mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1723 lines
52 KiB
1723 lines
52 KiB
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <math.h>
|
|
|
|
#include "../include/v8stdint.h"
|
|
|
|
#include "allocation.h"
|
|
#include "checks.h"
|
|
#include "conversions.h"
|
|
#include "conversions-inl.h"
|
|
#include "globals.h"
|
|
#include "hashmap.h"
|
|
#include "list.h"
|
|
#include "preparse-data-format.h"
|
|
#include "preparse-data.h"
|
|
#include "preparser.h"
|
|
#include "unicode.h"
|
|
#include "utils.h"
|
|
|
|
namespace v8 {
|
|
|
|
#ifdef _MSC_VER
|
|
// Usually defined in math.h, but not in MSVC.
|
|
// Abstracted to work
|
|
int isfinite(double value);
|
|
#endif
|
|
|
|
namespace preparser {
|
|
|
|
// Preparsing checks a JavaScript program and emits preparse-data that helps
|
|
// a later parsing to be faster.
|
|
// See preparser-data.h for the data.
|
|
|
|
// The PreParser checks that the syntax follows the grammar for JavaScript,
|
|
// and collects some information about the program along the way.
|
|
// The grammar check is only performed in order to understand the program
|
|
// sufficiently to deduce some information about it, that can be used
|
|
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
|
|
// rather it is to speed up properly written and correct programs.
|
|
// That means that contextual checks (like a label being declared where
|
|
// it is used) are generally omitted.
|
|
|
|
void PreParser::ReportUnexpectedToken(i::Token::Value token) {
|
|
// We don't report stack overflows here, to avoid increasing the
|
|
// stack depth even further. Instead we report it after parsing is
|
|
// over, in ParseProgram.
|
|
if (token == i::Token::ILLEGAL && stack_overflow_) {
|
|
return;
|
|
}
|
|
i::JavaScriptScanner::Location source_location = scanner_->location();
|
|
|
|
// Four of the tokens are treated specially
|
|
switch (token) {
|
|
case i::Token::EOS:
|
|
return ReportMessageAt(source_location, "unexpected_eos", NULL);
|
|
case i::Token::NUMBER:
|
|
return ReportMessageAt(source_location, "unexpected_token_number", NULL);
|
|
case i::Token::STRING:
|
|
return ReportMessageAt(source_location, "unexpected_token_string", NULL);
|
|
case i::Token::IDENTIFIER:
|
|
return ReportMessageAt(source_location,
|
|
"unexpected_token_identifier", NULL);
|
|
case i::Token::FUTURE_RESERVED_WORD:
|
|
return ReportMessageAt(source_location, "unexpected_reserved", NULL);
|
|
case i::Token::FUTURE_STRICT_RESERVED_WORD:
|
|
return ReportMessageAt(source_location,
|
|
"unexpected_strict_reserved", NULL);
|
|
default:
|
|
const char* name = i::Token::String(token);
|
|
ReportMessageAt(source_location, "unexpected_token", name);
|
|
}
|
|
}
|
|
|
|
|
|
// Checks whether octal literal last seen is between beg_pos and end_pos.
|
|
// If so, reports an error.
|
|
void PreParser::CheckOctalLiteral(int beg_pos, int end_pos, bool* ok) {
|
|
i::Scanner::Location octal = scanner_->octal_position();
|
|
if (beg_pos <= octal.beg_pos && octal.end_pos <= end_pos) {
|
|
ReportMessageAt(octal, "strict_octal_literal", NULL);
|
|
scanner_->clear_octal_position();
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
#define CHECK_OK ok); \
|
|
if (!*ok) return kUnknownSourceElements; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
|
|
PreParser::Statement PreParser::ParseSourceElement(bool* ok) {
|
|
// (Ecma 262 5th Edition, clause 14):
|
|
// SourceElement:
|
|
// Statement
|
|
// FunctionDeclaration
|
|
//
|
|
// In harmony mode we allow additionally the following productions
|
|
// SourceElement:
|
|
// LetDeclaration
|
|
// ConstDeclaration
|
|
|
|
switch (peek()) {
|
|
case i::Token::FUNCTION:
|
|
return ParseFunctionDeclaration(ok);
|
|
case i::Token::LET:
|
|
case i::Token::CONST:
|
|
return ParseVariableStatement(kSourceElement, ok);
|
|
default:
|
|
return ParseStatement(ok);
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::SourceElements PreParser::ParseSourceElements(int end_token,
|
|
bool* ok) {
|
|
// SourceElements ::
|
|
// (Statement)* <end_token>
|
|
|
|
bool allow_directive_prologue = true;
|
|
while (peek() != end_token) {
|
|
Statement statement = ParseSourceElement(CHECK_OK);
|
|
if (allow_directive_prologue) {
|
|
if (statement.IsUseStrictLiteral()) {
|
|
set_strict_mode();
|
|
} else if (!statement.IsStringLiteral()) {
|
|
allow_directive_prologue = false;
|
|
}
|
|
}
|
|
}
|
|
return kUnknownSourceElements;
|
|
}
|
|
|
|
|
|
#undef CHECK_OK
|
|
#define CHECK_OK ok); \
|
|
if (!*ok) return Statement::Default(); \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
|
|
PreParser::Statement PreParser::ParseStatement(bool* ok) {
|
|
// Statement ::
|
|
// Block
|
|
// VariableStatement
|
|
// EmptyStatement
|
|
// ExpressionStatement
|
|
// IfStatement
|
|
// IterationStatement
|
|
// ContinueStatement
|
|
// BreakStatement
|
|
// ReturnStatement
|
|
// WithStatement
|
|
// LabelledStatement
|
|
// SwitchStatement
|
|
// ThrowStatement
|
|
// TryStatement
|
|
// DebuggerStatement
|
|
|
|
// Note: Since labels can only be used by 'break' and 'continue'
|
|
// statements, which themselves are only valid within blocks,
|
|
// iterations or 'switch' statements (i.e., BreakableStatements),
|
|
// labels can be simply ignored in all other cases; except for
|
|
// trivial labeled break statements 'label: break label' which is
|
|
// parsed into an empty statement.
|
|
|
|
// Keep the source position of the statement
|
|
switch (peek()) {
|
|
case i::Token::LBRACE:
|
|
return ParseBlock(ok);
|
|
|
|
case i::Token::CONST:
|
|
case i::Token::VAR:
|
|
return ParseVariableStatement(kStatement, ok);
|
|
|
|
case i::Token::SEMICOLON:
|
|
Next();
|
|
return Statement::Default();
|
|
|
|
case i::Token::IF:
|
|
return ParseIfStatement(ok);
|
|
|
|
case i::Token::DO:
|
|
return ParseDoWhileStatement(ok);
|
|
|
|
case i::Token::WHILE:
|
|
return ParseWhileStatement(ok);
|
|
|
|
case i::Token::FOR:
|
|
return ParseForStatement(ok);
|
|
|
|
case i::Token::CONTINUE:
|
|
return ParseContinueStatement(ok);
|
|
|
|
case i::Token::BREAK:
|
|
return ParseBreakStatement(ok);
|
|
|
|
case i::Token::RETURN:
|
|
return ParseReturnStatement(ok);
|
|
|
|
case i::Token::WITH:
|
|
return ParseWithStatement(ok);
|
|
|
|
case i::Token::SWITCH:
|
|
return ParseSwitchStatement(ok);
|
|
|
|
case i::Token::THROW:
|
|
return ParseThrowStatement(ok);
|
|
|
|
case i::Token::TRY:
|
|
return ParseTryStatement(ok);
|
|
|
|
case i::Token::FUNCTION: {
|
|
i::Scanner::Location start_location = scanner_->peek_location();
|
|
Statement statement = ParseFunctionDeclaration(CHECK_OK);
|
|
i::Scanner::Location end_location = scanner_->location();
|
|
if (strict_mode() || harmony_scoping_) {
|
|
ReportMessageAt(start_location.beg_pos, end_location.end_pos,
|
|
"strict_function", NULL);
|
|
*ok = false;
|
|
return Statement::Default();
|
|
} else {
|
|
return statement;
|
|
}
|
|
}
|
|
|
|
case i::Token::DEBUGGER:
|
|
return ParseDebuggerStatement(ok);
|
|
|
|
default:
|
|
return ParseExpressionOrLabelledStatement(ok);
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseFunctionDeclaration(bool* ok) {
|
|
// FunctionDeclaration ::
|
|
// 'function' Identifier '(' FormalParameterListopt ')' '{' FunctionBody '}'
|
|
Expect(i::Token::FUNCTION, CHECK_OK);
|
|
|
|
Identifier identifier = ParseIdentifier(CHECK_OK);
|
|
i::Scanner::Location location = scanner_->location();
|
|
|
|
Expression function_value = ParseFunctionLiteral(CHECK_OK);
|
|
|
|
if (function_value.IsStrictFunction() &&
|
|
!identifier.IsValidStrictVariable()) {
|
|
// Strict mode violation, using either reserved word or eval/arguments
|
|
// as name of strict function.
