D\x61\x74\x69\x6F\x6E\x20\x43\x65\x6E\x74\x65\x72\x31\x47\x30\x45"
"\x06\x03\x55\x04\x03\x0C\x3E\x43\x68\x69\x6E\x61\x20\x49\x6E\x74\x65\x72"
"\x6E\x65\x74\x20\x4E\x65\x74\x77\x6F\x72\x6B\x20\x49\x6E\x66\x6F\x72\x6D"
"\x61\x74\x69\x6F\x6E\x20\x43\x65\x6E\x74\x65\x72\x20\x45\x56\x20\x43\x65"
"\x72\x74\x69\x66\x69\x63\x61\x74\x65\x73\x20\x52\x6F\x6F\x74";
static const uint8_t* cnnic_ev_p = CNNIC_EV_ROOT_CA_SUBJECT_DATA;
static X509_NAME *cnnic_ev_name =
d2i_X509_NAME(nullptr, &cnnic_ev_p,
sizeof(CNNIC_EV_ROOT_CA_SUBJECT_DATA)-1);
// Forcibly clear OpenSSL's error stack on return. This stops stale errors
// from popping up later in the lifecycle of crypto operations where they
// would cause spurious failures. It's a rather blunt method, though.
// ERR_clear_error() isn't necessarily cheap either.
struct ClearErrorOnReturn {
~ClearErrorOnReturn() { ERR_clear_error(); }
};
static uv_rwlock_t* locks;
const char* const root_certs[] = {
#include "node_root_certs.h" // NOLINT(build/include_order)
};
X509_STORE* root_cert_store;
// Just to generate static methods
template class SSLWrap<TLSWrap>;
template void SSLWrap<TLSWrap>::AddMethods(Environment* env,
Handle<FunctionTemplate> t);
template void SSLWrap<TLSWrap>::InitNPN(SecureContext* sc);
template SSL_SESSION* SSLWrap<TLSWrap>::GetSessionCallback(
SSL* s,
unsigned char* key,
int len,
int* copy);
template int SSLWrap<TLSWrap>::NewSessionCallback(SSL* s,
SSL_SESSION* sess);
template void SSLWrap<TLSWrap>::OnClientHello(
void* arg,
const ClientHelloParser::ClientHello& hello);
#ifdef OPENSSL_NPN_NEGOTIATED
template int SSLWrap<TLSWrap>::AdvertiseNextProtoCallback(
SSL* s,
const unsigned char** data,
unsigned int* len,
void* arg);
template int SSLWrap<TLSWrap>::SelectNextProtoCallback(
SSL* s,
unsigned char** out,
unsigned char* outlen,
const unsigned char* in,
unsigned int inlen,
void* arg);
#endif
template int SSLWrap<TLSWrap>::TLSExtStatusCallback(SSL* s, void* arg);
template void SSLWrap<TLSWrap>::DestroySSL();
template int SSLWrap<TLSWrap>::SSLCertCallback(SSL* s, void* arg);
template void SSLWrap<TLSWrap>::WaitForCertCb(CertCb cb, void* arg);
static void crypto_threadid_cb(CRYPTO_THREADID* tid) {
static_assert(sizeof(uv_thread_t) <= sizeof(void*), // NOLINT(runtime/sizeof)
"uv_thread_t does not fit in a pointer");
CRYPTO_THREADID_set_pointer(tid, reinterpret_cast<void*>(uv_thread_self()));
}
static void crypto_lock_init(void) {
int i, n;
n = CRYPTO_num_locks();
locks = new uv_rwlock_t[n];
for (i = 0; i < n; i++)
if (uv_rwlock_init(locks + i))
abort();
}
static void crypto_lock_cb(int mode, int n, const char* file, int line) {
CHECK((mode & CRYPTO_LOCK) || (mode & CRYPTO_UNLOCK));
CHECK((mode & CRYPTO_READ) || (mode & CRYPTO_WRITE));
if (mode & CRYPTO_LOCK) {
if (mode & CRYPTO_READ)
uv_rwlock_rdlock(locks + n);
else
uv_rwlock_wrlock(locks + n);
} else {
if (mode & CRYPTO_READ)
uv_rwlock_rdunlock(locks + n);
else
uv_rwlock_wrunlock(locks + n);
}
}
static int CryptoPemCallback(char *buf, int size, int rwflag, void *u) {
if (u) {
size_t buflen = static_cast<size_t>(size);
size_t len = strlen(static_cast<const char*>(u));
len = len > buflen ? buflen : len;
memcpy(buf, u, len);
return len;
}
return 0;
}
void ThrowCryptoError(Environment* env,
unsigned long err,
const char* default_message = nullptr) {
HandleScope scope(env->isolate());
if (err != 0 || default_message == nullptr) {
char errmsg[128] = { 0 };
ERR_error_string_n(err, errmsg, sizeof(errmsg));
env->ThrowError(errmsg);
} else {
env->ThrowError(default_message);
}
}
// Ensure that OpenSSL has enough entropy (at least 256 bits) for its PRNG.
// The entropy pool starts out empty and needs to fill up before the PRNG
// can be used securely. Once the pool is filled, it never dries up again;
// its contents is stirred and reused when necessary.
//
// OpenSSL normally fills the pool automatically but not when someone starts
// generating random numbers before the pool is full: in that case OpenSSL
// keeps lowering the entropy estimate to thwart attackers trying to guess
// the initial state of the PRNG.
//
// When that happens, we will have to wait until enough entropy is available.
// That should normally never take longer than a few milliseconds.
//
// OpenSSL draws from /dev/random and /dev/urandom. While /dev/random may
// block pending "true" randomness, /dev/urandom is a CSPRNG that doesn't
// block under normal circumstances.
//
// The only time when /dev/urandom may conceivably block is right after boot,
// when the whole system is still low on entropy. That's not something we can
// do anything about.
inline void CheckEntropy() {
for (;;) {
int status = RAND_status();
CHECK_GE(status, 0); // Cannot fail.
if (status != 0)
break;
// Give up, RAND_poll() not supported.
if (RAND_poll() == 0)
break;
}
}
bool EntropySource(unsigned char* buffer, size_t length) {
// Ensure that OpenSSL's PRNG is properly seeded.
CheckEntropy();
// RAND_bytes() can return 0 to indicate that the entropy data is not truly
// random. That's okay, it's still better than V8's stock source of entropy,
// which is /dev/urandom on UNIX platforms and the current time on Windows.
return RAND_bytes(buffer, length) != -1;
}
void SecureContext::Initialize(Environment* env, Handle<Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(SecureContext::New);
t->InstanceTemplate()->SetInternalFieldCount(1);
t->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext"));
env->SetProtoMethod(t, "init", SecureContext::Init);
env->SetProtoMethod(t, "setKey", SecureContext::SetKey);
env->SetProtoMethod(t, "setCert", SecureContext::SetCert);
env->SetProtoMethod(t, "addCACert", SecureContext::AddCACert);
env->SetProtoMethod(t, "addCRL", SecureContext::AddCRL);
env->SetProtoMethod(t, "addRootCerts", SecureContext::AddRootCerts);
env->SetProtoMethod(t, "setCiphers", SecureContext::SetCiphers);
env->SetProtoMethod(t, "setECDHCurve", SecureContext::SetECDHCurve);
env->SetProtoMethod(t, "setDHParam", SecureContext::SetDHParam);
env->SetProtoMethod(t, "setOptions", SecureContext::SetOptions);
env->SetProtoMethod(t, "setSessionIdContext",
SecureContext::SetSessionIdContext);
env->SetProtoMethod(t, "setSessionTimeout",
SecureContext::SetSessionTimeout);
env->SetProtoMethod(t, "close", SecureContext::Close);
env->SetProtoMethod(t, "loadPKCS12", SecureContext::LoadPKCS12);
env->SetProtoMethod(t, "getTicketKeys", SecureContext::GetTicketKeys);
env->SetProtoMethod(t, "setTicketKeys", SecureContext::SetTicketKeys);
env->SetProtoMethod(t, "setFreeListLength", SecureContext::SetFreeListLength);
env->SetProtoMethod(t,
"enableTicketKeyCallback",
SecureContext::EnableTicketKeyCallback);
env->SetProtoMethod(t, "getCertificate", SecureContext::GetCertificate<true>);
env->SetProtoMethod(t, "getIssuer", SecureContext::GetCertificate<false>);
t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyReturnIndex"),
Integer::NewFromUnsigned(env->isolate(), kTicketKeyReturnIndex));
t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyHMACIndex"),
Integer::NewFromUnsigned(env->isolate(), kTicketKeyHMACIndex));
t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyAESIndex"),
Integer::NewFromUnsigned(env->isolate(), kTicketKeyAESIndex));
t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyNameIndex"),
Integer::NewFromUnsigned(env->isolate(), kTicketKeyNameIndex));
t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyIVIndex"),
Integer::NewFromUnsigned(env->isolate(), kTicketKeyIVIndex));
t->PrototypeTemplate()->SetAccessor(
FIXED_ONE_BYTE_STRING(env->isolate(), "_external"),
CtxGetter,
nullptr,
env->as_external(),
DEFAULT,
static_cast<PropertyAttribute>(ReadOnly | DontDelete));
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext"),
t->GetFunction());
env->set_secure_context_constructor_template(t);
}
void SecureContext::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new SecureContext(env, args.This());
}
void SecureContext::Init(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
Environment* env = sc->env();
OPENSSL_CONST SSL_METHOD *method = SSLv23_method();
if (args.Length() == 1 && args[0]->IsString()) {
const node::Utf8Value sslmethod(env->isolate(), args[0]);
// Note that SSLv2 and SSLv3 are disallowed but SSLv2_method and friends
// are still accepted. They are OpenSSL's way of saying that all known
// protocols are supported unless explicitly disabled (which we do below
// for SSLv2 and SSLv3.)
if (strcmp(*sslmethod, "SSLv2_method") == 0) {
return env->ThrowError("SSLv2 methods disabled");
} else if (strcmp(*sslmethod, "SSLv2_server_method") == 0) {
return env->ThrowError("SSLv2 methods disabled");
} else if (strcmp(*sslmethod, "SSLv2_client_method") == 0) {
return env->ThrowError("SSLv2 methods disabled");
} else if (strcmp(*sslmethod, "SSLv3_method") == 0) {
return env->ThrowError("SSLv3 methods disabled");
} else if (strcmp(*sslmethod, "SSLv3_server_method") == 0) {
return env->ThrowError("SSLv3 methods disabled");
} else if (strcmp(*sslmethod, "SSLv3_client_method") == 0) {
return env->ThrowError("SSLv3 methods disabled");
} else if (strcmp(*sslmethod, "SSLv23_method") == 0) {
method = SSLv23_method();
} else if (strcmp(*sslmethod, "SSLv23_server_method") == 0) {
method = SSLv23_server_method();
} else if (strcmp(*sslmethod, "SSLv23_client_method") == 0) {
method = SSLv23_client_method();
} else if (strcmp(*sslmethod, "TLSv1_method") == 0) {
method = TLSv1_method();
} else if (strcmp(*sslmethod, "TLSv1_server_method") == 0) {
method = TLSv1_server_method();
} else if (strcmp(*sslmethod, "TLSv1_client_method") == 0) {
method = TLSv1_client_method();
} else if (strcmp(*sslmethod, "TLSv1_1_method") == 0) {
method = TLSv1_1_method();
} else if (strcmp(*sslmethod, "TLSv1_1_server_method") == 0) {
method = TLSv1_1_server_method();
} else if (strcmp(*sslmethod, "TLSv1_1_client_method") == 0) {
method = TLSv1_1_client_method();
} else if (strcmp(*sslmethod, "TLSv1_2_method") == 0) {
method = TLSv1_2_method();
} else if (strcmp(*sslmethod, "TLSv1_2_server_method") == 0) {
method = TLSv1_2_server_method();
} else if (strcmp(*sslmethod, "TLSv1_2_client_method") == 0) {
method = TLSv1_2_client_method();
} else {
return env->ThrowError("Unknown method");
}
}
sc->ctx_ = SSL_CTX_new(method);
SSL_CTX_set_app_data(sc->ctx_, sc);
// Disable SSLv2 in the case when method == SSLv23_method() and the
// cipher list contains SSLv2 ciphers (not the default, should be rare.)
// The bundled OpenSSL doesn't have SSLv2 support but the system OpenSSL may.
// SSLv3 is disabled because it's susceptible to downgrade attacks (POODLE.)
SSL_CTX_set_options(sc->ctx_, SSL_OP_NO_SSLv2);
SSL_CTX_set_options(sc->ctx_, SSL_OP_NO_SSLv3);
// SSL session cache configuration
SSL_CTX_set_session_cache_mode(sc->ctx_,
SSL_SESS_CACHE_SERVER |
SSL_SESS_CACHE_NO_INTERNAL |
SSL_SESS_CACHE_NO_AUTO_CLEAR);
SSL_CTX_sess_set_get_cb(sc->ctx_, SSLWrap<Connection>::GetSessionCallback);
SSL_CTX_sess_set_new_cb(sc->ctx_, SSLWrap<Connection>::NewSessionCallback);
sc->ca_store_ = nullptr;
}
// Takes a string or buffer and loads it into a BIO.
// Caller responsible for BIO_free_all-ing the returned object.
static BIO* LoadBIO(Environment* env, Handle<Value> v) {
BIO* bio = NodeBIO::New();
if (!bio)
return nullptr;
HandleScope scope(env->isolate());
int r = -1;
if (v->IsString()) {
const node::Utf8Value s(env->isolate(), v);
r = BIO_write(bio, *s, s.length());
} else if (Buffer::HasInstance(v)) {
char* buffer_data = Buffer::Data(v);
size_t buffer_length = Buffer::Length(v);
r = BIO_write(bio, buffer_data, buffer_length);
}
if (r <= 0) {
BIO_free_all(bio);
return nullptr;
}
return bio;
}
// Takes a string or buffer and loads it into an X509
// Caller responsible for X509_free-ing the returned object.
static X509* LoadX509(Environment* env, Handle<Value> v) {
HandleScope scope(env->isolate());
BIO *bio = LoadBIO(env, v);
if (!bio)
return nullptr;
X509 * x509 = PEM_read_bio_X509(bio, nullptr, CryptoPemCallback, nullptr);
if (!x509) {
BIO_free_all(bio);
return nullptr;
}
BIO_free_all(bio);
return x509;
}
void SecureContext::SetKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
unsigned int len = args.Length();
if (len != 1 && len != 2) {
return env->ThrowTypeError("Bad parameter");
}
if (len == 2 && !args[1]->IsString()) {
return env->ThrowTypeError("Bad parameter");
}
BIO *bio = LoadBIO(env, args[0]);
if (!bio)
return;
node::Utf8Value passphrase(env->isolate(), args[1]);
EVP_PKEY* key = PEM_read_bio_PrivateKey(bio,
nullptr,
CryptoPemCallback,
len == 1 ? nullptr : *passphrase);
if (!key) {
BIO_free_all(bio);
unsigned long err = ERR_get_error();
if (!err) {
return env->ThrowError("PEM_read_bio_PrivateKey");
}
return ThrowCryptoError(env, err);
}
int rv = SSL_CTX_use_PrivateKey(sc->ctx_, key);
EVP_PKEY_free(key);
BIO_free_all(bio);
if (!rv) {
unsigned long err = ERR_get_error();
if (!err)
return env->ThrowError("SSL_CTX_use_PrivateKey");
return ThrowCryptoError(env, err);
}
}
int SSL_CTX_get_issuer(SSL_CTX* ctx, X509* cert, X509** issuer) {
int ret;
X509_STORE* store = SSL_CTX_get_cert_store(ctx);
X509_STORE_CTX store_ctx;
ret = X509_STORE_CTX_init(&store_ctx, store, nullptr, nullptr);
if (!ret)
goto end;
ret = X509_STORE_CTX_get1_issuer(issuer, &store_ctx, cert);
X509_STORE_CTX_cleanup(&store_ctx);
end:
return ret;
}
// Read a file that contains our certificate in "PEM" format,
// possibly followed by a sequence of CA certificates that should be
// sent to the peer in the Certificate message.
//
// Taken from OpenSSL - editted for style.
int SSL_CTX_use_certificate_chain(SSL_CTX* ctx,
BIO* in,
X509** cert,
X509** issuer) {
int ret = 0;
X509* x = nullptr;
x = PEM_read_bio_X509_AUX(in, nullptr, CryptoPemCallback, nullptr);
if (x == nullptr) {
SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE, ERR_R_PEM_LIB);
goto end;
}
ret = SSL_CTX_use_certificate(ctx, x);
if (ret) {
// If we could set up our certificate, now proceed to
// the CA certificates.
X509 *ca;
int r;
unsigned long err;
if (ctx->extra_certs != nullptr) {
sk_X509_pop_free(ctx->extra_certs, X509_free);
ctx->extra_certs = nullptr;
}
while ((ca = PEM_read_bio_X509(in, nullptr, CryptoPemCallback, nullptr))) {
// NOTE: Increments reference count on `ca`
r = SSL_CTX_add1_chain_cert(ctx, ca);
if (!r) {
X509_free(ca);
ret = 0;
goto end;
}
// Note that we must not free r if it was successfully
// added to the chain (while we must free the main
// certificate, since its reference count is increased
// by SSL_CTX_use_certificate).