|
|
const char* type = "strict_function_name";
|
|
if (identifier.IsFutureStrictReserved()) {
|
|
type = "strict_reserved_word";
|
|
}
|
|
ReportMessageAt(location, type, NULL);
|
|
*ok = false;
|
|
}
|
|
return Statement::FunctionDeclaration();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseBlock(bool* ok) {
|
|
// Block ::
|
|
// '{' Statement* '}'
|
|
|
|
// Note that a Block does not introduce a new execution scope!
|
|
// (ECMA-262, 3rd, 12.2)
|
|
//
|
|
Expect(i::Token::LBRACE, CHECK_OK);
|
|
while (peek() != i::Token::RBRACE) {
|
|
if (harmony_scoping_) {
|
|
ParseSourceElement(CHECK_OK);
|
|
} else {
|
|
ParseStatement(CHECK_OK);
|
|
}
|
|
}
|
|
Expect(i::Token::RBRACE, ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseVariableStatement(
|
|
VariableDeclarationContext var_context,
|
|
bool* ok) {
|
|
// VariableStatement ::
|
|
// VariableDeclarations ';'
|
|
|
|
Statement result = ParseVariableDeclarations(var_context,
|
|
NULL,
|
|
NULL,
|
|
CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
return result;
|
|
}
|
|
|
|
|
|
// If the variable declaration declares exactly one non-const
|
|
// variable, then *var is set to that variable. In all other cases,
|
|
// *var is untouched; in particular, it is the caller's responsibility
|
|
// to initialize it properly. This mechanism is also used for the parsing
|
|
// of 'for-in' loops.
|
|
PreParser::Statement PreParser::ParseVariableDeclarations(
|
|
VariableDeclarationContext var_context,
|
|
VariableDeclarationProperties* decl_props,
|
|
int* num_decl,
|
|
bool* ok) {
|
|
// VariableDeclarations ::
|
|
// ('var' | 'const') (Identifier ('=' AssignmentExpression)?)+[',']
|
|
//
|
|
// The ES6 Draft Rev3 specifies the following grammar for const declarations
|
|
//
|
|
// ConstDeclaration ::
|
|
// const ConstBinding (',' ConstBinding)* ';'
|
|
// ConstBinding ::
|
|
// Identifier '=' AssignmentExpression
|
|
//
|
|
// TODO(ES6):
|
|
// ConstBinding ::
|
|
// BindingPattern '=' AssignmentExpression
|
|
bool require_initializer = false;
|
|
if (peek() == i::Token::VAR) {
|
|
Consume(i::Token::VAR);
|
|
} else if (peek() == i::Token::CONST) {
|
|
if (harmony_scoping_) {
|
|
if (var_context != kSourceElement &&
|
|
var_context != kForStatement) {
|
|
i::Scanner::Location location = scanner_->peek_location();
|
|
ReportMessageAt(location.beg_pos, location.end_pos,
|
|
"unprotected_const", NULL);
|
|
*ok = false;
|
|
return Statement::Default();
|
|
}
|
|
require_initializer = true;
|
|
} else if (strict_mode()) {
|
|
i::Scanner::Location location = scanner_->peek_location();
|
|
ReportMessageAt(location, "strict_const", NULL);
|
|
*ok = false;
|
|
return Statement::Default();
|
|
}
|
|
Consume(i::Token::CONST);
|
|
} else if (peek() == i::Token::LET) {
|
|
if (var_context != kSourceElement &&
|
|
var_context != kForStatement) {
|
|
i::Scanner::Location location = scanner_->peek_location();
|
|
ReportMessageAt(location.beg_pos, location.end_pos,
|
|
"unprotected_let", NULL);
|
|
*ok = false;
|
|
return Statement::Default();
|
|
}
|
|
Consume(i::Token::LET);
|
|
} else {
|
|
*ok = false;
|
|
return Statement::Default();
|
|
}
|
|
|
|
// The scope of a var/const declared variable anywhere inside a function
|
|
// is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). The scope
|
|
// of a let declared variable is the scope of the immediately enclosing
|
|
// block.
|
|
int nvars = 0; // the number of variables declared
|
|
do {
|
|
// Parse variable name.
|
|
if (nvars > 0) Consume(i::Token::COMMA);
|
|
Identifier identifier = ParseIdentifier(CHECK_OK);
|
|
if (strict_mode() && !identifier.IsValidStrictVariable()) {
|
|
StrictModeIdentifierViolation(scanner_->location(),
|
|
"strict_var_name",
|
|
identifier,
|
|
ok);
|
|
return Statement::Default();
|
|
}
|
|
nvars++;
|
|
if (peek() == i::Token::ASSIGN || require_initializer) {
|
|
Expect(i::Token::ASSIGN, CHECK_OK);
|
|
ParseAssignmentExpression(var_context != kForStatement, CHECK_OK);
|
|
if (decl_props != NULL) *decl_props = kHasInitializers;
|
|
}
|
|
} while (peek() == i::Token::COMMA);
|
|
|
|
if (num_decl != NULL) *num_decl = nvars;
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseExpressionOrLabelledStatement(bool* ok) {
|
|
// ExpressionStatement | LabelledStatement ::
|
|
// Expression ';'
|
|
// Identifier ':' Statement
|
|
|
|
Expression expr = ParseExpression(true, CHECK_OK);
|
|
if (expr.IsRawIdentifier()) {
|
|
ASSERT(!expr.AsIdentifier().IsFutureReserved());
|
|
ASSERT(!strict_mode() || !expr.AsIdentifier().IsFutureStrictReserved());
|
|
if (peek() == i::Token::COLON) {
|
|
Consume(i::Token::COLON);
|
|
return ParseStatement(ok);
|
|
}
|
|
// Preparsing is disabled for extensions (because the extension details
|
|
// aren't passed to lazily compiled functions), so we don't
|
|
// accept "native function" in the preparser.
|
|
}
|
|
// Parsed expression statement.
|
|
ExpectSemicolon(CHECK_OK);
|
|
return Statement::ExpressionStatement(expr);
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseIfStatement(bool* ok) {
|
|
// IfStatement ::
|
|
// 'if' '(' Expression ')' Statement ('else' Statement)?
|
|
|
|
Expect(i::Token::IF, CHECK_OK);
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
ParseStatement(CHECK_OK);
|
|
if (peek() == i::Token::ELSE) {
|
|
Next();
|
|
ParseStatement(CHECK_OK);
|
|
}
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseContinueStatement(bool* ok) {
|
|
// ContinueStatement ::
|
|
// 'continue' [no line terminator] Identifier? ';'
|
|
|
|
Expect(i::Token::CONTINUE, CHECK_OK);
|
|
i::Token::Value tok = peek();
|
|
if (!scanner_->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != i::Token::SEMICOLON &&
|
|
tok != i::Token::RBRACE &&
|
|
tok != i::Token::EOS) {
|
|
ParseIdentifier(CHECK_OK);
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseBreakStatement(bool* ok) {
|
|
// BreakStatement ::
|
|
// 'break' [no line terminator] Identifier? ';'
|
|
|
|
Expect(i::Token::BREAK, CHECK_OK);
|
|
i::Token::Value tok = peek();
|
|
if (!scanner_->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != i::Token::SEMICOLON &&
|
|
tok != i::Token::RBRACE &&
|
|
tok != i::Token::EOS) {
|
|
ParseIdentifier(CHECK_OK);
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseReturnStatement(bool* ok) {
|
|
// ReturnStatement ::
|
|
// 'return' [no line terminator] Expression? ';'
|
|
|
|
// Consume the return token. It is necessary to do the before
|
|
// reporting any errors on it, because of the way errors are
|
|
// reported (underlining).
|
|
Expect(i::Token::RETURN, CHECK_OK);
|
|
|
|
// An ECMAScript program is considered syntactically incorrect if it
|
|
// contains a return statement that is not within the body of a
|
|
// function. See ECMA-262, section 12.9, page 67.
|
|
// This is not handled during preparsing.
|
|
|
|
i::Token::Value tok = peek();
|
|
if (!scanner_->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != i::Token::SEMICOLON &&
|
|
tok != i::Token::RBRACE &&
|
|
tok != i::Token::EOS) {
|
|
ParseExpression(true, CHECK_OK);
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseWithStatement(bool* ok) {
|
|
// WithStatement ::
|
|
// 'with' '(' Expression ')' Statement
|
|
Expect(i::Token::WITH, CHECK_OK);
|
|
if (strict_mode()) {
|
|
i::Scanner::Location location = scanner_->location();
|
|
ReportMessageAt(location, "strict_mode_with", NULL);
|
|
*ok = false;
|
|
return Statement::Default();
|
|
}
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
|
|
scope_->EnterWith();
|
|
ParseStatement(CHECK_OK);
|
|
scope_->LeaveWith();
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseSwitchStatement(bool* ok) {
|
|
// SwitchStatement ::
|
|
// 'switch' '(' Expression ')' '{' CaseClause* '}'
|
|
|
|
Expect(i::Token::SWITCH, CHECK_OK);
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
|
|
Expect(i::Token::LBRACE, CHECK_OK);
|
|
i::Token::Value token = peek();
|
|
while (token != i::Token::RBRACE) {
|
|
if (token == i::Token::CASE) {
|
|
Expect(i::Token::CASE, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::COLON, CHECK_OK);
|
|
} else if (token == i::Token::DEFAULT) {
|
|
Expect(i::Token::DEFAULT, CHECK_OK);
|
|
Expect(i::Token::COLON, CHECK_OK);
|
|
} else {
|
|
ParseStatement(CHECK_OK);
|
|
}
|
|
token = peek();
|
|
}
|
|
Expect(i::Token::RBRACE, ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseDoWhileStatement(bool* ok) {
|
|
// DoStatement ::
|
|
// 'do' Statement 'while' '(' Expression ')' ';'
|
|
|
|
Expect(i::Token::DO, CHECK_OK);
|
|
ParseStatement(CHECK_OK);
|
|
Expect(i::Token::WHILE, CHECK_OK);
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseWhileStatement(bool* ok) {
|
|
// WhileStatement ::
|
|
// 'while' '(' Expression ')' Statement
|
|
|
|
Expect(i::Token::WHILE, CHECK_OK);
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
ParseStatement(ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseForStatement(bool* ok) {
|
|
// ForStatement ::
|
|
// 'for' '(' Expression? ';' Expression? ';' Expression? ')' Statement
|
|
|
|
Expect(i::Token::FOR, CHECK_OK);
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
if (peek() != i::Token::SEMICOLON) {
|
|
if (peek() == i::Token::VAR || peek() == i::Token::CONST ||
|
|
peek() == i::Token::LET) {
|
|
bool is_let = peek() == i::Token::LET;
|
|
int decl_count;
|
|
VariableDeclarationProperties decl_props = kHasNoInitializers;
|
|
ParseVariableDeclarations(
|
|
kForStatement, &decl_props, &decl_count, CHECK_OK);
|
|
bool accept_IN = decl_count == 1 &&
|
|
!(is_let && decl_props == kHasInitializers);
|
|
if (peek() == i::Token::IN && accept_IN) {
|
|
Expect(i::Token::IN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
|
|
ParseStatement(CHECK_OK);
|
|
return Statement::Default();
|
|
}
|
|
} else {
|
|
ParseExpression(false, CHECK_OK);
|
|
if (peek() == i::Token::IN) {
|
|
Expect(i::Token::IN, CHECK_OK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
|
|
ParseStatement(CHECK_OK);
|
|
return Statement::Default();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parsed initializer at this point.
|
|
Expect(i::Token::SEMICOLON, CHECK_OK);
|
|
|
|
if (peek() != i::Token::SEMICOLON) {
|
|
ParseExpression(true, CHECK_OK);
|
|
}
|
|
Expect(i::Token::SEMICOLON, CHECK_OK);
|
|
|
|
if (peek() != i::Token::RPAREN) {
|
|
ParseExpression(true, CHECK_OK);
|
|
}
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
|
|
ParseStatement(ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseThrowStatement(bool* ok) {
|
|
// ThrowStatement ::
|
|
// 'throw' [no line terminator] Expression ';'
|
|
|
|
Expect(i::Token::THROW, CHECK_OK);
|
|
if (scanner_->HasAnyLineTerminatorBeforeNext()) {
|
|
i::JavaScriptScanner::Location pos = scanner_->location();
|
|
ReportMessageAt(pos, "newline_after_throw", NULL);
|
|
*ok = false;
|
|
return Statement::Default();
|
|
}
|
|
ParseExpression(true, CHECK_OK);
|
|
ExpectSemicolon(ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseTryStatement(bool* ok) {
|
|
// TryStatement ::
|
|
// 'try' Block Catch
|
|
// 'try' Block Finally
|
|
// 'try' Block Catch Finally
|
|
//
|
|
// Catch ::
|
|
// 'catch' '(' Identifier ')' Block
|
|
//
|
|
// Finally ::
|
|
// 'finally' Block
|
|
|
|
// In preparsing, allow any number of catch/finally blocks, including zero
|
|
// of both.
|
|
|
|
Expect(i::Token::TRY, CHECK_OK);
|
|
|
|
ParseBlock(CHECK_OK);
|
|
|
|
bool catch_or_finally_seen = false;
|
|
if (peek() == i::Token::CATCH) {
|
|
Consume(i::Token::CATCH);
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
Identifier id = ParseIdentifier(CHECK_OK);
|
|
if (strict_mode() && !id.IsValidStrictVariable()) {
|
|
StrictModeIdentifierViolation(scanner_->location(),
|
|
"strict_catch_variable",
|
|
id,
|
|
ok);
|
|
return Statement::Default();
|
|
}
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
scope_->EnterWith();
|
|
ParseBlock(ok);
|
|
scope_->LeaveWith();
|
|
if (!*ok) Statement::Default();
|
|
catch_or_finally_seen = true;
|
|
}
|
|
if (peek() == i::Token::FINALLY) {
|
|
Consume(i::Token::FINALLY);
|
|
ParseBlock(CHECK_OK);
|
|
catch_or_finally_seen = true;
|
|
}
|
|
if (!catch_or_finally_seen) {
|
|
*ok = false;
|
|
}
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
PreParser::Statement PreParser::ParseDebuggerStatement(bool* ok) {
|
|
// In ECMA-262 'debugger' is defined as a reserved keyword. In some browser
|
|
// contexts this is used as a statement which invokes the debugger as if a
|
|
// break point is present.