// Find issuer
if (*issuer != nullptr || X509_check_issued(ca, x) != X509_V_OK)
continue;
*issuer = ca;
}
// When the while loop ends, it's usually just EOF.
err = ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
ERR_clear_error();
} else {
// some real error
ret = 0;
}
}
// Try getting issuer from a cert store
if (ret) {
if (*issuer == nullptr) {
ret = SSL_CTX_get_issuer(ctx, x, issuer);
ret = ret < 0 ? 0 : 1;
// NOTE: get_cert_store doesn't increment reference count,
// no need to free `store`
} else {
// Increment issuer reference count
CRYPTO_add(&(*issuer)->references, 1, CRYPTO_LOCK_X509);
}
}
end:
if (x != nullptr)
*cert = x;
return ret;
}
void SecureContext::SetCert(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1) {
return env->ThrowTypeError("Bad parameter");
}
BIO* bio = LoadBIO(env, args[0]);
if (!bio)
return;
int rv = SSL_CTX_use_certificate_chain(sc->ctx_,
bio,
&sc->cert_,
&sc->issuer_);
BIO_free_all(bio);
if (!rv) {
unsigned long err = ERR_get_error();
if (!err) {
return env->ThrowError("SSL_CTX_use_certificate_chain");
}
return ThrowCryptoError(env, err);
}
}
void SecureContext::AddCACert(const FunctionCallbackInfo<Value>& args) {
bool newCAStore = false;
Environment* env = Environment::GetCurrent(args);
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
if (args.Length() != 1) {
return env->ThrowTypeError("Bad parameter");
}
if (!sc->ca_store_) {
sc->ca_store_ = X509_STORE_new();
newCAStore = true;
}
X509* x509 = LoadX509(env, args[0]);
if (!x509)
return;
X509_STORE_add_cert(sc->ca_store_, x509);
SSL_CTX_add_client_CA(sc->ctx_, x509);
X509_free(x509);
if (newCAStore) {
SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_);
}
}
void SecureContext::AddCRL(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1) {
return env->ThrowTypeError("Bad parameter");
}
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
BIO *bio = LoadBIO(env, args[0]);
if (!bio)
return;
X509_CRL *x509 =
PEM_read_bio_X509_CRL(bio, nullptr, CryptoPemCallback, nullptr);
if (x509 == nullptr) {
BIO_free_all(bio);
return;
}
X509_STORE_add_crl(sc->ca_store_, x509);
X509_STORE_set_flags(sc->ca_store_, X509_V_FLAG_CRL_CHECK |
X509_V_FLAG_CRL_CHECK_ALL);
BIO_free_all(bio);
X509_CRL_free(x509);
}
void SecureContext::AddRootCerts(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
CHECK_EQ(sc->ca_store_, nullptr);
if (!root_cert_store) {
root_cert_store = X509_STORE_new();
for (size_t i = 0; i < ARRAY_SIZE(root_certs); i++) {
BIO* bp = NodeBIO::New();
if (!BIO_write(bp, root_certs[i], strlen(root_certs[i]))) {
BIO_free_all(bp);
return;
}
X509 *x509 = PEM_read_bio_X509(bp, nullptr, CryptoPemCallback, nullptr);
if (x509 == nullptr) {
BIO_free_all(bp);
return;
}
X509_STORE_add_cert(root_cert_store, x509);
BIO_free_all(bp);
X509_free(x509);
}
}
sc->ca_store_ = root_cert_store;
SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_);
}
void SecureContext::SetCiphers(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
if (args.Length() != 1 || !args[0]->IsString()) {
return sc->env()->ThrowTypeError("Bad parameter");
}
const node::Utf8Value ciphers(args.GetIsolate(), args[0]);
SSL_CTX_set_cipher_list(sc->ctx_, *ciphers);
}
void SecureContext::SetECDHCurve(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
Environment* env = sc->env();
if (args.Length() != 1 || !args[0]->IsString())
return env->ThrowTypeError("First argument should be a string");
node::Utf8Value curve(env->isolate(), args[0]);
int nid = OBJ_sn2nid(*curve);
if (nid == NID_undef)
return env->ThrowTypeError("First argument should be a valid curve name");
EC_KEY* ecdh = EC_KEY_new_by_curve_name(nid);
if (ecdh == nullptr)
return env->ThrowTypeError("First argument should be a valid curve name");
SSL_CTX_set_options(sc->ctx_, SSL_OP_SINGLE_ECDH_USE);
SSL_CTX_set_tmp_ecdh(sc->ctx_, ecdh);
EC_KEY_free(ecdh);
}
void SecureContext::SetDHParam(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.This());
Environment* env = sc->env();
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
// Auto DH is not supported in openssl 1.0.1, so dhparam needs
// to be specifed explicitly
if (args.Length() != 1)
return env->ThrowTypeError("Bad parameter");
// Invalid dhparam is silently discarded and DHE is no longer used.
BIO* bio = LoadBIO(env, args[0]);
if (!bio)
return;
DH* dh = PEM_read_bio_DHparams(bio, nullptr, nullptr, nullptr);
BIO_free_all(bio);
if (dh == nullptr)
return;
const int keylen = BN_num_bits(dh->p);
if (keylen < 1024) {
DH_free(dh);
return env->ThrowError("DH parameter is less than 1024 bits");
} else if (keylen < 2048) {
fprintf(stderr, "WARNING: DH parameter is less than 2048 bits\n");
}
SSL_CTX_set_options(sc->ctx_, SSL_OP_SINGLE_DH_USE);
int r = SSL_CTX_set_tmp_dh(sc->ctx_, dh);
DH_free(dh);
if (!r)
return env->ThrowTypeError("Error setting temp DH parameter");
}
void SecureContext::SetOptions(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 || !args[0]->IntegerValue()) {
return sc->env()->ThrowTypeError("Bad parameter");
}
SSL_CTX_set_options(sc->ctx_, static_cast<long>(args[0]->IntegerValue()));
}
void SecureContext::SetSessionIdContext(
const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 || !args[0]->IsString()) {
return sc->env()->ThrowTypeError("Bad parameter");
}
const node::Utf8Value sessionIdContext(args.GetIsolate(), args[0]);
const unsigned char* sid_ctx =
reinterpret_cast<const unsigned char*>(*sessionIdContext);
unsigned int sid_ctx_len = sessionIdContext.length();
int r = SSL_CTX_set_session_id_context(sc->ctx_, sid_ctx, sid_ctx_len);
if (r == 1)
return;
BIO* bio;
BUF_MEM* mem;
Local<String> message;
bio = BIO_new(BIO_s_mem());
if (bio == nullptr) {
message = FIXED_ONE_BYTE_STRING(args.GetIsolate(),
"SSL_CTX_set_session_id_context error");
} else {
ERR_print_errors(bio);
BIO_get_mem_ptr(bio, &mem);
message = OneByteString(args.GetIsolate(), mem->data, mem->length);
BIO_free_all(bio);
}
args.GetIsolate()->ThrowException(Exception::TypeError(message));
}
void SecureContext::SetSessionTimeout(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 || !args[0]->IsInt32()) {
return sc->env()->ThrowTypeError("Bad parameter");
}
int32_t sessionTimeout = args[0]->Int32Value();
SSL_CTX_set_timeout(sc->ctx_, sessionTimeout);
}
void SecureContext::Close(const FunctionCallbackInfo<Value>& args) {
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
sc->FreeCTXMem();
}
// Takes .pfx or .p12 and password in string or buffer format
void SecureContext::LoadPKCS12(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
BIO* in = nullptr;
PKCS12* p12 = nullptr;
EVP_PKEY* pkey = nullptr;
X509* cert = nullptr;
STACK_OF(X509)* extraCerts = nullptr;
char* pass = nullptr;
bool ret = false;
SecureContext* sc = Unwrap<SecureContext>(args.Holder());
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
if (args.Length() < 1) {
return env->ThrowTypeError("Bad parameter");
}
in = LoadBIO(env, args[0]);
if (in == nullptr) {
return env->ThrowError("Unable to load BIO");
}
if (args.Length() >= 2) {
THROW_AND_RETURN_IF_NOT_BUFFER(args[1]);
size_t passlen = Buffer::Length(args[1]);
pass = new char[passlen + 1];
memcpy(pass, Buffer::Data(args[1]), passlen);
pass[passlen] = '\0';
}
if (d2i_PKCS12_bio(in, &p12) &&
PKCS12_parse(p12, pass, &pkey, &cert, &extraCerts) &&
SSL_CTX_use_certificate(sc->ctx_, cert) &&
SSL_CTX_use_PrivateKey(sc->ctx_, pkey)) {
// set extra certs
while (X509* x509 = sk_X509_pop(extraCerts)) {
if (!sc->ca_store_) {
sc->ca_store_ = X509_STORE_new();
SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_);
}
X509_STORE_add_cert(sc->ca_store_, x509);
SSL_CTX_add_client_CA(sc->ctx_, x509);
X509_free(x509);
}
EVP_PKEY_free(pkey);
X509_free(cert);
sk_X509_free(extraCerts);
ret = true;
}
PKCS12_free(p12);
BIO_free_all(in);
delete[] pass;
if (!ret) {
unsigned long err = ERR_get_error();
const char* str = ERR_reason_error_string(err);
return env->ThrowError(str);
}
}
void SecureContext::GetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)
SecureContext* wrap = Unwrap<SecureContext>(args.Holder());
Local<Object> buff = Buffer::New(wrap->env(), 48).ToLocalChecked();
if (SSL_CTX_get_tlsext_ticket_keys(wrap->ctx_,
Buffer::Data(buff),
Buffer::Length(buff)) != 1) {
return wrap->env()->ThrowError("Failed to fetch tls ticket keys");
}
args.GetReturnValue().Set(buff);
#endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}
void SecureContext::SetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)
SecureContext* wrap = Unwrap<SecureContext>(args.Holder());
if (args.Length() < 1 ||
!Buffer::HasInstance(args[0]) ||
Buffer::Length(args[0]) != 48) {
return wrap->env()->ThrowTypeError("Bad argument");
}
if (SSL_CTX_set_tlsext_ticket_keys(wrap->ctx_,
Buffer::Data(args[0]),
Buffer::Length(args[0])) != 1) {
return wrap->env()->ThrowError("Failed to fetch tls ticket keys");
}
args.GetReturnValue().Set(true);
#endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}
void SecureContext::SetFreeListLength(const FunctionCallbackInfo<Value>& args) {
SecureContext* wrap = Unwrap<SecureContext>(args.Holder());
wrap->ctx_->freelist_max_len = args[0]->Int32Value();
}
void SecureContext::EnableTicketKeyCallback(
const FunctionCallbackInfo<Value>& args) {
SecureContext* wrap = Unwrap<SecureContext>(args.Holder());
SSL_CTX_set_tlsext_ticket_key_cb(wrap->ctx_, TicketKeyCallback);
}
int SecureContext::TicketKeyCallback(SSL* ssl,
unsigned char* name,
unsigned char* iv,
EVP_CIPHER_CTX* ectx,
HMAC_CTX* hctx,
int enc) {
static const int kTicketPartSize = 16;
SecureContext* sc = static_cast<SecureContext*>(
SSL_CTX_get_app_data(ssl->ctx));
Environment* env = sc->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
Local<Value> argv[] = {
Buffer::Copy(env,
reinterpret_cast<char*>(name),
kTicketPartSize).ToLocalChecked(),
Buffer::Copy(env,
reinterpret_cast<char*>(iv),
kTicketPartSize).ToLocalChecked(),
Boolean::New(env->isolate(), enc != 0)
};
Local<Value> ret = node::MakeCallback(env,
sc->object(),
env->ticketkeycallback_string(),
ARRAY_SIZE(argv),
argv);
Local<Array> arr = ret.As<Array>();
int r = arr->Get(kTicketKeyReturnIndex)->Int32Value();
if (r < 0)
return r;
Local<Value> hmac = arr->Get(kTicketKeyHMACIndex);
Local<Value> aes = arr->Get(kTicketKeyAESIndex);
if (Buffer::Length(aes) != kTicketPartSize)
return -1;
if (enc) {
Local<Value> name_val = arr->Get(kTicketKeyNameIndex);
Local<Value> iv_val = arr->Get(kTicketKeyIVIndex);
if (Buffer::Length(name_val) != kTicketPartSize ||
Buffer::Length(iv_val) != kTicketPartSize) {
return -1;
}
memcpy(name, Buffer::Data(name_val), kTicketPartSize);
memcpy(iv, Buffer::Data(iv_val), kTicketPartSize);
}
HMAC_Init_ex(hctx,
Buffer::Data(hmac),
Buffer::Length(hmac),
EVP_sha256(),
nullptr);
const unsigned char* aes_key =
reinterpret_cast<unsigned char*>(Buffer::Data(aes));
if (enc) {
EVP_EncryptInit_ex(ectx,
EVP_aes_128_cbc(),
nullptr,
aes_key,
iv);
} else {
EVP_DecryptInit_ex(ectx,
EVP_aes_128_cbc(),
nullptr,
aes_key,
iv);
}
return r;
}
void SecureContext::CtxGetter(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
HandleScope scope(info.GetIsolate());
SSL_CTX* ctx = Unwrap<SecureContext>(info.Holder())->ctx_;
Local<External> ext = External::New(info.GetIsolate(), ctx);
info.GetReturnValue().Set(ext);
}
template <bool primary>
void SecureContext::GetCertificate(const FunctionCallbackInfo<Value>& args) {
SecureContext* wrap = Unwrap<SecureContext>(args.Holder());
Environment* env = wrap->env();
X509* cert;
if (primary)
cert = wrap->cert_;
else
cert = wrap->issuer_;
if (cert == nullptr)
return args.GetReturnValue().Set(Null(env->isolate()));
int size = i2d_X509(cert, nullptr);
Local<Object> buff = Buffer::New(env, size).ToLocalChecked();
unsigned char* serialized = reinterpret_cast<unsigned char*>(
Buffer::Data(buff));
i2d_X509(cert, &serialized);
args.GetReturnValue().Set(buff);
}
template <class Base>
void SSLWrap<Base>::AddMethods(Environment* env, Handle<FunctionTemplate> t) {
HandleScope scope(env->isolate());
env->SetProtoMethod(t, "getPeerCertificate", GetPeerCertificate);
env->SetProtoMethod(t, "getSession", GetSession);
env->SetProtoMethod(t, "setSession", SetSession);
env->SetProtoMethod(t, "loadSession", LoadSession);
env->SetProtoMethod(t, "isSessionReused", IsSessionReused);
env->SetProtoMethod(t, "isInitFinished", IsInitFinished);
env->SetProtoMethod(t, "verifyError", VerifyError);
env->SetProtoMethod(t, "getCurrentCipher", GetCurrentCipher);
env->SetProtoMethod(t, "endParser", EndParser);
env->SetProtoMethod(t, "certCbDone", CertCbDone);
env->SetProtoMethod(t, "renegotiate", Renegotiate);
env->SetProtoMethod(t, "shutdownSSL", Shutdown);
env->SetProtoMethod(t, "getTLSTicket", GetTLSTicket);
env->SetProtoMethod(t, "newSessionDone", NewSessionDone);
env->SetProtoMethod(t, "setOCSPResponse", SetOCSPResponse);
env->SetProtoMethod(t, "requestOCSP", RequestOCSP);
#ifdef SSL_set_max_send_fragment
env->SetProtoMethod(t, "setMaxSendFragment", SetMaxSendFragment);
#endif // SSL_set_max_send_fragment
#ifdef OPENSSL_NPN_NEGOTIATED
env->SetProtoMethod(t, "getNegotiatedProtocol", GetNegotiatedProto);
#endif // OPENSSL_NPN_NEGOTIATED
#ifdef OPENSSL_NPN_NEGOTIATED
env->SetProtoMethod(t, "setNPNProtocols", SetNPNProtocols);
#endif
t->PrototypeTemplate()->SetAccessor(
FIXED_ONE_BYTE_STRING(env->isolate(), "_external"),
SSLGetter,
nullptr,
env->as_external(),
DEFAULT,
static_cast<PropertyAttribute>(ReadOnly | DontDelete));
}
template <class Base>
void SSLWrap<Base>::InitNPN(SecureContext* sc) {
#ifdef OPENSSL_NPN_NEGOTIATED
// Server should advertise NPN protocols
SSL_CTX_set_next_protos_advertised_cb(sc->ctx_,
AdvertiseNextProtoCallback,
nullptr);
// Client should select protocol from list of advertised
// If server supports NPN
SSL_CTX_set_next_proto_select_cb(sc->ctx_, SelectNextProtoCallback, nullptr);
#endif // OPENSSL_NPN_NEGOTIATED
#ifdef NODE__HAVE_TLSEXT_STATUS_CB
// OCSP stapling
SSL_CTX_set_tlsext_status_cb(sc->ctx_, TLSExtStatusCallback);
SSL_CTX_set_tlsext_status_arg(sc->ctx_, nullptr);
#endif // NODE__HAVE_TLSEXT_STATUS_CB
}
template <class Base>
SSL_SESSION* SSLWrap<Base>::GetSessionCallback(SSL* s,
unsigned char* key,
int len,
int* copy) {
Base* w = static_cast<Base*>(SSL_get_app_data(s));
*copy = 0;
SSL_SESSION* sess = w->next_sess_;
w->next_sess_ = nullptr;
return sess;
}
template <class Base>
int SSLWrap<Base>::NewSessionCallback(SSL* s, SSL_SESSION* sess) {
Base* w = static_cast<Base*>(SSL_get_app_data(s));
Environment* env = w->ssl_env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
if (!w->session_callbacks_)
return 0;
// Check if session is small enough to be stored
int size = i2d_SSL_SESSION(sess, nullptr);
if (size > SecureContext::kMaxSessionSize)
return 0;
// Serialize session
Local<Object> buff = Buffer::New(env, size).ToLocalChecked();