|
|
// DebuggerStatement ::
|
|
// 'debugger' ';'
|
|
|
|
Expect(i::Token::DEBUGGER, CHECK_OK);
|
|
ExpectSemicolon(ok);
|
|
return Statement::Default();
|
|
}
|
|
|
|
|
|
#undef CHECK_OK
|
|
#define CHECK_OK ok); \
|
|
if (!*ok) return Expression::Default(); \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
|
|
// Precedence = 1
|
|
PreParser::Expression PreParser::ParseExpression(bool accept_IN, bool* ok) {
|
|
// Expression ::
|
|
// AssignmentExpression
|
|
// Expression ',' AssignmentExpression
|
|
|
|
Expression result = ParseAssignmentExpression(accept_IN, CHECK_OK);
|
|
while (peek() == i::Token::COMMA) {
|
|
Expect(i::Token::COMMA, CHECK_OK);
|
|
ParseAssignmentExpression(accept_IN, CHECK_OK);
|
|
result = Expression::Default();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// Precedence = 2
|
|
PreParser::Expression PreParser::ParseAssignmentExpression(bool accept_IN,
|
|
bool* ok) {
|
|
// AssignmentExpression ::
|
|
// ConditionalExpression
|
|
// LeftHandSideExpression AssignmentOperator AssignmentExpression
|
|
|
|
i::Scanner::Location before = scanner_->peek_location();
|
|
Expression expression = ParseConditionalExpression(accept_IN, CHECK_OK);
|
|
|
|
if (!i::Token::IsAssignmentOp(peek())) {
|
|
// Parsed conditional expression only (no assignment).
|
|
return expression;
|
|
}
|
|
|
|
if (strict_mode() && expression.IsIdentifier() &&
|
|
expression.AsIdentifier().IsEvalOrArguments()) {
|
|
i::Scanner::Location after = scanner_->location();
|
|
ReportMessageAt(before.beg_pos, after.end_pos,
|
|
"strict_lhs_assignment", NULL);
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
|
|
i::Token::Value op = Next(); // Get assignment operator.
|
|
ParseAssignmentExpression(accept_IN, CHECK_OK);
|
|
|
|
if ((op == i::Token::ASSIGN) && expression.IsThisProperty()) {
|
|
scope_->AddProperty();
|
|
}
|
|
|
|
return Expression::Default();
|
|
}
|
|
|
|
|
|
// Precedence = 3
|
|
PreParser::Expression PreParser::ParseConditionalExpression(bool accept_IN,
|
|
bool* ok) {
|
|
// ConditionalExpression ::
|
|
// LogicalOrExpression
|
|
// LogicalOrExpression '?' AssignmentExpression ':' AssignmentExpression
|
|
|
|
// We start using the binary expression parser for prec >= 4 only!
|
|
Expression expression = ParseBinaryExpression(4, accept_IN, CHECK_OK);
|
|
if (peek() != i::Token::CONDITIONAL) return expression;
|
|
Consume(i::Token::CONDITIONAL);
|
|
// In parsing the first assignment expression in conditional
|
|
// expressions we always accept the 'in' keyword; see ECMA-262,
|
|
// section 11.12, page 58.
|
|
ParseAssignmentExpression(true, CHECK_OK);
|
|
Expect(i::Token::COLON, CHECK_OK);
|
|
ParseAssignmentExpression(accept_IN, CHECK_OK);
|
|
return Expression::Default();
|
|
}
|
|
|
|
|
|
int PreParser::Precedence(i::Token::Value tok, bool accept_IN) {
|
|
if (tok == i::Token::IN && !accept_IN)
|
|
return 0; // 0 precedence will terminate binary expression parsing
|
|
|
|
return i::Token::Precedence(tok);
|
|
}
|
|
|
|
|
|
// Precedence >= 4
|
|
PreParser::Expression PreParser::ParseBinaryExpression(int prec,
|
|
bool accept_IN,
|
|
bool* ok) {
|
|
Expression result = ParseUnaryExpression(CHECK_OK);
|
|
for (int prec1 = Precedence(peek(), accept_IN); prec1 >= prec; prec1--) {
|
|
// prec1 >= 4
|
|
while (Precedence(peek(), accept_IN) == prec1) {
|
|
Next();
|
|
ParseBinaryExpression(prec1 + 1, accept_IN, CHECK_OK);
|
|
result = Expression::Default();
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseUnaryExpression(bool* ok) {
|
|
// UnaryExpression ::
|
|
// PostfixExpression
|
|
// 'delete' UnaryExpression
|
|
// 'void' UnaryExpression
|
|
// 'typeof' UnaryExpression
|
|
// '++' UnaryExpression
|
|
// '--' UnaryExpression
|
|
// '+' UnaryExpression
|
|
// '-' UnaryExpression
|
|
// '~' UnaryExpression
|
|
// '!' UnaryExpression
|
|
|
|
i::Token::Value op = peek();
|
|
if (i::Token::IsUnaryOp(op)) {
|
|
op = Next();
|
|
ParseUnaryExpression(ok);
|
|
return Expression::Default();
|
|
} else if (i::Token::IsCountOp(op)) {
|
|
op = Next();
|
|
i::Scanner::Location before = scanner_->peek_location();
|
|
Expression expression = ParseUnaryExpression(CHECK_OK);
|
|
if (strict_mode() && expression.IsIdentifier() &&
|
|
expression.AsIdentifier().IsEvalOrArguments()) {
|
|
i::Scanner::Location after = scanner_->location();
|
|
ReportMessageAt(before.beg_pos, after.end_pos,
|
|
"strict_lhs_prefix", NULL);
|
|
*ok = false;
|
|
}
|
|
return Expression::Default();
|
|
} else {
|
|
return ParsePostfixExpression(ok);
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParsePostfixExpression(bool* ok) {
|
|
// PostfixExpression ::
|
|
// LeftHandSideExpression ('++' | '--')?
|
|
|
|
i::Scanner::Location before = scanner_->peek_location();
|
|
Expression expression = ParseLeftHandSideExpression(CHECK_OK);
|
|
if (!scanner_->HasAnyLineTerminatorBeforeNext() &&
|
|
i::Token::IsCountOp(peek())) {
|
|
if (strict_mode() && expression.IsIdentifier() &&
|
|
expression.AsIdentifier().IsEvalOrArguments()) {
|
|
i::Scanner::Location after = scanner_->location();
|
|
ReportMessageAt(before.beg_pos, after.end_pos,
|
|
"strict_lhs_postfix", NULL);
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
Next();
|
|
return Expression::Default();
|
|
}
|
|
return expression;
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseLeftHandSideExpression(bool* ok) {
|
|
// LeftHandSideExpression ::
|
|
// (NewExpression | MemberExpression) ...
|
|
|
|
Expression result = Expression::Default();
|
|
if (peek() == i::Token::NEW) {
|
|
result = ParseNewExpression(CHECK_OK);
|
|
} else {
|
|
result = ParseMemberExpression(CHECK_OK);
|
|
}
|
|
|
|
while (true) {
|
|
switch (peek()) {
|
|
case i::Token::LBRACK: {
|
|
Consume(i::Token::LBRACK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RBRACK, CHECK_OK);
|
|
if (result.IsThis()) {
|
|
result = Expression::ThisProperty();
|
|
} else {
|
|
result = Expression::Default();
|
|
}
|
|
break;
|
|
}
|
|
|
|
case i::Token::LPAREN: {
|
|
ParseArguments(CHECK_OK);
|
|
result = Expression::Default();
|
|
break;
|
|
}
|
|
|
|
case i::Token::PERIOD: {
|
|
Consume(i::Token::PERIOD);
|
|
ParseIdentifierName(CHECK_OK);
|
|
if (result.IsThis()) {
|
|
result = Expression::ThisProperty();
|
|
} else {
|
|
result = Expression::Default();
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseNewExpression(bool* ok) {
|
|
// NewExpression ::
|
|
// ('new')+ MemberExpression
|
|
|
|
// The grammar for new expressions is pretty warped. The keyword
|
|
// 'new' can either be a part of the new expression (where it isn't
|
|
// followed by an argument list) or a part of the member expression,
|
|
// where it must be followed by an argument list. To accommodate
|
|
// this, we parse the 'new' keywords greedily and keep track of how
|
|
// many we have parsed. This information is then passed on to the
|
|
// member expression parser, which is only allowed to match argument
|
|
// lists as long as it has 'new' prefixes left
|
|
unsigned new_count = 0;
|
|
do {
|
|
Consume(i::Token::NEW);
|
|
new_count++;
|
|
} while (peek() == i::Token::NEW);
|
|
|
|
return ParseMemberWithNewPrefixesExpression(new_count, ok);
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseMemberExpression(bool* ok) {
|
|
return ParseMemberWithNewPrefixesExpression(0, ok);
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseMemberWithNewPrefixesExpression(
|
|
unsigned new_count, bool* ok) {
|
|
// MemberExpression ::
|
|
// (PrimaryExpression | FunctionLiteral)
|
|
// ('[' Expression ']' | '.' Identifier | Arguments)*
|
|
|
|
// Parse the initial primary or function expression.
|
|
Expression result = Expression::Default();
|
|
if (peek() == i::Token::FUNCTION) {
|
|
Consume(i::Token::FUNCTION);
|
|
Identifier identifier = Identifier::Default();
|
|
if (peek_any_identifier()) {
|
|
identifier = ParseIdentifier(CHECK_OK);
|
|
}
|
|
result = ParseFunctionLiteral(CHECK_OK);
|
|
if (result.IsStrictFunction() && !identifier.IsValidStrictVariable()) {
|
|
StrictModeIdentifierViolation(scanner_->location(),
|
|
"strict_function_name",
|
|
identifier,
|
|
ok);
|
|
return Expression::Default();
|
|
}
|
|
} else {
|
|
result = ParsePrimaryExpression(CHECK_OK);
|
|
}
|
|
|
|
while (true) {
|
|
switch (peek()) {
|
|
case i::Token::LBRACK: {
|
|
Consume(i::Token::LBRACK);
|
|
ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RBRACK, CHECK_OK);
|
|
if (result.IsThis()) {
|
|
result = Expression::ThisProperty();
|
|
} else {
|
|
result = Expression::Default();
|
|
}
|
|
break;
|
|
}
|
|
case i::Token::PERIOD: {
|
|
Consume(i::Token::PERIOD);
|
|
ParseIdentifierName(CHECK_OK);
|
|
if (result.IsThis()) {
|
|
result = Expression::ThisProperty();
|
|
} else {
|
|
result = Expression::Default();
|
|
}
|
|
break;
|
|
}
|
|
case i::Token::LPAREN: {
|
|
if (new_count == 0) return result;
|
|
// Consume one of the new prefixes (already parsed).
|
|
ParseArguments(CHECK_OK);
|
|
new_count--;
|
|
result = Expression::Default();
|
|
break;
|
|
}
|
|
default:
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParsePrimaryExpression(bool* ok) {
|
|
// PrimaryExpression ::
|
|
// 'this'
|
|
// 'null'
|
|
// 'true'
|
|
// 'false'
|
|
// Identifier
|
|
// Number
|
|
// String
|
|
// ArrayLiteral
|
|
// ObjectLiteral
|
|
// RegExpLiteral
|
|
// '(' Expression ')'
|
|
|
|
Expression result = Expression::Default();
|
|
switch (peek()) {
|
|
case i::Token::THIS: {
|
|
Next();
|
|
result = Expression::This();
|
|
break;
|
|
}
|
|
|
|
case i::Token::FUTURE_RESERVED_WORD: {
|
|
Next();
|
|
i::Scanner::Location location = scanner_->location();
|
|
ReportMessageAt(location.beg_pos, location.end_pos,
|
|
"reserved_word", NULL);
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
|
|
case i::Token::FUTURE_STRICT_RESERVED_WORD:
|
|
if (strict_mode()) {
|
|
Next();
|
|
i::Scanner::Location location = scanner_->location();
|
|
ReportMessageAt(location, "strict_reserved_word", NULL);
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
// FALLTHROUGH
|
|
case i::Token::IDENTIFIER: {
|
|
Identifier id = ParseIdentifier(CHECK_OK);
|
|
result = Expression::FromIdentifier(id);
|
|
break;
|
|
}
|
|
|
|
case i::Token::NULL_LITERAL:
|
|
case i::Token::TRUE_LITERAL:
|
|
case i::Token::FALSE_LITERAL:
|
|
case i::Token::NUMBER: {
|
|
Next();
|
|
break;
|
|
}
|
|
case i::Token::STRING: {
|
|
Next();
|
|
result = GetStringSymbol();
|
|
break;
|
|
}
|
|
|
|
case i::Token::ASSIGN_DIV:
|
|
result = ParseRegExpLiteral(true, CHECK_OK);
|
|
break;
|
|
|
|
case i::Token::DIV:
|
|
result = ParseRegExpLiteral(false, CHECK_OK);
|
|
break;
|
|
|
|
case i::Token::LBRACK:
|
|
result = ParseArrayLiteral(CHECK_OK);
|
|
break;
|
|
|
|
case i::Token::LBRACE:
|
|
result = ParseObjectLiteral(CHECK_OK);
|
|
break;
|
|
|
|
case i::Token::LPAREN:
|
|
Consume(i::Token::LPAREN);
|
|
parenthesized_function_ = (peek() == i::Token::FUNCTION);
|
|
result = ParseExpression(true, CHECK_OK);
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
result = result.Parenthesize();
|
|
break;
|
|
|
|
case i::Token::MOD:
|
|
result = ParseV8Intrinsic(CHECK_OK);
|
|
break;
|
|
|
|
default: {
|
|
Next();
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseArrayLiteral(bool* ok) {
|
|
// ArrayLiteral ::
|
|
// '[' Expression? (',' Expression?)* ']'
|
|
Expect(i::Token::LBRACK, CHECK_OK);
|
|
while (peek() != i::Token::RBRACK) {
|
|
if (peek() != i::Token::COMMA) {
|
|
ParseAssignmentExpression(true, CHECK_OK);
|
|
}
|
|
if (peek() != i::Token::RBRACK) {
|
|
Expect(i::Token::COMMA, CHECK_OK);
|
|
}
|
|
}
|
|
Expect(i::Token::RBRACK, CHECK_OK);
|
|
|
|
scope_->NextMaterializedLiteralIndex();
|
|
return Expression::Default();
|
|
}
|
|
|
|
void PreParser::CheckDuplicate(DuplicateFinder* finder,
|
|
i::Token::Value property,
|
|
int type,
|
|
bool* ok) {
|
|
int old_type;
|
|
if (property == i::Token::NUMBER) {
|
|
old_type = finder->AddNumber(scanner_->literal_ascii_string(), type);
|
|
} else if (scanner_->is_literal_ascii()) {
|
|
old_type = finder->AddAsciiSymbol(scanner_->literal_ascii_string(),
|
|
type);
|
|
} else {
|
|
old_type = finder->AddUC16Symbol(scanner_->literal_uc16_string(), type);
|
|
}
|
|
if (HasConflict(old_type, type)) {
|
|
if (IsDataDataConflict(old_type, type)) {
|
|
// Both are data properties.