unsigned char* serialized = reinterpret_cast<unsigned char*>(
Buffer::Data(buff));
memset(serialized, 0, size);
i2d_SSL_SESSION(sess, &serialized);
Local<Object> session = Buffer::Copy(
env,
reinterpret_cast<char*>(sess->session_id),
sess->session_id_length).ToLocalChecked();
Local<Value> argv[] = { session, buff };
w->new_session_wait_ = true;
w->MakeCallback(env->onnewsession_string(), ARRAY_SIZE(argv), argv);
return 0;
}
template <class Base>
void SSLWrap<Base>::OnClientHello(void* arg,
const ClientHelloParser::ClientHello& hello) {
Base* w = static_cast<Base*>(arg);
Environment* env = w->ssl_env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
Local<Object> hello_obj = Object::New(env->isolate());
Local<Object> buff = Buffer::Copy(
env,
reinterpret_cast<const char*>(hello.session_id()),
hello.session_size()).ToLocalChecked();
hello_obj->Set(env->session_id_string(), buff);
if (hello.servername() == nullptr) {
hello_obj->Set(env->servername_string(), String::Empty(env->isolate()));
} else {
Local<String> servername = OneByteString(env->isolate(),
hello.servername(),
hello.servername_size());
hello_obj->Set(env->servername_string(), servername);
}
hello_obj->Set(env->tls_ticket_string(),
Boolean::New(env->isolate(), hello.has_ticket()));
hello_obj->Set(env->ocsp_request_string(),
Boolean::New(env->isolate(), hello.ocsp_request()));
Local<Value> argv[] = { hello_obj };
w->MakeCallback(env->onclienthello_string(), ARRAY_SIZE(argv), argv);
}
static bool SafeX509ExtPrint(BIO* out, X509_EXTENSION* ext) {
const X509V3_EXT_METHOD* method = X509V3_EXT_get(ext);
if (method != X509V3_EXT_get_nid(NID_subject_alt_name))
return false;
const unsigned char* p = ext->value->data;
GENERAL_NAMES* names = reinterpret_cast<GENERAL_NAMES*>(ASN1_item_d2i(
NULL,
&p,
ext->value->length,
ASN1_ITEM_ptr(method->it)));
if (names == NULL)
return false;
for (int i = 0; i < sk_GENERAL_NAME_num(names); i++) {
GENERAL_NAME* gen = sk_GENERAL_NAME_value(names, i);
if (i != 0)
BIO_write(out, ", ", 2);
if (gen->type == GEN_DNS) {
ASN1_IA5STRING* name = gen->d.dNSName;
BIO_write(out, "DNS:", 4);
BIO_write(out, name->data, name->length);
} else {
STACK_OF(CONF_VALUE)* nval = i2v_GENERAL_NAME(
const_cast<X509V3_EXT_METHOD*>(method), gen, NULL);
if (nval == NULL)
return false;
X509V3_EXT_val_prn(out, nval, 0, 0);
sk_CONF_VALUE_pop_free(nval, X509V3_conf_free);
}
}
sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free);
return true;
}
static Local<Object> X509ToObject(Environment* env, X509* cert) {
EscapableHandleScope scope(env->isolate());
Local<Object> info = Object::New(env->isolate());
BIO* bio = BIO_new(BIO_s_mem());
BUF_MEM* mem;
if (X509_NAME_print_ex(bio,
X509_get_subject_name(cert),
0,
X509_NAME_FLAGS) > 0) {
BIO_get_mem_ptr(bio, &mem);
info->Set(env->subject_string(),
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
}
(void) BIO_reset(bio);
X509_NAME* issuer_name = X509_get_issuer_name(cert);
if (X509_NAME_print_ex(bio, issuer_name, 0, X509_NAME_FLAGS) > 0) {
BIO_get_mem_ptr(bio, &mem);
info->Set(env->issuer_string(),
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
}
(void) BIO_reset(bio);
int nids[] = { NID_subject_alt_name, NID_info_access };
Local<String> keys[] = { env->subjectaltname_string(),
env->infoaccess_string() };
CHECK_EQ(ARRAY_SIZE(nids), ARRAY_SIZE(keys));
for (unsigned int i = 0; i < ARRAY_SIZE(nids); i++) {
int index = X509_get_ext_by_NID(cert, nids[i], -1);
if (index < 0)
continue;
X509_EXTENSION* ext;
int rv;
ext = X509_get_ext(cert, index);
CHECK_NE(ext, nullptr);
if (!SafeX509ExtPrint(bio, ext)) {
rv = X509V3_EXT_print(bio, ext, 0, 0);
CHECK_EQ(rv, 1);
}
BIO_get_mem_ptr(bio, &mem);
info->Set(keys[i],
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
(void) BIO_reset(bio);
}
EVP_PKEY* pkey = X509_get_pubkey(cert);
RSA* rsa = nullptr;
if (pkey != nullptr)
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa != nullptr) {
BN_print(bio, rsa->n);
BIO_get_mem_ptr(bio, &mem);
info->Set(env->modulus_string(),
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
(void) BIO_reset(bio);
unsigned long exponent_word = BN_get_word(rsa->e);
BIO_printf(bio, "0x%lx", exponent_word);
BIO_get_mem_ptr(bio, &mem);
info->Set(env->exponent_string(),
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
(void) BIO_reset(bio);
}
if (pkey != nullptr) {
EVP_PKEY_free(pkey);
pkey = nullptr;
}
if (rsa != nullptr) {
RSA_free(rsa);
rsa = nullptr;
}
ASN1_TIME_print(bio, X509_get_notBefore(cert));
BIO_get_mem_ptr(bio, &mem);
info->Set(env->valid_from_string(),
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
(void) BIO_reset(bio);
ASN1_TIME_print(bio, X509_get_notAfter(cert));
BIO_get_mem_ptr(bio, &mem);
info->Set(env->valid_to_string(),
String::NewFromUtf8(env->isolate(), mem->data,
String::kNormalString, mem->length));
BIO_free_all(bio);
unsigned int md_size, i;
unsigned char md[EVP_MAX_MD_SIZE];
if (X509_digest(cert, EVP_sha1(), md, &md_size)) {
const char hex[] = "0123456789ABCDEF";
char fingerprint[EVP_MAX_MD_SIZE * 3];
// TODO(indutny): Unify it with buffer's code
for (i = 0; i < md_size; i++) {
fingerprint[3*i] = hex[(md[i] & 0xf0) >> 4];
fingerprint[(3*i)+1] = hex[(md[i] & 0x0f)];
fingerprint[(3*i)+2] = ':';
}
if (md_size > 0) {
fingerprint[(3*(md_size-1))+2] = '\0';
} else {
fingerprint[0] = '\0';
}
info->Set(env->fingerprint_string(),
OneByteString(env->isolate(), fingerprint));
}
STACK_OF(ASN1_OBJECT)* eku = static_cast<STACK_OF(ASN1_OBJECT)*>(
X509_get_ext_d2i(cert, NID_ext_key_usage, nullptr, nullptr));
if (eku != nullptr) {
Local<Array> ext_key_usage = Array::New(env->isolate());
char buf[256];
int j = 0;
for (int i = 0; i < sk_ASN1_OBJECT_num(eku); i++) {
if (OBJ_obj2txt(buf, sizeof(buf), sk_ASN1_OBJECT_value(eku, i), 1) >= 0)
ext_key_usage->Set(j++, OneByteString(env->isolate(), buf));
}
sk_ASN1_OBJECT_pop_free(eku, ASN1_OBJECT_free);
info->Set(env->ext_key_usage_string(), ext_key_usage);
}
if (ASN1_INTEGER* serial_number = X509_get_serialNumber(cert)) {
if (BIGNUM* bn = ASN1_INTEGER_to_BN(serial_number, nullptr)) {
if (char* buf = BN_bn2hex(bn)) {
info->Set(env->serial_number_string(),
OneByteString(env->isolate(), buf));
OPENSSL_free(buf);
}
BN_free(bn);
}
}
// Raw DER certificate
int size = i2d_X509(cert, nullptr);
Local<Object> buff = Buffer::New(env, size).ToLocalChecked();
unsigned char* serialized = reinterpret_cast<unsigned char*>(
Buffer::Data(buff));
i2d_X509(cert, &serialized);
info->Set(env->raw_string(), buff);
return scope.Escape(info);
}
// TODO(indutny): Split it into multiple smaller functions
template <class Base>
void SSLWrap<Base>::GetPeerCertificate(
const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
Environment* env = w->ssl_env();
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence unused variable warning.
Local<Object> result;
Local<Object> info;
// NOTE: This is because of the odd OpenSSL behavior. On client `cert_chain`
// contains the `peer_certificate`, but on server it doesn't
X509* cert = w->is_server() ? SSL_get_peer_certificate(w->ssl_) : nullptr;
STACK_OF(X509)* ssl_certs = SSL_get_peer_cert_chain(w->ssl_);
STACK_OF(X509)* peer_certs = nullptr;
if (cert == nullptr && ssl_certs == nullptr)
goto done;
if (cert == nullptr && sk_X509_num(ssl_certs) == 0)
goto done;
// Short result requested
if (args.Length() < 1 || !args[0]->IsTrue()) {
result = X509ToObject(env,
cert == nullptr ? sk_X509_value(ssl_certs, 0) : cert);
goto done;
}
// Clone `ssl_certs`, because we are going to destruct it
peer_certs = sk_X509_new(nullptr);
if (cert != nullptr)
sk_X509_push(peer_certs, cert);
for (int i = 0; i < sk_X509_num(ssl_certs); i++) {
cert = X509_dup(sk_X509_value(ssl_certs, i));
if (cert == nullptr)
goto done;
if (!sk_X509_push(peer_certs, cert))
goto done;
}
// First and main certificate
cert = sk_X509_value(peer_certs, 0);
result = X509ToObject(env, cert);
info = result;
// Put issuer inside the object
cert = sk_X509_delete(peer_certs, 0);
while (sk_X509_num(peer_certs) > 0) {
int i;
for (i = 0; i < sk_X509_num(peer_certs); i++) {
X509* ca = sk_X509_value(peer_certs, i);
if (X509_check_issued(ca, cert) != X509_V_OK)
continue;
Local<Object> ca_info = X509ToObject(env, ca);
info->Set(env->issuercert_string(), ca_info);
info = ca_info;
// NOTE: Intentionally freeing cert that is not used anymore
X509_free(cert);
// Delete cert and continue aggregating issuers
cert = sk_X509_delete(peer_certs, i);
break;
}
// Issuer not found, break out of the loop
if (i == sk_X509_num(peer_certs))
break;
}
// Last certificate should be self-signed
while (X509_check_issued(cert, cert) != X509_V_OK) {
X509* ca;
if (SSL_CTX_get_issuer(w->ssl_->ctx, cert, &ca) <= 0)
break;
Local<Object> ca_info = X509ToObject(env, ca);
info->Set(env->issuercert_string(), ca_info);
info = ca_info;
// NOTE: Intentionally freeing cert that is not used anymore
X509_free(cert);
// Delete cert and continue aggregating issuers
cert = ca;
}
// Self-issued certificate
if (X509_check_issued(cert, cert) == X509_V_OK)
info->Set(env->issuercert_string(), info);
CHECK_NE(cert, nullptr);
done:
if (cert != nullptr)
X509_free(cert);
if (peer_certs != nullptr)
sk_X509_pop_free(peer_certs, X509_free);
if (result.IsEmpty())
result = Object::New(env->isolate());
args.GetReturnValue().Set(result);
}
template <class Base>
void SSLWrap<Base>::GetSession(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Base* w = Unwrap<Base>(args.Holder());
SSL_SESSION* sess = SSL_get_session(w->ssl_);
if (sess == nullptr)
return;
int slen = i2d_SSL_SESSION(sess, nullptr);
CHECK_GT(slen, 0);
char* sbuf = new char[slen];
unsigned char* p = reinterpret_cast<unsigned char*>(sbuf);
i2d_SSL_SESSION(sess, &p);
args.GetReturnValue().Set(Encode(env->isolate(), sbuf, slen, BUFFER));
delete[] sbuf;
}
template <class Base>
void SSLWrap<Base>::SetSession(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Base* w = Unwrap<Base>(args.Holder());
if (args.Length() < 1 ||
(!args[0]->IsString() && !Buffer::HasInstance(args[0]))) {
return env->ThrowTypeError("Bad argument");
}
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
size_t slen = Buffer::Length(args[0]);
char* sbuf = new char[slen];
memcpy(sbuf, Buffer::Data(args[0]), slen);
const unsigned char* p = reinterpret_cast<const unsigned char*>(sbuf);
SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, slen);
delete[] sbuf;
if (sess == nullptr)
return;
int r = SSL_set_session(w->ssl_, sess);
SSL_SESSION_free(sess);
if (!r)
return env->ThrowError("SSL_set_session error");
}
template <class Base>
void SSLWrap<Base>::LoadSession(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
Environment* env = w->ssl_env();
if (args.Length() >= 1 && Buffer::HasInstance(args[0])) {
ssize_t slen = Buffer::Length(args[0]);
char* sbuf = Buffer::Data(args[0]);
const unsigned char* p = reinterpret_cast<unsigned char*>(sbuf);
SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, slen);
// Setup next session and move hello to the BIO buffer
if (w->next_sess_ != nullptr)
SSL_SESSION_free(w->next_sess_);
w->next_sess_ = sess;
Local<Object> info = Object::New(env->isolate());
#ifndef OPENSSL_NO_TLSEXT
if (sess->tlsext_hostname == nullptr) {
info->Set(env->servername_string(), False(args.GetIsolate()));
} else {
info->Set(env->servername_string(),
OneByteString(args.GetIsolate(), sess->tlsext_hostname));
}
#endif
args.GetReturnValue().Set(info);
}
}
template <class Base>
void SSLWrap<Base>::IsSessionReused(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
bool yes = SSL_session_reused(w->ssl_);
args.GetReturnValue().Set(yes);
}
template <class Base>
void SSLWrap<Base>::EndParser(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
w->hello_parser_.End();
}
template <class Base>
void SSLWrap<Base>::Renegotiate(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence unused variable warning.
bool yes = SSL_renegotiate(w->ssl_) == 1;
args.GetReturnValue().Set(yes);
}
template <class Base>
void SSLWrap<Base>::Shutdown(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
int rv = SSL_shutdown(w->ssl_);
args.GetReturnValue().Set(rv);
}
template <class Base>
void SSLWrap<Base>::GetTLSTicket(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
Environment* env = w->ssl_env();
SSL_SESSION* sess = SSL_get_session(w->ssl_);
if (sess == nullptr || sess->tlsext_tick == nullptr)
return;
Local<Object> buff = Buffer::Copy(
env,
reinterpret_cast<char*>(sess->tlsext_tick),
sess->tlsext_ticklen).ToLocalChecked();
args.GetReturnValue().Set(buff);
}
template <class Base>
void SSLWrap<Base>::NewSessionDone(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
w->new_session_wait_ = false;
w->NewSessionDoneCb();
}
template <class Base>
void SSLWrap<Base>::SetOCSPResponse(
const v8::FunctionCallbackInfo<v8::Value>& args) {
#ifdef NODE__HAVE_TLSEXT_STATUS_CB
HandleScope scope(args.GetIsolate());
Base* w = Unwrap<Base>(args.Holder());
if (args.Length() < 1 || !Buffer::HasInstance(args[0]))
return w->env()->ThrowTypeError("Must give a Buffer as first argument");
w->ocsp_response_.Reset(args.GetIsolate(), args[0].As<Object>());
#endif // NODE__HAVE_TLSEXT_STATUS_CB
}
template <class Base>
void SSLWrap<Base>::RequestOCSP(
const v8::FunctionCallbackInfo<v8::Value>& args) {
#ifdef NODE__HAVE_TLSEXT_STATUS_CB
HandleScope scope(args.GetIsolate());
Base* w = Unwrap<Base>(args.Holder());
SSL_set_tlsext_status_type(w->ssl_, TLSEXT_STATUSTYPE_ocsp);
#endif // NODE__HAVE_TLSEXT_STATUS_CB
}
#ifdef SSL_set_max_send_fragment
template <class Base>
void SSLWrap<Base>::SetMaxSendFragment(
const v8::FunctionCallbackInfo<v8::Value>& args) {
HandleScope scope(args.GetIsolate());
CHECK(args.Length() >= 1 && args[0]->IsNumber());
Base* w = Unwrap<Base>(args.Holder());
int rv = SSL_set_max_send_fragment(w->ssl_, args[0]->Int32Value());
args.GetReturnValue().Set(rv);
}
#endif // SSL_set_max_send_fragment
template <class Base>
void SSLWrap<Base>::IsInitFinished(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
bool yes = SSL_is_init_finished(w->ssl_);
args.GetReturnValue().Set(yes);
}
template <class Base>
void SSLWrap<Base>::VerifyError(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
// XXX(bnoordhuis) The UNABLE_TO_GET_ISSUER_CERT error when there is no
// peer certificate is questionable but it's compatible with what was
// here before.
long x509_verify_error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT;
if (X509* peer_cert = SSL_get_peer_certificate(w->ssl_)) {
X509_free(peer_cert);
x509_verify_error = SSL_get_verify_result(w->ssl_);
}
if (x509_verify_error == X509_V_OK)
return args.GetReturnValue().SetNull();
// XXX(bnoordhuis) X509_verify_cert_error_string() is not actually thread-safe
// in the presence of invalid error codes. Probably academical but something
// to keep in mind if/when node ever grows multi-isolate capabilities.