|
|
if (!strict_mode()) return;
|
|
ReportMessageAt(scanner_->location(),
|
|
"strict_duplicate_property", NULL);
|
|
} else if (IsDataAccessorConflict(old_type, type)) {
|
|
// Both a data and an accessor property with the same name.
|
|
ReportMessageAt(scanner_->location(),
|
|
"accessor_data_property", NULL);
|
|
} else {
|
|
ASSERT(IsAccessorAccessorConflict(old_type, type));
|
|
// Both accessors of the same type.
|
|
ReportMessageAt(scanner_->location(),
|
|
"accessor_get_set", NULL);
|
|
}
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseObjectLiteral(bool* ok) {
|
|
// ObjectLiteral ::
|
|
// '{' (
|
|
// ((IdentifierName | String | Number) ':' AssignmentExpression)
|
|
// | (('get' | 'set') (IdentifierName | String | Number) FunctionLiteral)
|
|
// )*[','] '}'
|
|
|
|
Expect(i::Token::LBRACE, CHECK_OK);
|
|
DuplicateFinder duplicate_finder(scanner_->unicode_cache());
|
|
while (peek() != i::Token::RBRACE) {
|
|
i::Token::Value next = peek();
|
|
switch (next) {
|
|
case i::Token::IDENTIFIER:
|
|
case i::Token::FUTURE_RESERVED_WORD:
|
|
case i::Token::FUTURE_STRICT_RESERVED_WORD: {
|
|
bool is_getter = false;
|
|
bool is_setter = false;
|
|
ParseIdentifierNameOrGetOrSet(&is_getter, &is_setter, CHECK_OK);
|
|
if ((is_getter || is_setter) && peek() != i::Token::COLON) {
|
|
i::Token::Value name = Next();
|
|
bool is_keyword = i::Token::IsKeyword(name);
|
|
if (name != i::Token::IDENTIFIER &&
|
|
name != i::Token::FUTURE_RESERVED_WORD &&
|
|
name != i::Token::FUTURE_STRICT_RESERVED_WORD &&
|
|
name != i::Token::NUMBER &&
|
|
name != i::Token::STRING &&
|
|
!is_keyword) {
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
if (!is_keyword) {
|
|
LogSymbol();
|
|
}
|
|
PropertyType type = is_getter ? kGetterProperty : kSetterProperty;
|
|
CheckDuplicate(&duplicate_finder, name, type, CHECK_OK);
|
|
ParseFunctionLiteral(CHECK_OK);
|
|
if (peek() != i::Token::RBRACE) {
|
|
Expect(i::Token::COMMA, CHECK_OK);
|
|
}
|
|
continue; // restart the while
|
|
}
|
|
CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
|
|
break;
|
|
}
|
|
case i::Token::STRING:
|
|
Consume(next);
|
|
CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
|
|
GetStringSymbol();
|
|
break;
|
|
case i::Token::NUMBER:
|
|
Consume(next);
|
|
CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
|
|
break;
|
|
default:
|
|
if (i::Token::IsKeyword(next)) {
|
|
Consume(next);
|
|
CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
|
|
} else {
|
|
// Unexpected token.
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
}
|
|
|
|
Expect(i::Token::COLON, CHECK_OK);
|
|
ParseAssignmentExpression(true, CHECK_OK);
|
|
|
|
// TODO(1240767): Consider allowing trailing comma.
|
|
if (peek() != i::Token::RBRACE) Expect(i::Token::COMMA, CHECK_OK);
|
|
}
|
|
Expect(i::Token::RBRACE, CHECK_OK);
|
|
|
|
scope_->NextMaterializedLiteralIndex();
|
|
return Expression::Default();
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseRegExpLiteral(bool seen_equal,
|
|
bool* ok) {
|
|
if (!scanner_->ScanRegExpPattern(seen_equal)) {
|
|
Next();
|
|
ReportMessageAt(scanner_->location(), "unterminated_regexp", NULL);
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
|
|
scope_->NextMaterializedLiteralIndex();
|
|
|
|
if (!scanner_->ScanRegExpFlags()) {
|
|
Next();
|
|
ReportMessageAt(scanner_->location(), "invalid_regexp_flags", NULL);
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
Next();
|
|
return Expression::Default();
|
|
}
|
|
|
|
|
|
PreParser::Arguments PreParser::ParseArguments(bool* ok) {
|
|
// Arguments ::
|
|
// '(' (AssignmentExpression)*[','] ')'
|
|
|
|
Expect(i::Token::LPAREN, ok);
|
|
if (!*ok) return -1;
|
|
bool done = (peek() == i::Token::RPAREN);
|
|
int argc = 0;
|
|
while (!done) {
|
|
ParseAssignmentExpression(true, ok);
|
|
if (!*ok) return -1;
|
|
argc++;
|
|
done = (peek() == i::Token::RPAREN);
|
|
if (!done) {
|
|
Expect(i::Token::COMMA, ok);
|
|
if (!*ok) return -1;
|
|
}
|
|
}
|
|
Expect(i::Token::RPAREN, ok);
|
|
return argc;
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseFunctionLiteral(bool* ok) {
|
|
// Function ::
|
|
// '(' FormalParameterList? ')' '{' FunctionBody '}'
|
|
|
|
// Parse function body.
|
|
ScopeType outer_scope_type = scope_->type();
|
|
bool inside_with = scope_->IsInsideWith();
|
|
Scope function_scope(&scope_, kFunctionScope);
|
|
// FormalParameterList ::
|
|
// '(' (Identifier)*[','] ')'
|
|
Expect(i::Token::LPAREN, CHECK_OK);
|
|
int start_position = scanner_->location().beg_pos;
|
|
bool done = (peek() == i::Token::RPAREN);
|
|
DuplicateFinder duplicate_finder(scanner_->unicode_cache());
|
|
while (!done) {
|
|
Identifier id = ParseIdentifier(CHECK_OK);
|
|
if (!id.IsValidStrictVariable()) {
|
|
StrictModeIdentifierViolation(scanner_->location(),
|
|
"strict_param_name",
|
|
id,
|
|
CHECK_OK);
|
|
}
|
|
int prev_value;
|
|
if (scanner_->is_literal_ascii()) {
|
|
prev_value =
|
|
duplicate_finder.AddAsciiSymbol(scanner_->literal_ascii_string(), 1);
|
|
} else {
|
|
prev_value =
|
|
duplicate_finder.AddUC16Symbol(scanner_->literal_uc16_string(), 1);
|
|
}
|
|
|
|
if (prev_value != 0) {
|
|
SetStrictModeViolation(scanner_->location(),
|
|
"strict_param_dupe",
|
|
CHECK_OK);
|
|
}
|
|
done = (peek() == i::Token::RPAREN);
|
|
if (!done) {
|
|
Expect(i::Token::COMMA, CHECK_OK);
|
|
}
|
|
}
|
|
Expect(i::Token::RPAREN, CHECK_OK);
|
|
|
|
Expect(i::Token::LBRACE, CHECK_OK);
|
|
int function_block_pos = scanner_->location().beg_pos;
|
|
|
|
// Determine if the function will be lazily compiled.
|
|
// Currently only happens to top-level functions.
|
|
// Optimistically assume that all top-level functions are lazily compiled.
|
|
bool is_lazily_compiled = (outer_scope_type == kTopLevelScope &&
|
|
!inside_with && allow_lazy_ &&
|
|
!parenthesized_function_);
|
|
parenthesized_function_ = false;
|
|
|
|
if (is_lazily_compiled) {
|
|
log_->PauseRecording();
|
|
ParseSourceElements(i::Token::RBRACE, ok);
|
|
log_->ResumeRecording();
|
|
if (!*ok) Expression::Default();
|
|
|
|
Expect(i::Token::RBRACE, CHECK_OK);
|
|
|
|
// Position right after terminal '}'.
|
|
int end_pos = scanner_->location().end_pos;
|
|
log_->LogFunction(function_block_pos, end_pos,
|
|
function_scope.materialized_literal_count(),
|
|
function_scope.expected_properties(),
|
|
strict_mode() ? 1 : 0);
|
|
} else {
|
|
ParseSourceElements(i::Token::RBRACE, CHECK_OK);
|
|
Expect(i::Token::RBRACE, CHECK_OK);
|
|
}
|
|
|
|
if (strict_mode()) {
|
|
int end_position = scanner_->location().end_pos;
|
|
CheckOctalLiteral(start_position, end_position, CHECK_OK);
|
|
CheckDelayedStrictModeViolation(start_position, end_position, CHECK_OK);
|
|
return Expression::StrictFunction();
|
|
}
|
|
|
|
return Expression::Default();
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::ParseV8Intrinsic(bool* ok) {
|
|
// CallRuntime ::
|
|
// '%' Identifier Arguments
|
|
Expect(i::Token::MOD, CHECK_OK);
|
|
if (!allow_natives_syntax_) {
|
|
*ok = false;
|
|
return Expression::Default();
|
|
}
|
|
ParseIdentifier(CHECK_OK);
|
|
ParseArguments(ok);
|
|
|
|
return Expression::Default();
|
|
}
|
|
|
|
#undef CHECK_OK
|
|
|
|
|
|
void PreParser::ExpectSemicolon(bool* ok) {
|
|
// Check for automatic semicolon insertion according to
|
|
// the rules given in ECMA-262, section 7.9, page 21.
|
|
i::Token::Value tok = peek();
|
|
if (tok == i::Token::SEMICOLON) {
|
|
Next();
|
|
return;
|
|
}
|
|
if (scanner_->HasAnyLineTerminatorBeforeNext() ||
|
|
tok == i::Token::RBRACE ||
|
|
tok == i::Token::EOS) {
|
|
return;
|
|
}
|
|
Expect(i::Token::SEMICOLON, ok);
|
|
}
|
|
|
|
|
|
void PreParser::LogSymbol() {
|
|
int identifier_pos = scanner_->location().beg_pos;
|
|
if (scanner_->is_literal_ascii()) {
|
|
log_->LogAsciiSymbol(identifier_pos, scanner_->literal_ascii_string());
|
|
} else {
|
|
log_->LogUC16Symbol(identifier_pos, scanner_->literal_uc16_string());
|
|
}
|
|
}
|
|
|
|
|
|
PreParser::Expression PreParser::GetStringSymbol() {
|
|
const int kUseStrictLength = 10;
|
|
const char* kUseStrictChars = "use strict";
|
|
LogSymbol();
|
|
if (scanner_->is_literal_ascii() &&
|
|
scanner_->literal_length() == kUseStrictLength &&
|
|
!scanner_->literal_contains_escapes() &&
|
|
!strncmp(scanner_->literal_ascii_string().start(), kUseStrictChars,
|
|
kUseStrictLength)) {
|
|
return Expression::UseStrictStringLiteral();
|
|
}
|
|
return Expression::StringLiteral();
|
|
}
|
|
|
|
|
|
PreParser::Identifier PreParser::GetIdentifierSymbol() {
|
|
LogSymbol();
|
|
if (scanner_->current_token() == i::Token::FUTURE_RESERVED_WORD) {
|
|
return Identifier::FutureReserved();
|
|
} else if (scanner_->current_token() ==
|
|
i::Token::FUTURE_STRICT_RESERVED_WORD) {
|
|
return Identifier::FutureStrictReserved();
|
|
}
|
|
if (scanner_->is_literal_ascii()) {
|
|
// Detect strict-mode poison words.
|
|
if (scanner_->literal_length() == 4 &&
|
|
!strncmp(scanner_->literal_ascii_string().start(), "eval", 4)) {
|
|
return Identifier::Eval();
|
|
}
|
|
if (scanner_->literal_length() == 9 &&
|
|
!strncmp(scanner_->literal_ascii_string().start(), "arguments", 9)) {
|
|
return Identifier::Arguments();
|
|
}
|
|
}
|
|
return Identifier::Default();
|
|
}
|
|
|
|
|
|
PreParser::Identifier PreParser::ParseIdentifier(bool* ok) {
|
|
i::Token::Value next = Next();
|
|
switch (next) {
|
|
case i::Token::FUTURE_RESERVED_WORD: {
|
|
i::Scanner::Location location = scanner_->location();
|
|
ReportMessageAt(location.beg_pos, location.end_pos,
|
|
"reserved_word", NULL);
|
|
*ok = false;
|
|
return GetIdentifierSymbol();
|
|
}
|
|
case i::Token::FUTURE_STRICT_RESERVED_WORD:
|
|
if (strict_mode()) {
|
|
i::Scanner::Location location = scanner_->location();
|
|
ReportMessageAt(location.beg_pos, location.end_pos,
|
|
"strict_reserved_word", NULL);
|
|
*ok = false;
|
|
}
|
|
// FALLTHROUGH
|
|
case i::Token::IDENTIFIER:
|
|
return GetIdentifierSymbol();
|
|
default:
|
|
*ok = false;
|
|
return Identifier::Default();
|
|
}
|
|
}
|
|
|
|
|
|
void PreParser::SetStrictModeViolation(i::Scanner::Location location,
|
|
const char* type,
|
|
bool* ok) {
|
|
if (strict_mode()) {
|
|
ReportMessageAt(location, type, NULL);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
// Delay report in case this later turns out to be strict code
|
|
// (i.e., for function names and parameters prior to a "use strict"
|
|
// directive).
|
|
// It's safe to overwrite an existing violation.
|
|
// It's either from a function that turned out to be non-strict,
|
|
// or it's in the current function (and we just need to report
|
|
// one error), or it's in a unclosed nesting function that wasn't
|
|
// strict (otherwise we would already be in strict mode).
|
|
strict_mode_violation_location_ = location;
|
|
strict_mode_violation_type_ = type;
|
|
}
|
|
|
|
|
|
void PreParser::CheckDelayedStrictModeViolation(int beg_pos,
|
|
int end_pos,
|
|
bool* ok) {
|
|
i::Scanner::Location location = strict_mode_violation_location_;
|
|
if (location.IsValid() &&
|
|
location.beg_pos > beg_pos && location.end_pos < end_pos) {
|
|
ReportMessageAt(location, strict_mode_violation_type_, NULL);
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
void PreParser::StrictModeIdentifierViolation(i::Scanner::Location location,
|
|
const char* eval_args_type,
|
|
Identifier identifier,
|
|
bool* ok) {
|
|
const char* type = eval_args_type;
|
|
if (identifier.IsFutureReserved()) {
|
|
type = "reserved_word";
|
|
} else if (identifier.IsFutureStrictReserved()) {
|
|
type = "strict_reserved_word";
|
|
}
|
|
if (strict_mode()) {
|
|
ReportMessageAt(location, type, NULL);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
strict_mode_violation_location_ = location;
|
|
strict_mode_violation_type_ = type;
|
|
}
|
|
|
|
|
|
PreParser::Identifier PreParser::ParseIdentifierName(bool* ok) {
|
|
i::Token::Value next = Next();
|
|
if (i::Token::IsKeyword(next)) {
|
|
int pos = scanner_->location().beg_pos;
|
|
const char* keyword = i::Token::String(next);
|
|
log_->LogAsciiSymbol(pos, i::Vector<const char>(keyword,
|
|
i::StrLength(keyword)));
|
|
return Identifier::Default();
|
|
}
|
|
if (next == i::Token::IDENTIFIER ||
|
|
next == i::Token::FUTURE_RESERVED_WORD ||
|
|
next == i::Token::FUTURE_STRICT_RESERVED_WORD) {
|
|
return GetIdentifierSymbol();
|
|
}
|
|
*ok = false;
|
|
return Identifier::Default();
|
|
}
|
|
|
|
#undef CHECK_OK
|
|
|
|
|
|
// This function reads an identifier and determines whether or not it
|
|
// is 'get' or 'set'.