const char* reason = X509_verify_cert_error_string(x509_verify_error);
const char* code = reason;
#define CASE_X509_ERR(CODE) case X509_V_ERR_##CODE: code = #CODE; break;
switch (x509_verify_error) {
CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT)
CASE_X509_ERR(UNABLE_TO_GET_CRL)
CASE_X509_ERR(UNABLE_TO_DECRYPT_CERT_SIGNATURE)
CASE_X509_ERR(UNABLE_TO_DECRYPT_CRL_SIGNATURE)
CASE_X509_ERR(UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)
CASE_X509_ERR(CERT_SIGNATURE_FAILURE)
CASE_X509_ERR(CRL_SIGNATURE_FAILURE)
CASE_X509_ERR(CERT_NOT_YET_VALID)
CASE_X509_ERR(CERT_HAS_EXPIRED)
CASE_X509_ERR(CRL_NOT_YET_VALID)
CASE_X509_ERR(CRL_HAS_EXPIRED)
CASE_X509_ERR(ERROR_IN_CERT_NOT_BEFORE_FIELD)
CASE_X509_ERR(ERROR_IN_CERT_NOT_AFTER_FIELD)
CASE_X509_ERR(ERROR_IN_CRL_LAST_UPDATE_FIELD)
CASE_X509_ERR(ERROR_IN_CRL_NEXT_UPDATE_FIELD)
CASE_X509_ERR(OUT_OF_MEM)
CASE_X509_ERR(DEPTH_ZERO_SELF_SIGNED_CERT)
CASE_X509_ERR(SELF_SIGNED_CERT_IN_CHAIN)
CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT_LOCALLY)
CASE_X509_ERR(UNABLE_TO_VERIFY_LEAF_SIGNATURE)
CASE_X509_ERR(CERT_CHAIN_TOO_LONG)
CASE_X509_ERR(CERT_REVOKED)
CASE_X509_ERR(INVALID_CA)
CASE_X509_ERR(PATH_LENGTH_EXCEEDED)
CASE_X509_ERR(INVALID_PURPOSE)
CASE_X509_ERR(CERT_UNTRUSTED)
CASE_X509_ERR(CERT_REJECTED)
}
#undef CASE_X509_ERR
Isolate* isolate = args.GetIsolate();
Local<String> reason_string = OneByteString(isolate, reason);
Local<Value> exception_value = Exception::Error(reason_string);
Local<Object> exception_object = exception_value->ToObject(isolate);
exception_object->Set(FIXED_ONE_BYTE_STRING(isolate, "code"),
OneByteString(isolate, code));
args.GetReturnValue().Set(exception_object);
}
template <class Base>
void SSLWrap<Base>::GetCurrentCipher(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
Environment* env = w->ssl_env();
OPENSSL_CONST SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_);
if (c == nullptr)
return;
Local<Object> info = Object::New(env->isolate());
const char* cipher_name = SSL_CIPHER_get_name(c);
info->Set(env->name_string(), OneByteString(args.GetIsolate(), cipher_name));
const char* cipher_version = SSL_CIPHER_get_version(c);
info->Set(env->version_string(),
OneByteString(args.GetIsolate(), cipher_version));
args.GetReturnValue().Set(info);
}
#ifdef OPENSSL_NPN_NEGOTIATED
template <class Base>
int SSLWrap<Base>::AdvertiseNextProtoCallback(SSL* s,
const unsigned char** data,
unsigned int* len,
void* arg) {
Base* w = static_cast<Base*>(SSL_get_app_data(s));
Environment* env = w->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
if (w->npn_protos_.IsEmpty()) {
// No initialization - no NPN protocols
*data = reinterpret_cast<const unsigned char*>("");
*len = 0;
} else {
Local<Object> obj = PersistentToLocal(env->isolate(), w->npn_protos_);
*data = reinterpret_cast<const unsigned char*>(Buffer::Data(obj));
*len = Buffer::Length(obj);
}
return SSL_TLSEXT_ERR_OK;
}
template <class Base>
int SSLWrap<Base>::SelectNextProtoCallback(SSL* s,
unsigned char** out,
unsigned char* outlen,
const unsigned char* in,
unsigned int inlen,
void* arg) {
Base* w = static_cast<Base*>(SSL_get_app_data(s));
Environment* env = w->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
// Release old protocol handler if present
w->selected_npn_proto_.Reset();
if (w->npn_protos_.IsEmpty()) {
// We should at least select one protocol
// If server is using NPN
*out = reinterpret_cast<unsigned char*>(const_cast<char*>("http/1.1"));
*outlen = 8;
// set status: unsupported
w->selected_npn_proto_.Reset(env->isolate(), False(env->isolate()));
return SSL_TLSEXT_ERR_OK;
}
Local<Object> obj = PersistentToLocal(env->isolate(), w->npn_protos_);
const unsigned char* npn_protos =
reinterpret_cast<const unsigned char*>(Buffer::Data(obj));
size_t len = Buffer::Length(obj);
int status = SSL_select_next_proto(out, outlen, in, inlen, npn_protos, len);
Handle<Value> result;
switch (status) {
case OPENSSL_NPN_UNSUPPORTED:
result = Null(env->isolate());
break;
case OPENSSL_NPN_NEGOTIATED:
result = OneByteString(env->isolate(), *out, *outlen);
break;
case OPENSSL_NPN_NO_OVERLAP:
result = False(env->isolate());
break;
default:
break;
}
if (!result.IsEmpty())
w->selected_npn_proto_.Reset(env->isolate(), result);
return SSL_TLSEXT_ERR_OK;
}
template <class Base>
void SSLWrap<Base>::GetNegotiatedProto(
const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
if (w->is_client()) {
if (w->selected_npn_proto_.IsEmpty() == false) {
args.GetReturnValue().Set(w->selected_npn_proto_);
}
return;
}
const unsigned char* npn_proto;
unsigned int npn_proto_len;
SSL_get0_next_proto_negotiated(w->ssl_, &npn_proto, &npn_proto_len);
if (!npn_proto)
return args.GetReturnValue().Set(false);
args.GetReturnValue().Set(
OneByteString(args.GetIsolate(), npn_proto, npn_proto_len));
}
template <class Base>
void SSLWrap<Base>::SetNPNProtocols(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
if (args.Length() < 1 || !Buffer::HasInstance(args[0]))
return w->env()->ThrowTypeError("Must give a Buffer as first argument");
w->npn_protos_.Reset(args.GetIsolate(), args[0].As<Object>());
}
#endif // OPENSSL_NPN_NEGOTIATED
#ifdef NODE__HAVE_TLSEXT_STATUS_CB
template <class Base>
int SSLWrap<Base>::TLSExtStatusCallback(SSL* s, void* arg) {
Base* w = static_cast<Base*>(SSL_get_app_data(s));
Environment* env = w->env();
HandleScope handle_scope(env->isolate());
if (w->is_client()) {
// Incoming response
const unsigned char* resp;
int len = SSL_get_tlsext_status_ocsp_resp(s, &resp);
Local<Value> arg;
if (resp == nullptr) {
arg = Null(env->isolate());
} else {
arg = Buffer::Copy(
env,
reinterpret_cast<char*>(const_cast<unsigned char*>(resp)),
len).ToLocalChecked();
}
w->MakeCallback(env->onocspresponse_string(), 1, &arg);
// Somehow, client is expecting different return value here
return 1;
} else {
// Outgoing response
if (w->ocsp_response_.IsEmpty())
return SSL_TLSEXT_ERR_NOACK;
Local<Object> obj = PersistentToLocal(env->isolate(), w->ocsp_response_);
char* resp = Buffer::Data(obj);
size_t len = Buffer::Length(obj);
// OpenSSL takes control of the pointer after accepting it
char* data = reinterpret_cast<char*>(malloc(len));
CHECK_NE(data, nullptr);
memcpy(data, resp, len);
if (!SSL_set_tlsext_status_ocsp_resp(s, data, len))
free(data);
w->ocsp_response_.Reset();
return SSL_TLSEXT_ERR_OK;
}
}
#endif // NODE__HAVE_TLSEXT_STATUS_CB
template <class Base>
void SSLWrap<Base>::WaitForCertCb(CertCb cb, void* arg) {
cert_cb_ = cb;
cert_cb_arg_ = arg;
}
template <class Base>
int SSLWrap<Base>::SSLCertCallback(SSL* s, void* arg) {
Base* w = static_cast<Base*>(SSL_get_app_data(s));
if (!w->is_server())
return 1;
if (!w->is_waiting_cert_cb())
return 1;
if (w->cert_cb_running_)
return -1;
Environment* env = w->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
w->cert_cb_running_ = true;
Local<Object> info = Object::New(env->isolate());
SSL_SESSION* sess = SSL_get_session(s);
if (sess != nullptr) {
if (sess->tlsext_hostname == nullptr) {
info->Set(env->servername_string(), String::Empty(env->isolate()));
} else {
Local<String> servername = OneByteString(env->isolate(),
sess->tlsext_hostname,
strlen(sess->tlsext_hostname));
info->Set(env->servername_string(), servername);
}
info->Set(env->tls_ticket_string(),
Boolean::New(env->isolate(), sess->tlsext_ticklen != 0));
}
bool ocsp = s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp;
info->Set(env->ocsp_request_string(), Boolean::New(env->isolate(), ocsp));
Local<Value> argv[] = { info };
w->MakeCallback(env->oncertcb_string(), ARRAY_SIZE(argv), argv);
if (!w->cert_cb_running_)
return 1;
// Performing async action, wait...
return -1;
}
template <class Base>
void SSLWrap<Base>::CertCbDone(const FunctionCallbackInfo<Value>& args) {
Base* w = Unwrap<Base>(args.Holder());
Environment* env = w->env();
CHECK(w->is_waiting_cert_cb() && w->cert_cb_running_);
Local<Object> object = w->object();
Local<Value> ctx = object->Get(env->sni_context_string());
Local<FunctionTemplate> cons = env->secure_context_constructor_template();
// Not an object, probably undefined or null
if (!ctx->IsObject())
goto fire_cb;
if (cons->HasInstance(ctx)) {
SecureContext* sc = Unwrap<SecureContext>(ctx.As<Object>());
w->sni_context_.Reset();
w->sni_context_.Reset(env->isolate(), ctx);
int rv;
// NOTE: reference count is not increased by this API methods
X509* x509 = SSL_CTX_get0_certificate(sc->ctx_);
EVP_PKEY* pkey = SSL_CTX_get0_privatekey(sc->ctx_);
STACK_OF(X509)* chain;
rv = SSL_CTX_get0_chain_certs(sc->ctx_, &chain);
if (rv)
rv = SSL_use_certificate(w->ssl_, x509);
if (rv)
rv = SSL_use_PrivateKey(w->ssl_, pkey);
if (rv && chain != nullptr)
rv = SSL_set1_chain(w->ssl_, chain);
if (!rv) {
unsigned long err = ERR_get_error();
if (!err)
return env->ThrowError("CertCbDone");
return ThrowCryptoError(env, err);
}
} else {
// Failure: incorrect SNI context object
Local<Value> err = Exception::TypeError(env->sni_context_err_string());
w->MakeCallback(env->onerror_string(), 1, &err);
return;
}
fire_cb:
CertCb cb;
void* arg;
cb = w->cert_cb_;
arg = w->cert_cb_arg_;
w->cert_cb_running_ = false;
w->cert_cb_ = nullptr;
w->cert_cb_arg_ = nullptr;
cb(arg);
}
template <class Base>
void SSLWrap<Base>::SSLGetter(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
HandleScope scope(info.GetIsolate());
SSL* ssl = Unwrap<Base>(info.Holder())->ssl_;
Local<External> ext = External::New(info.GetIsolate(), ssl);
info.GetReturnValue().Set(ext);
}
template <class Base>
void SSLWrap<Base>::DestroySSL() {
if (ssl_ == nullptr)
return;
SSL_free(ssl_);
env_->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize);
ssl_ = nullptr;
}
void Connection::OnClientHelloParseEnd(void* arg) {
Connection* conn = static_cast<Connection*>(arg);
// Write all accumulated data
int r = BIO_write(conn->bio_read_,
reinterpret_cast<char*>(conn->hello_data_),
conn->hello_offset_);
conn->HandleBIOError(conn->bio_read_, "BIO_write", r);
conn->SetShutdownFlags();
}
#ifdef SSL_PRINT_DEBUG
# define DEBUG_PRINT(...) fprintf (stderr, __VA_ARGS__)
#else
# define DEBUG_PRINT(...)
#endif
int Connection::HandleBIOError(BIO *bio, const char* func, int rv) {
if (rv >= 0)
return rv;
int retry = BIO_should_retry(bio);
(void) retry; // unused if !defined(SSL_PRINT_DEBUG)
if (BIO_should_write(bio)) {
DEBUG_PRINT("[%p] BIO: %s want write. should retry %d\n",
ssl_,
func,
retry);
return 0;
} else if (BIO_should_read(bio)) {
DEBUG_PRINT("[%p] BIO: %s want read. should retry %d\n", ssl_, func, retry);
return 0;
} else {
char ssl_error_buf[512];
ERR_error_string_n(rv, ssl_error_buf, sizeof(ssl_error_buf));
HandleScope scope(ssl_env()->isolate());
Local<Value> exception =
Exception::Error(OneByteString(ssl_env()->isolate(), ssl_error_buf));
object()->Set(ssl_env()->error_string(), exception);
DEBUG_PRINT("[%p] BIO: %s failed: (%d) %s\n",
ssl_,
func,
rv,
ssl_error_buf);
return rv;
}
return 0;
}
int Connection::HandleSSLError(const char* func,
int rv,
ZeroStatus zs,
SyscallStatus ss) {
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence unused variable warning.
if (rv > 0)
return rv;
if (rv == 0 && zs == kZeroIsNotAnError)
return rv;
int err = SSL_get_error(ssl_, rv);
if (err == SSL_ERROR_NONE) {
return 0;
} else if (err == SSL_ERROR_WANT_WRITE) {
DEBUG_PRINT("[%p] SSL: %s want write\n", ssl_, func);
return 0;
} else if (err == SSL_ERROR_WANT_READ) {
DEBUG_PRINT("[%p] SSL: %s want read\n", ssl_, func);
return 0;
} else if (err == SSL_ERROR_WANT_X509_LOOKUP) {
DEBUG_PRINT("[%p] SSL: %s want x509 lookup\n", ssl_, func);
return 0;
} else if (err == SSL_ERROR_ZERO_RETURN) {
HandleScope scope(ssl_env()->isolate());
Local<Value> exception =
Exception::Error(ssl_env()->zero_return_string());
object()->Set(ssl_env()->error_string(), exception);
return rv;
} else if (err == SSL_ERROR_SYSCALL && ss == kIgnoreSyscall) {
return 0;
} else {
HandleScope scope(ssl_env()->isolate());
BUF_MEM* mem;
BIO *bio;
CHECK(err == SSL_ERROR_SSL || err == SSL_ERROR_SYSCALL);
// XXX We need to drain the error queue for this thread or else OpenSSL
// has the possibility of blocking connections? This problem is not well
// understood. And we should be somehow propagating these errors up
// into JavaScript. There is no test which demonstrates this problem.
// https://github.com/joyent/node/issues/1719
bio = BIO_new(BIO_s_mem());
if (bio != nullptr) {
ERR_print_errors(bio);
BIO_get_mem_ptr(bio, &mem);
Local<Value> exception = Exception::Error(
OneByteString(ssl_env()->isolate(),
mem->data,
mem->length));
object()->Set(ssl_env()->error_string(), exception);
BIO_free_all(bio);
}
return rv;
}
return 0;
}
void Connection::ClearError() {
#ifndef NDEBUG
HandleScope scope(ssl_env()->isolate());
// We should clear the error in JS-land
Local<String> error_key = ssl_env()->error_string();
Local<Value> error = object()->Get(error_key);
CHECK_EQ(error->BooleanValue(), false);
#endif // NDEBUG
}
void Connection::SetShutdownFlags() {
HandleScope scope(ssl_env()->isolate());
int flags = SSL_get_shutdown(ssl_);
if (flags & SSL_SENT_SHUTDOWN) {
Local<String> sent_shutdown_key = ssl_env()->sent_shutdown_string();
object()->Set(sent_shutdown_key, True(ssl_env()->isolate()));
}
if (flags & SSL_RECEIVED_SHUTDOWN) {
Local<String> received_shutdown_key = ssl_env()->received_shutdown_string();
object()->Set(received_shutdown_key, True(ssl_env()->isolate()));
}
}
void Connection::NewSessionDoneCb() {
HandleScope scope(env()->isolate());
MakeCallback(env()->onnewsessiondone_string(), 0, nullptr);
}
void Connection::Initialize(Environment* env, Handle<Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(Connection::New);
t->InstanceTemplate()->SetInternalFieldCount(1);
t->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "Connection"));
env->SetProtoMethod(t, "encIn", Connection::EncIn);
env->SetProtoMethod(t, "clearOut", Connection::ClearOut);
env->SetProtoMethod(t, "clearIn", Connection::ClearIn);
env->SetProtoMethod(t, "encOut", Connection::EncOut);
env->SetProtoMethod(t, "clearPending", Connection::ClearPending);
env->SetProtoMethod(t, "encPending", Connection::EncPending);
env->SetProtoMethod(t, "start", Connection::Start);
env->SetProtoMethod(t, "close", Connection::Close);
SSLWrap<Connection>::AddMethods(env, t);
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
env->SetProtoMethod(t, "getServername", Connection::GetServername);
env->SetProtoMethod(t, "setSNICallback", Connection::SetSNICallback);
#endif
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Connection"),
t->GetFunction());
}
inline int compar(const void* a, const void* b) {
return memcmp(a, b, CNNIC_WHITELIST_HASH_LEN);
}
inline int IsSelfSigned(X509* cert) {
return X509_NAME_cmp(X509_get_subject_name(cert),
X509_get_issuer_name(cert)) == 0;
}
inline X509* FindRoot(STACK_OF(X509)* sk) {
for (int i = 0; i < sk_X509_num(sk); i++) {
X509* cert = sk_X509_value(sk, i);
if (IsSelfSigned(cert))
return cert;
}
return nullptr;
}
// Whitelist check for certs issued by CNNIC. See
// https://blog.mozilla.org/security/2015/04/02
// /distrusting-new-cnnic-certificates/
inline CheckResult CheckWhitelistedServerCert(X509_STORE_CTX* ctx) {
unsigned char hash[CNNIC_WHITELIST_HASH_LEN];
unsigned int hashlen = CNNIC_WHITELIST_HASH_LEN;
STACK_OF(X509)* chain = X509_STORE_CTX_get1_chain(ctx);
CHECK_NE(chain, nullptr);
CHECK_GT(sk_X509_num(chain), 0);
// Take the last cert as root at the first time.
X509* root_cert = sk_X509_value(chain, sk_X509_num(chain)-1);
X509_NAME* root_name = X509_get_subject_name(root_cert);
if (!IsSelfSigned(root_cert)) {
root_cert = FindRoot(chain);
CHECK_NE(root_cert, nullptr);
root_name = X509_get_subject_name(root_cert);
}
// When the cert is issued from either CNNNIC ROOT CA or CNNNIC EV
// ROOT CA, check a hash of its leaf cert if it is in the whitelist.
if (X509_NAME_cmp(root_name, cnnic_name) == 0 ||
X509_NAME_cmp(root_name, cnnic_ev_name) == 0) {
X509* leaf_cert = sk_X509_value(chain, 0);
int ret = X509_digest(leaf_cert, EVP_sha256(), hash,
&hashlen);
CHECK(ret);
void* result = bsearch(hash, WhitelistedCNNICHashes,
ARRAY_SIZE(WhitelistedCNNICHashes),
CNNIC_WHITELIST_HASH_LEN, compar);
if (result == nullptr) {
sk_X509_pop_free(chain, X509_free);
return CHECK_CERT_REVOKED;
}
}
sk_X509_pop_free(chain, X509_free);
return CHECK_OK;
}
inline int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) {
// Failure on verification of the cert is handled in
// Connection::VerifyError.
if (preverify_ok == 0 || X509_STORE_CTX_get_error(ctx) != X509_V_OK)
return 1;
// Server does not need to check the whitelist.
SSL* ssl = static_cast<SSL*>(
X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx()));
if (SSL_is_server(ssl))
return 1;
// Client needs to check if the server cert is listed in the
// whitelist when it is issued by the specific rootCAs.
CheckResult ret = CheckWhitelistedServerCert(ctx);
if (ret == CHECK_CERT_REVOKED)
X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_REVOKED);
return ret;
}
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
int Connection::SelectSNIContextCallback_(SSL *s, int *ad, void* arg) {
Connection* conn = static_cast<Connection*>(SSL_get_app_data(s));
Environment* env = conn->env();
HandleScope scope(env->isolate());
const char* servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
if (servername) {
conn->servername_.Reset(env->isolate(),
OneByteString(env->isolate(), servername));
// Call the SNI callback and use its return value as context
if (!conn->sniObject_.IsEmpty()) {
conn->sni_context_.Reset();
Local<Object> sni_obj = PersistentToLocal(env->isolate(),
conn->sniObject_);
Local<Value> arg = PersistentToLocal(env->isolate(), conn->servername_);
Local<Value> ret = node::MakeCallback(env->isolate(),
sni_obj,
env->onselect_string(),
1,
&arg);
// If ret is SecureContext
Local<FunctionTemplate> secure_context_constructor_template =
env->secure_context_constructor_template();
if (secure_context_constructor_template->HasInstance(ret)) {
conn->sni_context_.Reset(env->isolate(), ret);
SecureContext* sc = Unwrap<SecureContext>(ret.As<Object>());
InitNPN(sc);
SSL_set_SSL_CTX(s, sc->ctx_);
} else {
return SSL_TLSEXT_ERR_NOACK;
}
}
}
return SSL_TLSEXT_ERR_OK;
}
#endif
void Connection::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
if (args.Length() < 1 || !args[0]->IsObject()) {
env->ThrowError("First argument must be a tls module SecureContext");
return;
}
SecureContext* sc = Unwrap<SecureContext>(args[0]->ToObject(env->isolate()));
bool is_server = args[1]->BooleanValue();
SSLWrap<Connection>::Kind kind =
is_server ? SSLWrap<Connection>::kServer : SSLWrap<Connection>::kClient;
Connection* conn = new Connection(env, args.This(), sc, kind);
conn->bio_read_ = NodeBIO::New();
conn->bio_write_ = NodeBIO::New();
SSL_set_app_data(conn->ssl_, conn);
if (is_server)
SSL_set_info_callback(conn->ssl_, SSLInfoCallback);
InitNPN(sc);
SSL_set_cert_cb(conn->ssl_, SSLWrap<Connection>::SSLCertCallback, conn);
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
if (is_server) {
SSL_CTX_set_tlsext_servername_callback(sc->ctx_, SelectSNIContextCallback_);
} else if (args[2]->IsString()) {
const node::Utf8Value servername(env->isolate(), args[2]);
SSL_set_tlsext_host_name(conn->ssl_, *servername);
}
#endif
SSL_set_bio(conn->ssl_, conn->bio_read_, conn->bio_write_);
#ifdef SSL_MODE_RELEASE_BUFFERS
long mode = SSL_get_mode(conn->ssl_);
SSL_set_mode(conn->ssl_, mode | SSL_MODE_RELEASE_BUFFERS);
#endif
int verify_mode;
if (is_server) {
bool request_cert = args[2]->BooleanValue();
if (!request_cert) {
// Note reject_unauthorized ignored.
verify_mode = SSL_VERIFY_NONE;
} else {
bool reject_unauthorized = args[3]->BooleanValue();
verify_mode = SSL_VERIFY_PEER;
if (reject_unauthorized)
verify_mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
} else {
// Note request_cert and reject_unauthorized are ignored for clients.
verify_mode = SSL_VERIFY_NONE;
}
// Always allow a connection. We'll reject in javascript.
SSL_set_verify(conn->ssl_, verify_mode, VerifyCallback);
if (is_server) {
SSL_set_accept_state(conn->ssl_);
} else {
SSL_set_connect_state(conn->ssl_);
}
}
void Connection::SSLInfoCallback(const SSL *ssl_, int where, int ret) {
if (!(where & (SSL_CB_HANDSHAKE_START | SSL_CB_HANDSHAKE_DONE)))
return;
// Be compatible with older versions of OpenSSL. SSL_get_app_data() wants
// a non-const SSL* in OpenSSL <= 0.9.7e.
SSL* ssl = const_cast<SSL*>(ssl_);
Connection* conn = static_cast<Connection*>(SSL_get_app_data(ssl));
Environment* env = conn->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
if (where & SSL_CB_HANDSHAKE_START) {
conn->MakeCallback(env->onhandshakestart_string(), 0, nullptr);
}
if (where & SSL_CB_HANDSHAKE_DONE) {
conn->MakeCallback(env->onhandshakedone_string(), 0, nullptr);
}
}
void Connection::EncIn(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
Environment* env = conn->env();
if (args.Length() < 3) {
return env->ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return env->ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (!Buffer::IsWithinBounds(off, len, buffer_length))
return env->ThrowError("off + len > buffer.length");
int bytes_written;
char* data = buffer_data + off;
if (conn->is_server() && !conn->hello_parser_.IsEnded()) {
// Just accumulate data, everything will be pushed to BIO later
if (conn->hello_parser_.IsPaused()) {
bytes_written = 0;
} else {
// Copy incoming data to the internal buffer
// (which has a size of the biggest possible TLS frame)
size_t available = sizeof(conn->hello_data_) - conn->hello_offset_;
size_t copied = len < available ? len : available;
memcpy(conn->hello_data_ + conn->hello_offset_, data, copied);
conn->hello_offset_ += copied;
conn->hello_parser_.Parse(conn->hello_data_, conn->hello_offset_);
bytes_written = copied;
}
} else {
bytes_written = BIO_write(conn->bio_read_, data, len);
conn->HandleBIOError(conn->bio_read_, "BIO_write", bytes_written);
conn->SetShutdownFlags();
}
args.GetReturnValue().Set(bytes_written);
}
void Connection::ClearOut(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
Environment* env = conn->env();
if (args.Length() < 3) {
return env->ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return env->ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (!Buffer::IsWithinBounds(off, len, buffer_length))
return env->ThrowError("off + len > buffer.length");
if (!SSL_is_init_finished(conn->ssl_)) {
int rv;
if (conn->is_server()) {
rv = SSL_accept(conn->ssl_);
conn->HandleSSLError("SSL_accept:ClearOut",
rv,
kZeroIsAnError,
kSyscallError);
} else {
rv = SSL_connect(conn->ssl_);
conn->HandleSSLError("SSL_connect:ClearOut",
rv,
kZeroIsAnError,
kSyscallError);
}
if (rv < 0) {
return args.GetReturnValue().Set(rv);
}
}
int bytes_read = SSL_read(conn->ssl_, buffer_data + off, len);
conn->HandleSSLError("SSL_read:ClearOut",
bytes_read,
kZeroIsNotAnError,
kSyscallError);
conn->SetShutdownFlags();
args.GetReturnValue().Set(bytes_read);
}
void Connection::ClearPending(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
int bytes_pending = BIO_pending(conn->bio_read_);
args.GetReturnValue().Set(bytes_pending);
}
void Connection::EncPending(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
int bytes_pending = BIO_pending(conn->bio_write_);
args.GetReturnValue().Set(bytes_pending);
}
void Connection::EncOut(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
Environment* env = conn->env();
if (args.Length() < 3) {
return env->ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return env->ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (!Buffer::IsWithinBounds(off, len, buffer_length))
return env->ThrowError("off + len > buffer.length");
int bytes_read = BIO_read(conn->bio_write_, buffer_data + off, len);
conn->HandleBIOError(conn->bio_write_, "BIO_read:EncOut", bytes_read);
conn->SetShutdownFlags();
args.GetReturnValue().Set(bytes_read);
}
void Connection::ClearIn(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
Environment* env = conn->env();
if (args.Length() < 3) {
return env->ThrowTypeError("Takes 3 parameters");
}
if (!Buffer::HasInstance(args[0])) {
return env->ThrowTypeError("Second argument should be a buffer");
}
char* buffer_data = Buffer::Data(args[0]);
size_t buffer_length = Buffer::Length(args[0]);
size_t off = args[1]->Int32Value();
size_t len = args[2]->Int32Value();
if (!Buffer::IsWithinBounds(off, len, buffer_length))
return env->ThrowError("off + len > buffer.length");
if (!SSL_is_init_finished(conn->ssl_)) {
int rv;
if (conn->is_server()) {
rv = SSL_accept(conn->ssl_);
conn->HandleSSLError("SSL_accept:ClearIn",
rv,
kZeroIsAnError,
kSyscallError);
} else {
rv = SSL_connect(conn->ssl_);
conn->HandleSSLError("SSL_connect:ClearIn",
rv,
kZeroIsAnError,
kSyscallError);
}
if (rv < 0) {
return args.GetReturnValue().Set(rv);
}
}
int bytes_written = SSL_write(conn->ssl_, buffer_data + off, len);
conn->HandleSSLError("SSL_write:ClearIn",
bytes_written,
len == 0 ? kZeroIsNotAnError : kZeroIsAnError,
kSyscallError);
conn->SetShutdownFlags();
args.GetReturnValue().Set(bytes_written);
}
void Connection::Start(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
int rv = 0;
if (!SSL_is_init_finished(conn->ssl_)) {
if (conn->is_server()) {
rv = SSL_accept(conn->ssl_);
conn->HandleSSLError("SSL_accept:Start",
rv,
kZeroIsAnError,
kSyscallError);
} else {
rv = SSL_connect(conn->ssl_);
conn->HandleSSLError("SSL_connect:Start",
rv,
kZeroIsAnError,
kSyscallError);
}
}
args.GetReturnValue().Set(rv);
}
void Connection::Close(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
if (conn->ssl_ != nullptr) {
SSL_free(conn->ssl_);
conn->ssl_ = nullptr;
}
}
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
void Connection::GetServername(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
if (conn->is_server() && !conn->servername_.IsEmpty()) {
args.GetReturnValue().Set(conn->servername_);
} else {
args.GetReturnValue().Set(false);
}
}
void Connection::SetSNICallback(const FunctionCallbackInfo<Value>& args) {
Connection* conn = Unwrap<Connection>(args.Holder());
Environment* env = conn->env();
if (args.Length() < 1 || !args[0]->IsFunction()) {
return env->ThrowError("Must give a Function as first argument");
}
Local<Object> obj = Object::New(env->isolate());
obj->Set(FIXED_ONE_BYTE_STRING(args.GetIsolate(), "onselect"), args[0]);
conn->sniObject_.Reset(args.GetIsolate(), obj);
}
#endif
void CipherBase::Initialize(Environment* env, Handle<Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "init", Init);
env->SetProtoMethod(t, "initiv", InitIv);
env->SetProtoMethod(t, "update", Update);
env->SetProtoMethod(t, "final", Final);
env->SetProtoMethod(t, "setAutoPadding", SetAutoPadding);
env->SetProtoMethod(t, "getAuthTag", GetAuthTag);
env->SetProtoMethod(t, "setAuthTag", SetAuthTag);
env->SetProtoMethod(t, "setAAD", SetAAD);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "CipherBase"),
t->GetFunction());
}
void CipherBase::New(const FunctionCallbackInfo<Value>& args) {
CHECK_EQ(args.IsConstructCall(), true);
CipherKind kind = args[0]->IsTrue() ? kCipher : kDecipher;
Environment* env = Environment::GetCurrent(args);
new CipherBase(env, args.This(), kind);
}
void CipherBase::Init(const char* cipher_type,
const char* key_buf,
int key_buf_len) {
HandleScope scope(env()->isolate());
CHECK_EQ(cipher_, nullptr);
cipher_ = EVP_get_cipherbyname(cipher_type);
if (cipher_ == nullptr) {
return env()->ThrowError("Unknown cipher");
}
unsigned char key[EVP_MAX_KEY_LENGTH];
unsigned char iv[EVP_MAX_IV_LENGTH];
int key_len = EVP_BytesToKey(cipher_,
EVP_md5(),
nullptr,
reinterpret_cast<const unsigned char*>(key_buf),
key_buf_len,
1,
key,
iv);
EVP_CIPHER_CTX_init(&ctx_);
const bool encrypt = (kind_ == kCipher);
EVP_CipherInit_ex(&ctx_, cipher_, nullptr, nullptr, nullptr, encrypt);
if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) {
EVP_CIPHER_CTX_cleanup(&ctx_);
return env()->ThrowError("Invalid key length");
}
EVP_CipherInit_ex(&ctx_,
nullptr,
nullptr,
reinterpret_cast<unsigned char*>(key),
reinterpret_cast<unsigned char*>(iv),
kind_ == kCipher);
initialised_ = true;
}
void CipherBase::Init(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
if (args.Length() < 2 ||
!(args[0]->IsString() && Buffer::HasInstance(args[1]))) {
return cipher->env()->ThrowError("Must give cipher-type, key");
}
const node::Utf8Value cipher_type(args.GetIsolate(), args[0]);
const char* key_buf = Buffer::Data(args[1]);
ssize_t key_buf_len = Buffer::Length(args[1]);
cipher->Init(*cipher_type, key_buf, key_buf_len);
}
void CipherBase::InitIv(const char* cipher_type,
const char* key,
int key_len,
const char* iv,
int iv_len) {
HandleScope scope(env()->isolate());
cipher_ = EVP_get_cipherbyname(cipher_type);
if (cipher_ == nullptr) {
return env()->ThrowError("Unknown cipher");
}
/* OpenSSL versions up to 0.9.8l failed to return the correct
iv_length (0) for ECB ciphers */
if (EVP_CIPHER_iv_length(cipher_) != iv_len &&
!(EVP_CIPHER_mode(cipher_) == EVP_CIPH_ECB_MODE && iv_len == 0)) {
return env()->ThrowError("Invalid IV length");
}
EVP_CIPHER_CTX_init(&ctx_);
const bool encrypt = (kind_ == kCipher);
EVP_CipherInit_ex(&ctx_, cipher_, nullptr, nullptr, nullptr, encrypt);
if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) {
EVP_CIPHER_CTX_cleanup(&ctx_);
return env()->ThrowError("Invalid key length");
}
EVP_CipherInit_ex(&ctx_,
nullptr,
nullptr,
reinterpret_cast<const unsigned char*>(key),
reinterpret_cast<const unsigned char*>(iv),
kind_ == kCipher);
initialised_ = true;
}
void CipherBase::InitIv(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
Environment* env = cipher->env();
if (args.Length() < 3 || !args[0]->IsString()) {
return env->ThrowError("Must give cipher-type, key, and iv as argument");
}
THROW_AND_RETURN_IF_NOT_BUFFER(args[1]);
THROW_AND_RETURN_IF_NOT_BUFFER(args[2]);
const node::Utf8Value cipher_type(env->isolate(), args[0]);
ssize_t key_len = Buffer::Length(args[1]);
const char* key_buf = Buffer::Data(args[1]);
ssize_t iv_len = Buffer::Length(args[2]);
const char* iv_buf = Buffer::Data(args[2]);
cipher->InitIv(*cipher_type, key_buf, key_len, iv_buf, iv_len);
}
bool CipherBase::IsAuthenticatedMode() const {
// check if this cipher operates in an AEAD mode that we support.
if (!cipher_)
return false;
int mode = EVP_CIPHER_mode(cipher_);
return mode == EVP_CIPH_GCM_MODE;
}
bool CipherBase::GetAuthTag(char** out, unsigned int* out_len) const {
// only callable after Final and if encrypting.
if (initialised_ || kind_ != kCipher || !auth_tag_)
return false;
*out_len = auth_tag_len_;
*out = static_cast<char*>(malloc(auth_tag_len_));
CHECK_NE(*out, nullptr);
memcpy(*out, auth_tag_, auth_tag_len_);
return true;
}
void CipherBase::GetAuthTag(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
char* out = nullptr;
unsigned int out_len = 0;
if (cipher->GetAuthTag(&out, &out_len)) {
Local<Object> buf = Buffer::New(env, out, out_len).ToLocalChecked();
args.GetReturnValue().Set(buf);
} else {
env->ThrowError("Attempting to get auth tag in unsupported state");
}
}
bool CipherBase::SetAuthTag(const char* data, unsigned int len) {
if (!initialised_ || !IsAuthenticatedMode() || kind_ != kDecipher)
return false;
delete[] auth_tag_;
auth_tag_len_ = len;
auth_tag_ = new char[len];
memcpy(auth_tag_, data, len);
return true;
}
void CipherBase::SetAuthTag(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Local<Object> buf = args[0].As<Object>();
if (!buf->IsObject() || !Buffer::HasInstance(buf))
return env->ThrowTypeError("Argument must be a Buffer");
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
if (!cipher->SetAuthTag(Buffer::Data(buf), Buffer::Length(buf)))
env->ThrowError("Attempting to set auth tag in unsupported state");
}
bool CipherBase::SetAAD(const char* data, unsigned int len) {
if (!initialised_ || !IsAuthenticatedMode())
return false;
int outlen;
if (!EVP_CipherUpdate(&ctx_,
nullptr,
&outlen,
reinterpret_cast<const unsigned char*>(data),
len)) {
return false;
}
return true;
}
void CipherBase::SetAAD(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
if (!cipher->SetAAD(Buffer::Data(args[0]), Buffer::Length(args[0])))
env->ThrowError("Attempting to set AAD in unsupported state");
}
bool CipherBase::Update(const char* data,
int len,
unsigned char** out,
int* out_len) {
if (!initialised_)
return 0;
// on first update:
if (kind_ == kDecipher && IsAuthenticatedMode() && auth_tag_ != nullptr) {
EVP_CIPHER_CTX_ctrl(&ctx_,
EVP_CTRL_GCM_SET_TAG,
auth_tag_len_,
reinterpret_cast<unsigned char*>(auth_tag_));
delete[] auth_tag_;
auth_tag_ = nullptr;
}
*out_len = len + EVP_CIPHER_CTX_block_size(&ctx_);
*out = new unsigned char[*out_len];
return EVP_CipherUpdate(&ctx_,
*out,
out_len,
reinterpret_cast<const unsigned char*>(data),
len);
}
void CipherBase::Update(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0]);
unsigned char* out = nullptr;
bool r;
int out_len = 0;
// Only copy the data if we have to, because it's a string
if (args[0]->IsString()) {
StringBytes::InlineDecoder decoder;
if (!decoder.Decode(env, args[0].As<String>(), args[1], BINARY))
return;
r = cipher->Update(decoder.out(), decoder.size(), &out, &out_len);
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = cipher->Update(buf, buflen, &out, &out_len);
}
if (!r) {
delete[] out;
return ThrowCryptoError(env,
ERR_get_error(),
"Trying to add data in unsupported state");
}
CHECK(out != nullptr || out_len == 0);
Local<Object> buf =
Buffer::Copy(env, reinterpret_cast<char*>(out), out_len).ToLocalChecked();
if (out)
delete[] out;
args.GetReturnValue().Set(buf);
}
bool CipherBase::SetAutoPadding(bool auto_padding) {
if (!initialised_)
return false;
return EVP_CIPHER_CTX_set_padding(&ctx_, auto_padding);
}
void CipherBase::SetAutoPadding(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
cipher->SetAutoPadding(args.Length() < 1 || args[0]->BooleanValue());
}
bool CipherBase::Final(unsigned char** out, int *out_len) {
if (!initialised_)
return false;
*out = new unsigned char[EVP_CIPHER_CTX_block_size(&ctx_)];
int r = EVP_CipherFinal_ex(&ctx_, *out, out_len);
if (r && kind_ == kCipher) {
delete[] auth_tag_;
auth_tag_ = nullptr;
if (IsAuthenticatedMode()) {
auth_tag_len_ = EVP_GCM_TLS_TAG_LEN; // use default tag length
auth_tag_ = new char[auth_tag_len_];
memset(auth_tag_, 0, auth_tag_len_);
EVP_CIPHER_CTX_ctrl(&ctx_,
EVP_CTRL_GCM_GET_TAG,
auth_tag_len_,
reinterpret_cast<unsigned char*>(auth_tag_));
}
}
EVP_CIPHER_CTX_cleanup(&ctx_);
initialised_ = false;
return r == 1;
}
void CipherBase::Final(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherBase* cipher = Unwrap<CipherBase>(args.Holder());
unsigned char* out_value = nullptr;
int out_len = -1;
Local<Value> outString;
bool r = cipher->Final(&out_value, &out_len);
if (out_len <= 0 || !r) {
delete[] out_value;
out_value = nullptr;
out_len = 0;
if (!r) {
const char* msg = cipher->IsAuthenticatedMode() ?