|
|
PreParser::Identifier PreParser::ParseIdentifierNameOrGetOrSet(bool* is_get,
|
|
bool* is_set,
|
|
bool* ok) {
|
|
Identifier result = ParseIdentifierName(ok);
|
|
if (!*ok) return Identifier::Default();
|
|
if (scanner_->is_literal_ascii() &&
|
|
scanner_->literal_length() == 3) {
|
|
const char* token = scanner_->literal_ascii_string().start();
|
|
*is_get = strncmp(token, "get", 3) == 0;
|
|
*is_set = !*is_get && strncmp(token, "set", 3) == 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool PreParser::peek_any_identifier() {
|
|
i::Token::Value next = peek();
|
|
return next == i::Token::IDENTIFIER ||
|
|
next == i::Token::FUTURE_RESERVED_WORD ||
|
|
next == i::Token::FUTURE_STRICT_RESERVED_WORD;
|
|
}
|
|
|
|
|
|
int DuplicateFinder::AddAsciiSymbol(i::Vector<const char> key, int value) {
|
|
return AddSymbol(i::Vector<const byte>::cast(key), true, value);
|
|
}
|
|
|
|
int DuplicateFinder::AddUC16Symbol(i::Vector<const uint16_t> key, int value) {
|
|
return AddSymbol(i::Vector<const byte>::cast(key), false, value);
|
|
}
|
|
|
|
int DuplicateFinder::AddSymbol(i::Vector<const byte> key,
|
|
bool is_ascii,
|
|
int value) {
|
|
uint32_t hash = Hash(key, is_ascii);
|
|
byte* encoding = BackupKey(key, is_ascii);
|
|
i::HashMap::Entry* entry = map_.Lookup(encoding, hash, true);
|
|
int old_value = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
|
|
entry->value =
|
|
reinterpret_cast<void*>(static_cast<intptr_t>(value | old_value));
|
|
return old_value;
|
|
}
|
|
|
|
|
|
int DuplicateFinder::AddNumber(i::Vector<const char> key, int value) {
|
|
ASSERT(key.length() > 0);
|
|
// Quick check for already being in canonical form.
|
|
if (IsNumberCanonical(key)) {
|
|
return AddAsciiSymbol(key, value);
|
|
}
|
|
|
|
int flags = i::ALLOW_HEX | i::ALLOW_OCTALS;
|
|
double double_value = StringToDouble(unicode_constants_, key, flags, 0.0);
|
|
int length;
|
|
const char* string;
|
|
if (!isfinite(double_value)) {
|
|
string = "Infinity";
|
|
length = 8; // strlen("Infinity");
|
|
} else {
|
|
string = DoubleToCString(double_value,
|
|
i::Vector<char>(number_buffer_, kBufferSize));
|
|
length = i::StrLength(string);
|
|
}
|
|
return AddSymbol(i::Vector<const byte>(reinterpret_cast<const byte*>(string),
|
|
length), true, value);
|
|
}
|
|
|
|
|
|
bool DuplicateFinder::IsNumberCanonical(i::Vector<const char> number) {
|
|
// Test for a safe approximation of number literals that are already
|
|
// in canonical form: max 15 digits, no leading zeroes, except an
|
|
// integer part that is a single zero, and no trailing zeros below
|
|
// the decimal point.
|
|
int pos = 0;
|
|
int length = number.length();
|
|
if (number.length() > 15) return false;
|
|
if (number[pos] == '0') {
|
|
pos++;
|
|
} else {
|
|
while (pos < length &&
|
|
static_cast<unsigned>(number[pos] - '0') <= ('9' - '0')) pos++;
|
|
}
|
|
if (length == pos) return true;
|
|
if (number[pos] != '.') return false;
|
|
pos++;
|
|
bool invalid_last_digit = true;
|
|
while (pos < length) {
|
|
byte digit = number[pos] - '0';
|
|
if (digit > '9' - '0') return false;
|
|
invalid_last_digit = (digit == 0);
|
|
pos++;
|
|
}
|
|
return !invalid_last_digit;
|
|
}
|
|
|
|
|
|
uint32_t DuplicateFinder::Hash(i::Vector<const byte> key, bool is_ascii) {
|
|
// Primitive hash function, almost identical to the one used
|
|
// for strings (except that it's seeded by the length and ASCII-ness).
|
|
int length = key.length();
|
|
uint32_t hash = (length << 1) | (is_ascii ? 1 : 0) ;
|
|
for (int i = 0; i < length; i++) {
|
|
uint32_t c = key[i];
|
|
hash = (hash + c) * 1025;
|
|
hash ^= (hash >> 6);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
|
|
bool DuplicateFinder::Match(void* first, void* second) {
|
|
// Decode lengths.
|
|
// Length + ASCII-bit is encoded as base 128, most significant heptet first,
|
|
// with a 8th bit being non-zero while there are more heptets.
|
|
// The value encodes the number of bytes following, and whether the original
|
|
// was ASCII.
|
|
byte* s1 = reinterpret_cast<byte*>(first);
|
|
byte* s2 = reinterpret_cast<byte*>(second);
|
|
uint32_t length_ascii_field = 0;
|
|
byte c1;
|
|
do {
|
|
c1 = *s1;
|
|
if (c1 != *s2) return false;
|
|
length_ascii_field = (length_ascii_field << 7) | (c1 & 0x7f);
|
|
s1++;
|
|
s2++;
|
|
} while ((c1 & 0x80) != 0);
|
|
int length = static_cast<int>(length_ascii_field >> 1);
|
|
return memcmp(s1, s2, length) == 0;
|
|
}
|
|
|
|
|
|
byte* DuplicateFinder::BackupKey(i::Vector<const byte> bytes,
|
|
bool is_ascii) {
|
|
uint32_t ascii_length = (bytes.length() << 1) | (is_ascii ? 1 : 0);
|
|
backing_store_.StartSequence();
|
|
// Emit ascii_length as base-128 encoded number, with the 7th bit set
|
|
// on the byte of every heptet except the last, least significant, one.
|
|
if (ascii_length >= (1 << 7)) {
|
|
if (ascii_length >= (1 << 14)) {
|
|
if (ascii_length >= (1 << 21)) {
|
|
if (ascii_length >= (1 << 28)) {
|
|
backing_store_.Add(static_cast<byte>((ascii_length >> 28) | 0x80));
|
|
}
|
|
backing_store_.Add(static_cast<byte>((ascii_length >> 21) | 0x80u));
|
|
}
|
|
backing_store_.Add(static_cast<byte>((ascii_length >> 14) | 0x80u));
|
|
}
|
|
backing_store_.Add(static_cast<byte>((ascii_length >> 7) | 0x80u));
|
|
}
|
|
backing_store_.Add(static_cast<byte>(ascii_length & 0x7f));
|
|
|
|
backing_store_.AddBlock(bytes);
|
|
return backing_store_.EndSequence().start();
|
|
}
|
|
} } // v8::preparser
|
|
|