"Unsupported state or unable to authenticate data" :
"Unsupported state";
return ThrowCryptoError(env,
ERR_get_error(),
msg);
}
}
Local<Object> buf = Buffer::Copy(
env,
reinterpret_cast<char*>(out_value),
out_len).ToLocalChecked();
args.GetReturnValue().Set(buf);
delete[] out_value;
}
void Hmac::Initialize(Environment* env, v8::Handle<v8::Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "init", HmacInit);
env->SetProtoMethod(t, "update", HmacUpdate);
env->SetProtoMethod(t, "digest", HmacDigest);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Hmac"), t->GetFunction());
}
void Hmac::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new Hmac(env, args.This());
}
void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) {
HandleScope scope(env()->isolate());
CHECK_EQ(md_, nullptr);
md_ = EVP_get_digestbyname(hash_type);
if (md_ == nullptr) {
return env()->ThrowError("Unknown message digest");
}
HMAC_CTX_init(&ctx_);
if (key_len == 0) {
HMAC_Init(&ctx_, "", 0, md_);
} else {
HMAC_Init(&ctx_, key, key_len, md_);
}
initialised_ = true;
}
void Hmac::HmacInit(const FunctionCallbackInfo<Value>& args) {
Hmac* hmac = Unwrap<Hmac>(args.Holder());
Environment* env = hmac->env();
if (args.Length() < 2 || !args[0]->IsString()) {
return env->ThrowError("Must give hashtype string, key as arguments");
}
THROW_AND_RETURN_IF_NOT_BUFFER(args[1]);
const node::Utf8Value hash_type(env->isolate(), args[0]);
const char* buffer_data = Buffer::Data(args[1]);
size_t buffer_length = Buffer::Length(args[1]);
hmac->HmacInit(*hash_type, buffer_data, buffer_length);
}
bool Hmac::HmacUpdate(const char* data, int len) {
if (!initialised_)
return false;
HMAC_Update(&ctx_, reinterpret_cast<const unsigned char*>(data), len);
return true;
}
void Hmac::HmacUpdate(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Hmac* hmac = Unwrap<Hmac>(args.Holder());
THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
bool r;
if (args[0]->IsString()) {
StringBytes::InlineDecoder decoder;
if (!decoder.Decode(env, args[0].As<String>(), args[1], BINARY))
return;
r = hmac->HmacUpdate(decoder.out(), decoder.size());
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = hmac->HmacUpdate(buf, buflen);
}
if (!r) {
return env->ThrowTypeError("HmacUpdate fail");
}
}
bool Hmac::HmacDigest(unsigned char** md_value, unsigned int* md_len) {
if (!initialised_)
return false;
*md_value = new unsigned char[EVP_MAX_MD_SIZE];
HMAC_Final(&ctx_, *md_value, md_len);
HMAC_CTX_cleanup(&ctx_);
initialised_ = false;
return true;
}
void Hmac::HmacDigest(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Hmac* hmac = Unwrap<Hmac>(args.Holder());
enum encoding encoding = BUFFER;
if (args.Length() >= 1) {
encoding = ParseEncoding(env->isolate(),
args[0]->ToString(env->isolate()),
BUFFER);
}
unsigned char* md_value = nullptr;
unsigned int md_len = 0;
bool r = hmac->HmacDigest(&md_value, &md_len);
if (!r) {
md_value = nullptr;
md_len = 0;
}
Local<Value> rc = StringBytes::Encode(env->isolate(),
reinterpret_cast<const char*>(md_value),
md_len,
encoding);
delete[] md_value;
args.GetReturnValue().Set(rc);
}
void Hash::Initialize(Environment* env, v8::Handle<v8::Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "update", HashUpdate);
env->SetProtoMethod(t, "digest", HashDigest);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Hash"), t->GetFunction());
}
void Hash::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
if (args.Length() == 0 || !args[0]->IsString()) {
return env->ThrowError("Must give hashtype string as argument");
}
const node::Utf8Value hash_type(env->isolate(), args[0]);
Hash* hash = new Hash(env, args.This());
if (!hash->HashInit(*hash_type)) {
return env->ThrowError("Digest method not supported");
}
}
bool Hash::HashInit(const char* hash_type) {
CHECK_EQ(md_, nullptr);
md_ = EVP_get_digestbyname(hash_type);
if (md_ == nullptr)
return false;
EVP_MD_CTX_init(&mdctx_);
EVP_DigestInit_ex(&mdctx_, md_, nullptr);
initialised_ = true;
return true;
}
bool Hash::HashUpdate(const char* data, int len) {
if (!initialised_)
return false;
EVP_DigestUpdate(&mdctx_, data, len);
return true;
}
void Hash::HashUpdate(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Hash* hash = Unwrap<Hash>(args.Holder());
THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
bool r;
if (args[0]->IsString()) {
StringBytes::InlineDecoder decoder;
if (!decoder.Decode(env, args[0].As<String>(), args[1], BINARY))
return;
r = hash->HashUpdate(decoder.out(), decoder.size());
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
r = hash->HashUpdate(buf, buflen);
}
if (!r) {
return env->ThrowTypeError("HashUpdate fail");
}
}
void Hash::HashDigest(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Hash* hash = Unwrap<Hash>(args.Holder());
if (!hash->initialised_) {
return env->ThrowError("Not initialized");
}
enum encoding encoding = BUFFER;
if (args.Length() >= 1) {
encoding = ParseEncoding(env->isolate(),
args[0]->ToString(env->isolate()),
BUFFER);
}
unsigned char md_value[EVP_MAX_MD_SIZE];
unsigned int md_len;
EVP_DigestFinal_ex(&hash->mdctx_, md_value, &md_len);
EVP_MD_CTX_cleanup(&hash->mdctx_);
hash->initialised_ = false;
Local<Value> rc = StringBytes::Encode(env->isolate(),
reinterpret_cast<const char*>(md_value),
md_len,
encoding);
args.GetReturnValue().Set(rc);
}
void SignBase::CheckThrow(SignBase::Error error) {
HandleScope scope(env()->isolate());
switch (error) {
case kSignUnknownDigest:
return env()->ThrowError("Unknown message digest");
case kSignNotInitialised:
return env()->ThrowError("Not initialised");
case kSignInit:
case kSignUpdate:
case kSignPrivateKey:
case kSignPublicKey:
{
unsigned long err = ERR_get_error();
if (err)
return ThrowCryptoError(env(), err);
switch (error) {
case kSignInit:
return env()->ThrowError("EVP_SignInit_ex failed");
case kSignUpdate:
return env()->ThrowError("EVP_SignUpdate failed");
case kSignPrivateKey:
return env()->ThrowError("PEM_read_bio_PrivateKey failed");
case kSignPublicKey:
return env()->ThrowError("PEM_read_bio_PUBKEY failed");
default:
abort();
}
}
case kSignOk:
return;
}
}
void Sign::Initialize(Environment* env, v8::Handle<v8::Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "init", SignInit);
env->SetProtoMethod(t, "update", SignUpdate);
env->SetProtoMethod(t, "sign", SignFinal);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Sign"), t->GetFunction());
}
void Sign::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new Sign(env, args.This());
}
SignBase::Error Sign::SignInit(const char* sign_type) {
CHECK_EQ(md_, nullptr);
md_ = EVP_get_digestbyname(sign_type);
if (!md_)
return kSignUnknownDigest;
EVP_MD_CTX_init(&mdctx_);
if (!EVP_SignInit_ex(&mdctx_, md_, nullptr))
return kSignInit;
initialised_ = true;
return kSignOk;
}
void Sign::SignInit(const FunctionCallbackInfo<Value>& args) {
Sign* sign = Unwrap<Sign>(args.Holder());
if (args.Length() == 0 || !args[0]->IsString()) {
return sign->env()->ThrowError("Must give signtype string as argument");
}
const node::Utf8Value sign_type(args.GetIsolate(), args[0]);
sign->CheckThrow(sign->SignInit(*sign_type));
}
SignBase::Error Sign::SignUpdate(const char* data, int len) {
if (!initialised_)
return kSignNotInitialised;
if (!EVP_SignUpdate(&mdctx_, data, len))
return kSignUpdate;
return kSignOk;
}
void Sign::SignUpdate(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Sign* sign = Unwrap<Sign>(args.Holder());
THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
Error err;
if (args[0]->IsString()) {
StringBytes::InlineDecoder decoder;
if (!decoder.Decode(env, args[0].As<String>(), args[1], BINARY))
return;
err = sign->SignUpdate(decoder.out(), decoder.size());
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
err = sign->SignUpdate(buf, buflen);
}
sign->CheckThrow(err);
}
SignBase::Error Sign::SignFinal(const char* key_pem,
int key_pem_len,
const char* passphrase,
unsigned char** sig,
unsigned int *sig_len) {
if (!initialised_)
return kSignNotInitialised;
BIO* bp = nullptr;
EVP_PKEY* pkey = nullptr;
bool fatal = true;
bp = BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len);
if (bp == nullptr)
goto exit;
pkey = PEM_read_bio_PrivateKey(bp,
nullptr,
CryptoPemCallback,
const_cast<char*>(passphrase));
// Errors might be injected into OpenSSL's error stack
// without `pkey` being set to nullptr;
// cf. the test of `test_bad_rsa_privkey.pem` for an example.
if (pkey == nullptr || 0 != ERR_peek_error())
goto exit;
if (EVP_SignFinal(&mdctx_, *sig, sig_len, pkey))
fatal = false;
initialised_ = false;
exit:
if (pkey != nullptr)
EVP_PKEY_free(pkey);
if (bp != nullptr)
BIO_free_all(bp);
EVP_MD_CTX_cleanup(&mdctx_);
if (fatal)
return kSignPrivateKey;
return kSignOk;
}
void Sign::SignFinal(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Sign* sign = Unwrap<Sign>(args.Holder());
unsigned char* md_value;
unsigned int md_len;
unsigned int len = args.Length();
enum encoding encoding = BUFFER;
if (len >= 2 && args[1]->IsString()) {
encoding = ParseEncoding(env->isolate(),
args[1]->ToString(env->isolate()),
BUFFER);
}
node::Utf8Value passphrase(env->isolate(), args[2]);
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
size_t buf_len = Buffer::Length(args[0]);
char* buf = Buffer::Data(args[0]);
md_len = 8192; // Maximum key size is 8192 bits
md_value = new unsigned char[md_len];
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
Error err = sign->SignFinal(
buf,
buf_len,
len >= 3 && !args[2]->IsNull() ? *passphrase : nullptr,
&md_value,
&md_len);
if (err != kSignOk) {
delete[] md_value;
md_value = nullptr;
md_len = 0;
return sign->CheckThrow(err);
}
Local<Value> rc = StringBytes::Encode(env->isolate(),
reinterpret_cast<const char*>(md_value),
md_len,
encoding);
delete[] md_value;
args.GetReturnValue().Set(rc);
}
void Verify::Initialize(Environment* env, v8::Handle<v8::Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "init", VerifyInit);
env->SetProtoMethod(t, "update", VerifyUpdate);
env->SetProtoMethod(t, "verify", VerifyFinal);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Verify"),
t->GetFunction());
}
void Verify::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new Verify(env, args.This());
}
SignBase::Error Verify::VerifyInit(const char* verify_type) {
CHECK_EQ(md_, nullptr);
md_ = EVP_get_digestbyname(verify_type);
if (md_ == nullptr)
return kSignUnknownDigest;
EVP_MD_CTX_init(&mdctx_);
if (!EVP_VerifyInit_ex(&mdctx_, md_, nullptr))
return kSignInit;
initialised_ = true;
return kSignOk;
}
void Verify::VerifyInit(const FunctionCallbackInfo<Value>& args) {
Verify* verify = Unwrap<Verify>(args.Holder());
if (args.Length() == 0 || !args[0]->IsString()) {
return verify->env()->ThrowError("Must give verifytype string as argument");
}
const node::Utf8Value verify_type(args.GetIsolate(), args[0]);
verify->CheckThrow(verify->VerifyInit(*verify_type));
}
SignBase::Error Verify::VerifyUpdate(const char* data, int len) {
if (!initialised_)
return kSignNotInitialised;
if (!EVP_VerifyUpdate(&mdctx_, data, len))
return kSignUpdate;
return kSignOk;
}
void Verify::VerifyUpdate(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Verify* verify = Unwrap<Verify>(args.Holder());
THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0]);
// Only copy the data if we have to, because it's a string
Error err;
if (args[0]->IsString()) {
StringBytes::InlineDecoder decoder;
if (!decoder.Decode(env, args[0].As<String>(), args[1], BINARY))
return;
err = verify->VerifyUpdate(decoder.out(), decoder.size());
} else {
char* buf = Buffer::Data(args[0]);
size_t buflen = Buffer::Length(args[0]);
err = verify->VerifyUpdate(buf, buflen);
}
verify->CheckThrow(err);
}
SignBase::Error Verify::VerifyFinal(const char* key_pem,
int key_pem_len,
const char* sig,
int siglen,
bool* verify_result) {
if (!initialised_)
return kSignNotInitialised;
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
EVP_PKEY* pkey = nullptr;
BIO* bp = nullptr;
X509* x509 = nullptr;
bool fatal = true;
int r = 0;
bp = BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len);
if (bp == nullptr)
goto exit;
// Check if this is a PKCS#8 or RSA public key before trying as X.509.
// Split this out into a separate function once we have more than one
// consumer of public keys.
if (strncmp(key_pem, PUBLIC_KEY_PFX, PUBLIC_KEY_PFX_LEN) == 0) {
pkey = PEM_read_bio_PUBKEY(bp, nullptr, CryptoPemCallback, nullptr);
if (pkey == nullptr)
goto exit;
} else if (strncmp(key_pem, PUBRSA_KEY_PFX, PUBRSA_KEY_PFX_LEN) == 0) {
RSA* rsa =
PEM_read_bio_RSAPublicKey(bp, nullptr, CryptoPemCallback, nullptr);
if (rsa) {
pkey = EVP_PKEY_new();
if (pkey)
EVP_PKEY_set1_RSA(pkey, rsa);
RSA_free(rsa);
}
if (pkey == nullptr)
goto exit;
} else {
// X.509 fallback
x509 = PEM_read_bio_X509(bp, nullptr, CryptoPemCallback, nullptr);
if (x509 == nullptr)
goto exit;
pkey = X509_get_pubkey(x509);
if (pkey == nullptr)
goto exit;
}
fatal = false;
r = EVP_VerifyFinal(&mdctx_,
reinterpret_cast<const unsigned char*>(sig),
siglen,
pkey);
exit:
if (pkey != nullptr)
EVP_PKEY_free(pkey);
if (bp != nullptr)
BIO_free_all(bp);
if (x509 != nullptr)
X509_free(x509);
EVP_MD_CTX_cleanup(&mdctx_);
initialised_ = false;
if (fatal)
return kSignPublicKey;
*verify_result = r == 1;
return kSignOk;
}
void Verify::VerifyFinal(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Verify* verify = Unwrap<Verify>(args.Holder());
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
char* kbuf = Buffer::Data(args[0]);
ssize_t klen = Buffer::Length(args[0]);
THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[1]);
// BINARY works for both buffers and binary strings.
enum encoding encoding = BINARY;
if (args.Length() >= 3) {
encoding = ParseEncoding(env->isolate(),
args[2]->ToString(env->isolate()),
BINARY);
}
ssize_t hlen = StringBytes::Size(env->isolate(), args[1], encoding);
// only copy if we need to, because it's a string.
char* hbuf;
if (args[1]->IsString()) {
hbuf = new char[hlen];
ssize_t hwritten = StringBytes::Write(env->isolate(),
hbuf,
hlen,
args[1],
encoding);
CHECK_EQ(hwritten, hlen);
} else {
hbuf = Buffer::Data(args[1]);
}
bool verify_result;
Error err = verify->VerifyFinal(kbuf, klen, hbuf, hlen, &verify_result);
if (args[1]->IsString())
delete[] hbuf;
if (err != kSignOk)
return verify->CheckThrow(err);
args.GetReturnValue().Set(verify_result);
}
template <PublicKeyCipher::Operation operation,
PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
bool PublicKeyCipher::Cipher(const char* key_pem,
int key_pem_len,
const char* passphrase,
int padding,
const unsigned char* data,
int len,
unsigned char** out,
size_t* out_len) {
EVP_PKEY* pkey = nullptr;
EVP_PKEY_CTX* ctx = nullptr;
BIO* bp = nullptr;
X509* x509 = nullptr;
bool fatal = true;
bp = BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len);
if (bp == nullptr)
goto exit;
// Check if this is a PKCS#8 or RSA public key before trying as X.509 and
// private key.
if (operation == kPublic &&
strncmp(key_pem, PUBLIC_KEY_PFX, PUBLIC_KEY_PFX_LEN) == 0) {
pkey = PEM_read_bio_PUBKEY(bp, nullptr, nullptr, nullptr);
if (pkey == nullptr)
goto exit;
} else if (operation == kPublic &&
strncmp(key_pem, PUBRSA_KEY_PFX, PUBRSA_KEY_PFX_LEN) == 0) {
RSA* rsa = PEM_read_bio_RSAPublicKey(bp, nullptr, nullptr, nullptr);
if (rsa) {
pkey = EVP_PKEY_new();
if (pkey)
EVP_PKEY_set1_RSA(pkey, rsa);
RSA_free(rsa);
}
if (pkey == nullptr)
goto exit;
} else if (operation == kPublic &&
strncmp(key_pem, CERTIFICATE_PFX, CERTIFICATE_PFX_LEN) == 0) {
x509 = PEM_read_bio_X509(bp, nullptr, CryptoPemCallback, nullptr);
if (x509 == nullptr)
goto exit;
pkey = X509_get_pubkey(x509);
if (pkey == nullptr)
goto exit;
} else {
pkey = PEM_read_bio_PrivateKey(bp,
nullptr,
CryptoPemCallback,
const_cast<char*>(passphrase));
if (pkey == nullptr)
goto exit;
}
ctx = EVP_PKEY_CTX_new(pkey, nullptr);
if (!ctx)
goto exit;
if (EVP_PKEY_cipher_init(ctx) <= 0)
goto exit;
if (EVP_PKEY_CTX_set_rsa_padding(ctx, padding) <= 0)
goto exit;
if (EVP_PKEY_cipher(ctx, nullptr, out_len, data, len) <= 0)
goto exit;
*out = new unsigned char[*out_len];
if (EVP_PKEY_cipher(ctx, *out, out_len, data, len) <= 0)
goto exit;
fatal = false;
exit:
if (x509 != nullptr)
X509_free(x509);
if (pkey != nullptr)
EVP_PKEY_free(pkey);
if (bp != nullptr)
BIO_free_all(bp);
if (ctx != nullptr)
EVP_PKEY_CTX_free(ctx);
return !fatal;
}
template <PublicKeyCipher::Operation operation,
PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
void PublicKeyCipher::Cipher(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
char* kbuf = Buffer::Data(args[0]);
ssize_t klen = Buffer::Length(args[0]);
THROW_AND_RETURN_IF_NOT_BUFFER(args[1]);
char* buf = Buffer::Data(args[1]);
ssize_t len = Buffer::Length(args[1]);
int padding = args[2]->Uint32Value();
String::Utf8Value passphrase(args[3]);
unsigned char* out_value = nullptr;
size_t out_len = 0;
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
bool r = Cipher<operation, EVP_PKEY_cipher_init, EVP_PKEY_cipher>(
kbuf,
klen,
args.Length() >= 3 && !args[2]->IsNull() ? *passphrase : nullptr,
padding,
reinterpret_cast<const unsigned char*>(buf),
len,
&out_value,
&out_len);
if (out_len == 0 || !r) {
delete[] out_value;
out_value = nullptr;
out_len = 0;
if (!r) {
return ThrowCryptoError(env,
ERR_get_error());
}
}
Local<Object> vbuf = Buffer::Copy(
env,
reinterpret_cast<char*>(out_value),
out_len).ToLocalChecked();
args.GetReturnValue().Set(vbuf);
delete[] out_value;
}
void DiffieHellman::Initialize(Environment* env, Handle<Object> target) {
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
const PropertyAttribute attributes =
static_cast<PropertyAttribute>(v8::ReadOnly | v8::DontDelete);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "generateKeys", GenerateKeys);
env->SetProtoMethod(t, "computeSecret", ComputeSecret);
env->SetProtoMethod(t, "getPrime", GetPrime);
env->SetProtoMethod(t, "getGenerator", GetGenerator);
env->SetProtoMethod(t, "getPublicKey", GetPublicKey);
env->SetProtoMethod(t, "getPrivateKey", GetPrivateKey);
env->SetProtoMethod(t, "setPublicKey", SetPublicKey);
env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey);
t->InstanceTemplate()->SetAccessor(env->verify_error_string(),
DiffieHellman::VerifyErrorGetter,
nullptr,
env->as_external(),
DEFAULT,
attributes);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellman"),
t->GetFunction());
Local<FunctionTemplate> t2 = env->NewFunctionTemplate(DiffieHellmanGroup);
t2->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t2, "generateKeys", GenerateKeys);
env->SetProtoMethod(t2, "computeSecret", ComputeSecret);
env->SetProtoMethod(t2, "getPrime", GetPrime);
env->SetProtoMethod(t2, "getGenerator", GetGenerator);
env->SetProtoMethod(t2, "getPublicKey", GetPublicKey);
env->SetProtoMethod(t2, "getPrivateKey", GetPrivateKey);
t2->InstanceTemplate()->SetAccessor(env->verify_error_string(),
DiffieHellman::VerifyErrorGetter,
nullptr,
env->as_external(),
DEFAULT,
attributes);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellmanGroup"),
t2->GetFunction());
}
bool DiffieHellman::Init(int primeLength, int g) {
dh = DH_new();
DH_generate_parameters_ex(dh, primeLength, g, 0);
bool result = VerifyContext();
if (!result)
return false;
initialised_ = true;
return true;
}
bool DiffieHellman::Init(const char* p, int p_len, int g) {
dh = DH_new();
dh->p = BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, 0);
dh->g = BN_new();
if (!BN_set_word(dh->g, g))
return false;
bool result = VerifyContext();
if (!result)
return false;
initialised_ = true;
return true;
}
bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) {
dh = DH_new();
dh->p = BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, 0);
dh->g = BN_bin2bn(reinterpret_cast<const unsigned char*>(g), g_len, 0);
bool result = VerifyContext();
if (!result)
return false;
initialised_ = true;
return true;
}
void DiffieHellman::DiffieHellmanGroup(
const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = new DiffieHellman(env, args.This());
if (args.Length() != 1 || !args[0]->IsString()) {
return env->ThrowError("No group name given");
}
bool initialized = false;
const node::Utf8Value group_name(env->isolate(), args[0]);
for (unsigned int i = 0; i < ARRAY_SIZE(modp_groups); ++i) {
const modp_group* it = modp_groups + i;
if (strcasecmp(*group_name, it->name) != 0)
continue;
initialized = diffieHellman->Init(it->prime,
it->prime_size,
it->gen,
it->gen_size);
if (!initialized)
env->ThrowError("Initialization failed");
return;
}
env->ThrowError("Unknown group");
}
void DiffieHellman::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman =
new DiffieHellman(env, args.This());
bool initialized = false;
if (args.Length() == 2) {
if (args[0]->IsInt32()) {
if (args[1]->IsInt32()) {
initialized = diffieHellman->Init(args[0]->Int32Value(),
args[1]->Int32Value());
}
} else {
if (args[1]->IsInt32()) {
initialized = diffieHellman->Init(Buffer::Data(args[0]),
Buffer::Length(args[0]),
args[1]->Int32Value());
} else {
initialized = diffieHellman->Init(Buffer::Data(args[0]),
Buffer::Length(args[0]),
Buffer::Data(args[1]),
Buffer::Length(args[1]));
}
}
}
if (!initialized) {
return env->ThrowError("Initialization failed");
}
}
void DiffieHellman::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
if (!DH_generate_key(diffieHellman->dh)) {
return env->ThrowError("Key generation failed");
}
int dataSize = BN_num_bytes(diffieHellman->dh->pub_key);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->pub_key,
reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetPrime(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
int dataSize = BN_num_bytes(diffieHellman->dh->p);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->p, reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetGenerator(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
int dataSize = BN_num_bytes(diffieHellman->dh->g);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->g, reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
if (diffieHellman->dh->pub_key == nullptr) {
return env->ThrowError("No public key - did you forget to generate one?");
}
int dataSize = BN_num_bytes(diffieHellman->dh->pub_key);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->pub_key,
reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
if (diffieHellman->dh->priv_key == nullptr) {
return env->ThrowError("No private key - did you forget to generate one?");
}
int dataSize = BN_num_bytes(diffieHellman->dh->priv_key);
char* data = new char[dataSize];
BN_bn2bin(diffieHellman->dh->priv_key,
reinterpret_cast<unsigned char*>(data));
args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
BIGNUM* key = nullptr;
if (args.Length() == 0) {
return env->ThrowError("First argument must be other party's public key");
} else {
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
key = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0])),
Buffer::Length(args[0]),
0);
}
int dataSize = DH_size(diffieHellman->dh);
char* data = new char[dataSize];
int size = DH_compute_key(reinterpret_cast<unsigned char*>(data),
key,
diffieHellman->dh);
if (size == -1) {
int checkResult;
int checked;
checked = DH_check_pub_key(diffieHellman->dh, key, &checkResult);
BN_free(key);
delete[] data;
if (!checked) {
return env->ThrowError("Invalid key");
} else if (checkResult) {
if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) {
return env->ThrowError("Supplied key is too small");
} else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) {
return env->ThrowError("Supplied key is too large");
} else {
return env->ThrowError("Invalid key");
}
} else {
return env->ThrowError("Invalid key");
}
}
BN_free(key);
CHECK_GE(size, 0);
// DH_size returns number of bytes in a prime number
// DH_compute_key returns number of bytes in a remainder of exponent, which
// may have less bytes than a prime number. Therefore add 0-padding to the
// allocated buffer.
if (size != dataSize) {
CHECK(dataSize > size);
memmove(data + dataSize - size, data, size);
memset(data, 0, dataSize - size);
}
args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER));
delete[] data;
}
void DiffieHellman::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
Environment* env = diffieHellman->env();
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
if (args.Length() == 0) {
return env->ThrowError("First argument must be public key");
} else {
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
diffieHellman->dh->pub_key = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0])),
Buffer::Length(args[0]), 0);
}
}
void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
Environment* env = diffieHellman->env();
if (!diffieHellman->initialised_) {
return env->ThrowError("Not initialized");
}
if (args.Length() == 0) {
return env->ThrowError("First argument must be private key");
} else {
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
diffieHellman->dh->priv_key = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0])),
Buffer::Length(args[0]),
0);
}
}
void DiffieHellman::VerifyErrorGetter(Local<String> property,
const PropertyCallbackInfo<Value>& args) {
HandleScope scope(args.GetIsolate());
DiffieHellman* diffieHellman = Unwrap<DiffieHellman>(args.Holder());
if (!diffieHellman->initialised_)
return diffieHellman->env()->ThrowError("Not initialized");
args.GetReturnValue().Set(diffieHellman->verifyError_);
}
bool DiffieHellman::VerifyContext() {
int codes;
if (!DH_check(dh, &codes))
return false;
verifyError_ = codes;
return true;
}
void ECDH::Initialize(Environment* env, Handle<Object> target) {
HandleScope scope(env->isolate());
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "generateKeys", GenerateKeys);
env->SetProtoMethod(t, "computeSecret", ComputeSecret);
env->SetProtoMethod(t, "getPublicKey", GetPublicKey);
env->SetProtoMethod(t, "getPrivateKey", GetPrivateKey);
env->SetProtoMethod(t, "setPublicKey", SetPublicKey);
env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "ECDH"),
t->GetFunction());
}
void ECDH::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
// TODO(indutny): Support raw curves?
CHECK(args[0]->IsString());
node::Utf8Value curve(env->isolate(), args[0]);
int nid = OBJ_sn2nid(*curve);
if (nid == NID_undef)
return env->ThrowTypeError("First argument should be a valid curve name");
EC_KEY* key = EC_KEY_new_by_curve_name(nid);
if (key == nullptr)
return env->ThrowError("Failed to create EC_KEY using curve name");
new ECDH(env, args.This(), key);
}
void ECDH::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ECDH* ecdh = Unwrap<ECDH>(args.Holder());
if (!EC_KEY_generate_key(ecdh->key_))
return env->ThrowError("Failed to generate EC_KEY");
ecdh->generated_ = true;
}
EC_POINT* ECDH::BufferToPoint(char* data, size_t len) {
EC_POINT* pub;
int r;
pub = EC_POINT_new(group_);
if (pub == nullptr) {
env()->ThrowError("Failed to allocate EC_POINT for a public key");
return nullptr;
}
r = EC_POINT_oct2point(
group_,
pub,
reinterpret_cast<unsigned char*>(data),
len,
nullptr);
if (!r) {
env()->ThrowError("Failed to translate Buffer to a EC_POINT");
goto fatal;
}
return pub;
fatal:
EC_POINT_free(pub);
return nullptr;
}
void ECDH::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
ECDH* ecdh = Unwrap<ECDH>(args.Holder());
EC_POINT* pub = ecdh->BufferToPoint(Buffer::Data(args[0]),
Buffer::Length(args[0]));
if (pub == nullptr)
return;
// NOTE: field_size is in bits
int field_size = EC_GROUP_get_degree(ecdh->group_);
size_t out_len = (field_size + 7) / 8;
char* out = static_cast<char*>(malloc(out_len));
CHECK_NE(out, nullptr);
int r = ECDH_compute_key(out, out_len, pub, ecdh->key_, nullptr);
EC_POINT_free(pub);
if (!r) {
free(out);
return env->ThrowError("Failed to compute ECDH key");
}
Local<Object> buf = Buffer::New(env, out, out_len).ToLocalChecked();
args.GetReturnValue().Set(buf);
}
void ECDH::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
// Conversion form
CHECK_EQ(args.Length(), 1);
ECDH* ecdh = Unwrap<ECDH>(args.Holder());
if (!ecdh->generated_)
return env->ThrowError("You should generate ECDH keys first");
const EC_POINT* pub = EC_KEY_get0_public_key(ecdh->key_);
if (pub == nullptr)
return env->ThrowError("Failed to get ECDH public key");
int size;
point_conversion_form_t form =
static_cast<point_conversion_form_t>(args[0]->Uint32Value());
size = EC_POINT_point2oct(ecdh->group_, pub, form, nullptr, 0, nullptr);
if (size == 0)
return env->ThrowError("Failed to get public key length");
unsigned char* out = static_cast<unsigned char*>(malloc(size));
CHECK_NE(out, nullptr);
int r = EC_POINT_point2oct(ecdh->group_, pub, form, out, size, nullptr);
if (r != size) {
free(out);
return env->ThrowError("Failed to get public key");
}
Local<Object> buf =
Buffer::New(env, reinterpret_cast<char*>(out), size).ToLocalChecked();
args.GetReturnValue().Set(buf);
}
void ECDH::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ECDH* ecdh = Unwrap<ECDH>(args.Holder());
if (!ecdh->generated_)
return env->ThrowError("You should generate ECDH keys first");
const BIGNUM* b = EC_KEY_get0_private_key(ecdh->key_);
if (b == nullptr)
return env->ThrowError("Failed to get ECDH private key");
int size = BN_num_bytes(b);
unsigned char* out = static_cast<unsigned char*>(malloc(size));
CHECK_NE(out, nullptr);
if (size != BN_bn2bin(b, out)) {
free(out);
return env->ThrowError("Failed to convert ECDH private key to Buffer");
}
Local<Object> buf =
Buffer::New(env, reinterpret_cast<char*>(out), size).ToLocalChecked();
args.GetReturnValue().Set(buf);
}
void ECDH::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ECDH* ecdh = Unwrap<ECDH>(args.Holder());
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
BIGNUM* priv = BN_bin2bn(
reinterpret_cast<unsigned char*>(Buffer::Data(args[0].As<Object>())),
Buffer::Length(args[0].As<Object>()),
nullptr);
if (priv == nullptr)
return env->ThrowError("Failed to convert Buffer to BN");
int result = EC_KEY_set_private_key(ecdh->key_, priv);
BN_free(priv);
if (!result) {
return env->ThrowError("Failed to convert BN to a private key");
}
}
void ECDH::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ECDH* ecdh = Unwrap<ECDH>(args.Holder());
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
EC_POINT* pub = ecdh->BufferToPoint(Buffer::Data(args[0].As<Object>()),
Buffer::Length(args[0].As<Object>()));
if (pub == nullptr)
return;
int r = EC_KEY_set_public_key(ecdh->key_, pub);
EC_POINT_free(pub);
if (!r)
return env->ThrowError("Failed to convert BN to a private key");
}
class PBKDF2Request : public AsyncWrap {
public:
PBKDF2Request(Environment* env,
Local<Object> object,
const EVP_MD* digest,
ssize_t passlen,
char* pass,
ssize_t saltlen,
char* salt,
ssize_t iter,
ssize_t keylen)
: AsyncWrap(env, object, AsyncWrap::PROVIDER_CRYPTO),
digest_(digest),
error_(0),
passlen_(passlen),
pass_(pass),
saltlen_(saltlen),
salt_(salt),
keylen_(keylen),
key_(static_cast<char*>(malloc(keylen))),
iter_(iter) {
if (key() == nullptr)
FatalError("node::PBKDF2Request()", "Out of Memory");
}
~PBKDF2Request() override {
release();
persistent().Reset();
}
uv_work_t* work_req() {
return &work_req_;
}
inline const EVP_MD* digest() const {
return digest_;
}
inline ssize_t passlen() const {
return passlen_;
}
inline char* pass() const {
return pass_;
}
inline ssize_t saltlen() const {
return saltlen_;
}
inline char* salt() const {
return salt_;
}
inline ssize_t keylen() const {
return keylen_;
}
inline char* key() const {
return key_;
}
inline ssize_t iter() const {
return iter_;
}
inline void release() {
free(pass_);
pass_ = nullptr;
passlen_ = 0;
free(salt_);
salt_ = nullptr;
saltlen_ = 0;
free(key_);
key_ = nullptr;
keylen_ = 0;
}
inline int error() const {
return error_;
}
inline void set_error(int err) {
error_ = err;
}
size_t self_size() const override { return sizeof(*this); }
uv_work_t work_req_;
private:
const EVP_MD* digest_;
int error_;
ssize_t passlen_;
char* pass_;
ssize_t saltlen_;
char* salt_;
ssize_t keylen_;
char* key_;
ssize_t iter_;
};
void EIO_PBKDF2(PBKDF2Request* req) {
req->set_error(PKCS5_PBKDF2_HMAC(
req->pass(),
req->passlen(),
reinterpret_cast<unsigned char*>(req->salt()),
req->saltlen(),
req->iter(),
req->digest(),
req->keylen(),
reinterpret_cast<unsigned char*>(req->key())));
memset(req->pass(), 0, req->passlen());
memset(req->salt(), 0, req->saltlen());
}
void EIO_PBKDF2(uv_work_t* work_req) {
PBKDF2Request* req = ContainerOf(&PBKDF2Request::work_req_, work_req);
EIO_PBKDF2(req);
}
void EIO_PBKDF2After(PBKDF2Request* req, Local<Value> argv[2]) {
if (req->error()) {
argv[0] = Undefined(req->env()->isolate());
argv[1] = Encode(req->env()->isolate(), req->key(), req->keylen(), BUFFER);
memset(req->key(), 0, req->keylen());
} else {
argv[0] = Exception::Error(req->env()->pbkdf2_error_string());
argv[1] = Undefined(req->env()->isolate());
}
}
void EIO_PBKDF2After(uv_work_t* work_req, int status) {
CHECK_EQ(status, 0);
PBKDF2Request* req = ContainerOf(&PBKDF2Request::work_req_, work_req);
Environment* env = req->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
Local<Value> argv[2];
EIO_PBKDF2After(req, argv);
req->MakeCallback(env->ondone_string(), ARRAY_SIZE(argv), argv);
delete req;
}
void PBKDF2(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const EVP_MD* digest = nullptr;
const char* type_error = nullptr;
char* pass = nullptr;
char* salt = nullptr;
ssize_t passlen = -1;
ssize_t saltlen = -1;
ssize_t keylen = -1;
ssize_t iter = -1;
PBKDF2Request* req = nullptr;
Local<Object> obj;
if (args.Length() != 5 && args.Length() != 6) {
type_error = "Bad parameter";
goto err;
}
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
passlen = Buffer::Length(args[0]);
if (passlen < 0) {
type_error = "Bad password";
goto err;
}
THROW_AND_RETURN_IF_NOT_BUFFER(args[1]);
pass = static_cast<char*>(malloc(passlen));
if (pass == nullptr) {
FatalError("node::PBKDF2()", "Out of Memory");
}
memcpy(pass, Buffer::Data(args[0]), passlen);
saltlen = Buffer::Length(args[1]);
if (saltlen < 0) {
type_error = "Bad salt";
goto err;
}
salt = static_cast<char*>(malloc(saltlen));
if (salt == nullptr) {
FatalError("node::PBKDF2()", "Out of Memory");
}
memcpy(salt, Buffer::Data(args[1]), saltlen);
if (!args[2]->IsNumber()) {
type_error = "Iterations not a number";
goto err;
}
iter = args[2]->Int32Value();
if (iter < 0) {
type_error = "Bad iterations";
goto err;
}
if (!args[3]->IsNumber()) {
type_error = "Key length not a number";
goto err;
}
keylen = args[3]->Int32Value();
if (keylen < 0) {
type_error = "Bad key length";
goto err;
}
if (args[4]->IsString()) {
node::Utf8Value digest_name(env->isolate(), args[4]);
digest = EVP_get_digestbyname(*digest_name);
if (digest == nullptr) {
type_error = "Bad digest name";
goto err;
}
}
if (digest == nullptr) {
digest = EVP_sha1();
}
obj = Object::New(env->isolate());
req = new PBKDF2Request(env,
obj,
digest,
passlen,
pass,
saltlen,
salt,
iter,
keylen);
if (args[5]->IsFunction()) {
obj->Set(env->ondone_string(), args[5]);
// XXX(trevnorris): This will need to go with the rest of domains.
if (env->in_domain())
obj->Set(env->domain_string(), env->domain_array()->Get(0));
uv_queue_work(env->event_loop(),
req->work_req(),
EIO_PBKDF2,
EIO_PBKDF2After);
} else {
env->PrintSyncTrace();
Local<Value> argv[2];
EIO_PBKDF2(req);
EIO_PBKDF2After(req, argv);
delete req;
if (argv[0]->IsObject())
env->isolate()->ThrowException(argv[0]);
else
args.GetReturnValue().Set(argv[1]);
}
return;
err:
free(salt);
free(pass);
return env->ThrowTypeError(type_error);
}
// Only instantiate within a valid HandleScope.
class RandomBytesRequest : public AsyncWrap {
public:
RandomBytesRequest(Environment* env, Local<Object> object, size_t size)
: AsyncWrap(env, object, AsyncWrap::PROVIDER_CRYPTO),
error_(0),
size_(size),
data_(static_cast<char*>(malloc(size))) {
if (data() == nullptr)
FatalError("node::RandomBytesRequest()", "Out of Memory");
}
~RandomBytesRequest() override {
persistent().Reset();
}
uv_work_t* work_req() {
return &work_req_;
}
inline size_t size() const {
return size_;
}
inline char* data() const {
return data_;
}
inline void release() {
free(data_);
size_ = 0;
}
inline void return_memory(char** d, size_t* len) {
*d = data_;
data_ = nullptr;
*len = size_;
size_ = 0;
}
inline unsigned long error() const {
return error_;
}
inline void set_error(unsigned long err) {
error_ = err;
}
size_t self_size() const override { return sizeof(*this); }
uv_work_t work_req_;
private:
unsigned long error_;
size_t size_;
char* data_;
};
void RandomBytesWork(uv_work_t* work_req) {
RandomBytesRequest* req =
ContainerOf(&RandomBytesRequest::work_req_, work_req);
// Ensure that OpenSSL's PRNG is properly seeded.
CheckEntropy();
const int r = RAND_bytes(reinterpret_cast<unsigned char*>(req->data()),
req->size());
// RAND_bytes() returns 0 on error.
if (r == 0) {
req->set_error(ERR_get_error());
} else if (r == -1) {
req->set_error(static_cast<unsigned long>(-1));
}
}
// don't call this function without a valid HandleScope
void RandomBytesCheck(RandomBytesRequest* req, Local<Value> argv[2]) {
if (req->error()) {
char errmsg[256] = "Operation not supported";
if (req->error() != static_cast<unsigned long>(-1))
ERR_error_string_n(req->error(), errmsg, sizeof errmsg);
argv[0] = Exception::Error(OneByteString(req->env()->isolate(), errmsg));
argv[1] = Null(req->env()->isolate());
req->release();
} else {
char* data = nullptr;
size_t size;
req->return_memory(&data, &size);
argv[0] = Null(req->env()->isolate());
argv[1] = Buffer::New(req->env(), data, size).ToLocalChecked();
}
}
void RandomBytesAfter(uv_work_t* work_req, int status) {
CHECK_EQ(status, 0);
RandomBytesRequest* req =
ContainerOf(&RandomBytesRequest::work_req_, work_req);
Environment* env = req->env();
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
Local<Value> argv[2];
RandomBytesCheck(req, argv);
req->MakeCallback(env->ondone_string(), ARRAY_SIZE(argv), argv);
delete req;
}
void RandomBytes(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
// maybe allow a buffer to write to? cuts down on object creation
// when generating random data in a loop
if (!args[0]->IsUint32()) {
return env->ThrowTypeError("size must be a number >= 0");
}
const int64_t size = args[0]->IntegerValue();
if (size < 0 || size > Buffer::kMaxLength)
return env->ThrowRangeError("size is not a valid Smi");
Local<Object> obj = Object::New(env->isolate());
RandomBytesRequest* req = new RandomBytesRequest(env, obj, size);
if (args[1]->IsFunction()) {
obj->Set(FIXED_ONE_BYTE_STRING(args.GetIsolate(), "ondone"), args[1]);
// XXX(trevnorris): This will need to go with the rest of domains.
if (env->in_domain())
obj->Set(env->domain_string(), env->domain_array()->Get(0));
uv_queue_work(env->event_loop(),
req->work_req(),
RandomBytesWork,
RandomBytesAfter);
args.GetReturnValue().Set(obj);
} else {
env->PrintSyncTrace();
Local<Value> argv[2];
RandomBytesWork(req->work_req());
RandomBytesCheck(req, argv);
delete req;
if (!argv[0]->IsNull())
env->isolate()->ThrowException(argv[0]);
else
args.GetReturnValue().Set(argv[1]);
}
}
void GetSSLCiphers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
SSL_CTX* ctx = SSL_CTX_new(TLSv1_server_method());
if (ctx == nullptr) {
return env->ThrowError("SSL_CTX_new() failed.");
}
SSL* ssl = SSL_new(ctx);
if (ssl == nullptr) {
SSL_CTX_free(ctx);
return env->ThrowError("SSL_new() failed.");
}
Local<Array> arr = Array::New(env->isolate());
STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl);
for (int i = 0; i < sk_SSL_CIPHER_num(ciphers); ++i) {
SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i);
arr->Set(i, OneByteString(args.GetIsolate(), SSL_CIPHER_get_name(cipher)));
}
SSL_free(ssl);
SSL_CTX_free(ctx);
args.GetReturnValue().Set(arr);
}
class CipherPushContext {
public:
explicit CipherPushContext(Environment* env)
: arr(Array::New(env->isolate())),
env_(env) {
}
inline Environment* env() const { return env_; }
Local<Array> arr;
private:
Environment* env_;
};
template <class TypeName>
static void array_push_back(const TypeName* md,
const char* from,
const char* to,
void* arg) {
CipherPushContext* ctx = static_cast<CipherPushContext*>(arg);
ctx->arr->Set(ctx->arr->Length(), OneByteString(ctx->env()->isolate(), from));
}
void GetCiphers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherPushContext ctx(env);
EVP_CIPHER_do_all_sorted(array_push_back<EVP_CIPHER>, &ctx);
args.GetReturnValue().Set(ctx.arr);
}
void GetHashes(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherPushContext ctx(env);
EVP_MD_do_all_sorted(array_push_back<EVP_MD>, &ctx);
args.GetReturnValue().Set(ctx.arr);
}
void GetCurves(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const size_t num_curves = EC_get_builtin_curves(nullptr, 0);
Local<Array> arr = Array::New(env->isolate(), num_curves);
EC_builtin_curve* curves;
size_t alloc_size;
if (num_curves) {
alloc_size = sizeof(*curves) * num_curves;
curves = static_cast<EC_builtin_curve*>(malloc(alloc_size));
CHECK_NE(curves, nullptr);
if (EC_get_builtin_curves(curves, num_curves)) {
for (size_t i = 0; i < num_curves; i++) {
arr->Set(i, OneByteString(env->isolate(), OBJ_nid2sn(curves[i].nid)));
}
}
free(curves);
}
args.GetReturnValue().Set(arr);
}
void Certificate::Initialize(Environment* env, Handle<Object> target) {
HandleScope scope(env->isolate());
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
env->SetProtoMethod(t, "verifySpkac", VerifySpkac);
env->SetProtoMethod(t, "exportPublicKey", ExportPublicKey);
env->SetProtoMethod(t, "exportChallenge", ExportChallenge);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Certificate"),
t->GetFunction());
}
void Certificate::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new Certificate(env, args.This());
}
bool Certificate::VerifySpkac(const char* data, unsigned int len) {
bool i = 0;
EVP_PKEY* pkey = nullptr;
NETSCAPE_SPKI* spki = nullptr;
spki = NETSCAPE_SPKI_b64_decode(data, len);
if (spki == nullptr)
goto exit;
pkey = X509_PUBKEY_get(spki->spkac->pubkey);
if (pkey == nullptr)
goto exit;
i = NETSCAPE_SPKI_verify(spki, pkey) > 0;
exit:
if (pkey != nullptr)
EVP_PKEY_free(pkey);
if (spki != nullptr)
NETSCAPE_SPKI_free(spki);
return i;
}
void Certificate::VerifySpkac(const FunctionCallbackInfo<Value>& args) {
Certificate* certificate = Unwrap<Certificate>(args.Holder());
Environment* env = certificate->env();
bool i = false;
if (args.Length() < 1)
return env->ThrowTypeError("Missing argument");
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
size_t length = Buffer::Length(args[0]);
if (length == 0)
return args.GetReturnValue().Set(i);
char* data = Buffer::Data(args[0]);
CHECK_NE(data, nullptr);
i = certificate->VerifySpkac(data, length);
args.GetReturnValue().Set(i);
}
const char* Certificate::ExportPublicKey(const char* data, int len) {
char* buf = nullptr;
EVP_PKEY* pkey = nullptr;
NETSCAPE_SPKI* spki = nullptr;
BIO* bio = BIO_new(BIO_s_mem());
if (bio == nullptr)
goto exit;
spki = NETSCAPE_SPKI_b64_decode(data, len);
if (spki == nullptr)
goto exit;
pkey = NETSCAPE_SPKI_get_pubkey(spki);
if (pkey == nullptr)
goto exit;
if (PEM_write_bio_PUBKEY(bio, pkey) <= 0)
goto exit;
BIO_write(bio, "\0", 1);
BUF_MEM* ptr;
BIO_get_mem_ptr(bio, &ptr);
buf = new char[ptr->length];
memcpy(buf, ptr->data, ptr->length);
exit:
if (pkey != nullptr)
EVP_PKEY_free(pkey);
if (spki != nullptr)
NETSCAPE_SPKI_free(spki);
if (bio != nullptr)
BIO_free_all(bio);
return buf;
}
void Certificate::ExportPublicKey(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Certificate* certificate = Unwrap<Certificate>(args.Holder());
if (args.Length() < 1)
return env->ThrowTypeError("Missing argument");
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
size_t length = Buffer::Length(args[0]);
if (length == 0)
return args.GetReturnValue().SetEmptyString();
char* data = Buffer::Data(args[0]);
CHECK_NE(data, nullptr);
const char* pkey = certificate->ExportPublicKey(data, length);
if (pkey == nullptr)
return args.GetReturnValue().SetEmptyString();
Local<Value> out = Encode(env->isolate(), pkey, strlen(pkey), BUFFER);
delete[] pkey;
args.GetReturnValue().Set(out);
}
const char* Certificate::ExportChallenge(const char* data, int len) {
NETSCAPE_SPKI* sp = nullptr;
sp = NETSCAPE_SPKI_b64_decode(data, len);
if (sp == nullptr)
return nullptr;
unsigned char* buf = nullptr;
ASN1_STRING_to_UTF8(&buf, sp->spkac->challenge);
NETSCAPE_SPKI_free(sp);
return reinterpret_cast<const char*>(buf);
}
void Certificate::ExportChallenge(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Certificate* crt = Unwrap<Certificate>(args.Holder());
if (args.Length() < 1)
return env->ThrowTypeError("Missing argument");
THROW_AND_RETURN_IF_NOT_BUFFER(args[0]);
size_t len = Buffer::Length(args[0]);
if (len == 0)
return args.GetReturnValue().SetEmptyString();
char* data = Buffer::Data(args[0]);
CHECK_NE(data, nullptr);
const char* cert = crt->ExportChallenge(data, len);
if (cert == nullptr)
return args.GetReturnValue().SetEmptyString();
Local<Value> outString = Encode(env->isolate(), cert, strlen(cert), BUFFER);
OPENSSL_free(const_cast<char*>(cert));
args.GetReturnValue().Set(outString);
}
void InitCryptoOnce() {
SSL_library_init();
OpenSSL_add_all_algorithms();
SSL_load_error_strings();
crypto_lock_init();
CRYPTO_set_locking_callback(crypto_lock_cb);
CRYPTO_THREADID_set_callback(crypto_threadid_cb);
#ifdef OPENSSL_FIPS
if (!FIPS_mode_set(1)) {
int err = ERR_get_error();
fprintf(stderr, "openssl fips failed: %s\n", ERR_error_string(err, NULL));
UNREACHABLE();
}
#endif // OPENSSL_FIPS
// Turn off compression. Saves memory and protects against CRIME attacks.
#if !defined(OPENSSL_NO_COMP)
#if OPENSSL_VERSION_NUMBER < 0x00908000L
STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_method();
#else
STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_methods();
#endif
sk_SSL_COMP_zero(comp_methods);
CHECK_EQ(sk_SSL_COMP_num(comp_methods), 0);
#endif
#ifndef OPENSSL_NO_ENGINE
ERR_load_ENGINE_strings();
ENGINE_load_builtin_engines();
#endif // !OPENSSL_NO_ENGINE
}
#ifndef OPENSSL_NO_ENGINE
void SetEngine(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args.Length() >= 2 && args[0]->IsString());
unsigned int flags = args[1]->Uint32Value();
ClearErrorOnReturn clear_error_on_return;
(void) &clear_error_on_return; // Silence compiler warning.
const node::Utf8Value engine_id(env->isolate(), args[0]);
ENGINE* engine = ENGINE_by_id(*engine_id);
// Engine not found, try loading dynamically
if (engine == nullptr) {
engine = ENGINE_by_id("dynamic");
if (engine != nullptr) {
if (!ENGINE_ctrl_cmd_string(engine, "SO_PATH", *engine_id, 0) ||
!ENGINE_ctrl_cmd_string(engine, "LOAD", nullptr, 0)) {
ENGINE_free(engine);
engine = nullptr;
}
}
}
if (engine == nullptr) {
int err = ERR_get_error();
if (err == 0) {
char tmp[1024];
snprintf(tmp, sizeof(tmp), "Engine \"%s\" was not found", *engine_id);
return env->ThrowError(tmp);
} else {
return ThrowCryptoError(env, err);
}
}
int r = ENGINE_set_default(engine, flags);
ENGINE_free(engine);
if (r == 0)
return ThrowCryptoError(env, ERR_get_error());
}
#endif // !OPENSSL_NO_ENGINE
// FIXME(bnoordhuis) Handle global init correctly.
void InitCrypto(Handle<Object> target,
Handle<Value> unused,
Handle<Context> context,
void* priv) {
static uv_once_t init_once = UV_ONCE_INIT;
uv_once(&init_once, InitCryptoOnce);
Environment* env = Environment::GetCurrent(context);
SecureContext::Initialize(env, target);
Connection::Initialize(env, target);
CipherBase::Initialize(env, target);
DiffieHellman::Initialize(env, target);
ECDH::Initialize(env, target);
Hmac::Initialize(env, target);
Hash::Initialize(env, target);
Sign::Initialize(env, target);
Verify::Initialize(env, target);
Certificate::Initialize(env, target);
#ifndef OPENSSL_NO_ENGINE
env->SetMethod(target, "setEngine", SetEngine);
#endif // !OPENSSL_NO_ENGINE
env->SetMethod(target, "PBKDF2", PBKDF2);
env->SetMethod(target, "randomBytes", RandomBytes);
env->SetMethod(target, "getSSLCiphers", GetSSLCiphers);
env->SetMethod(target, "getCiphers", GetCiphers);
env->SetMethod(target, "getHashes", GetHashes);
env->SetMethod(target, "getCurves", GetCurves);
env->SetMethod(target, "publicEncrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
EVP_PKEY_encrypt_init,
EVP_PKEY_encrypt>);
env->SetMethod(target, "privateDecrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt>);
env->SetMethod(target, "privateEncrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
EVP_PKEY_sign_init,
EVP_PKEY_sign>);
env->SetMethod(target, "publicDecrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover>);
}
} // namespace crypto
} // namespace node
NODE_MODULE_CONTEXT_AWARE_BUILTIN(crypto, node::crypto::InitCrypto)