You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

905 lines
26 KiB

// Copyright 2006-2009 the V8 project authors. All rights reserved.
//
// Tests of logging functions from log.h
#ifdef ENABLE_LOGGING_AND_PROFILING
#ifdef __linux__
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <unistd.h>
#endif // __linux__
#include "v8.h"
#include "log.h"
#include "v8threads.h"
#include "cctest.h"
using v8::internal::Address;
using v8::internal::EmbeddedVector;
using v8::internal::Logger;
namespace i = v8::internal;
static void SetUp() {
// Log to memory buffer.
i::FLAG_logfile = "*";
i::FLAG_log = true;
Logger::Setup();
}
static void TearDown() {
Logger::TearDown();
}
TEST(EmptyLog) {
SetUp();
CHECK_EQ(0, Logger::GetLogLines(0, NULL, 0));
CHECK_EQ(0, Logger::GetLogLines(100, NULL, 0));
CHECK_EQ(0, Logger::GetLogLines(0, NULL, 100));
CHECK_EQ(0, Logger::GetLogLines(100, NULL, 100));
TearDown();
}
TEST(GetMessages) {
SetUp();
Logger::StringEvent("aaa", "bbb");
Logger::StringEvent("cccc", "dddd");
CHECK_EQ(0, Logger::GetLogLines(0, NULL, 0));
char log_lines[100];
memset(log_lines, 0, sizeof(log_lines));
// Requesting data size which is smaller than first log message length.
CHECK_EQ(0, Logger::GetLogLines(0, log_lines, 3));
// See Logger::StringEvent.
const char* line_1 = "aaa,\"bbb\"\n";
const int line_1_len = strlen(line_1);
// Still smaller than log message length.
CHECK_EQ(0, Logger::GetLogLines(0, log_lines, line_1_len - 1));
// The exact size.
CHECK_EQ(line_1_len, Logger::GetLogLines(0, log_lines, line_1_len));
CHECK_EQ(line_1, log_lines);
memset(log_lines, 0, sizeof(log_lines));
// A bit more than the first line length.
CHECK_EQ(line_1_len, Logger::GetLogLines(0, log_lines, line_1_len + 3));
log_lines[line_1_len] = '\0';
CHECK_EQ(line_1, log_lines);
memset(log_lines, 0, sizeof(log_lines));
const char* line_2 = "cccc,\"dddd\"\n";
const int line_2_len = strlen(line_2);
// Now start with line_2 beginning.
CHECK_EQ(0, Logger::GetLogLines(line_1_len, log_lines, 0));
CHECK_EQ(0, Logger::GetLogLines(line_1_len, log_lines, 3));
CHECK_EQ(0, Logger::GetLogLines(line_1_len, log_lines, line_2_len - 1));
CHECK_EQ(line_2_len, Logger::GetLogLines(line_1_len, log_lines, line_2_len));
CHECK_EQ(line_2, log_lines);
memset(log_lines, 0, sizeof(log_lines));
CHECK_EQ(line_2_len,
Logger::GetLogLines(line_1_len, log_lines, line_2_len + 3));
CHECK_EQ(line_2, log_lines);
memset(log_lines, 0, sizeof(log_lines));
// Now get entire buffer contents.
const char* all_lines = "aaa,\"bbb\"\ncccc,\"dddd\"\n";
const int all_lines_len = strlen(all_lines);
CHECK_EQ(all_lines_len, Logger::GetLogLines(0, log_lines, all_lines_len));
CHECK_EQ(all_lines, log_lines);
memset(log_lines, 0, sizeof(log_lines));
CHECK_EQ(all_lines_len, Logger::GetLogLines(0, log_lines, all_lines_len + 3));
CHECK_EQ(all_lines, log_lines);
memset(log_lines, 0, sizeof(log_lines));
TearDown();
}
static int GetLogLines(int start_pos, i::Vector<char>* buffer) {
return Logger::GetLogLines(start_pos, buffer->start(), buffer->length());
}
TEST(BeyondWritePosition) {
SetUp();
Logger::StringEvent("aaa", "bbb");
Logger::StringEvent("cccc", "dddd");
// See Logger::StringEvent.
const char* all_lines = "aaa,\"bbb\"\ncccc,\"dddd\"\n";
const int all_lines_len = strlen(all_lines);
EmbeddedVector<char, 100> buffer;
const int beyond_write_pos = all_lines_len;
CHECK_EQ(0, Logger::GetLogLines(beyond_write_pos, buffer.start(), 1));
CHECK_EQ(0, GetLogLines(beyond_write_pos, &buffer));
CHECK_EQ(0, Logger::GetLogLines(beyond_write_pos + 1, buffer.start(), 1));
CHECK_EQ(0, GetLogLines(beyond_write_pos + 1, &buffer));
CHECK_EQ(0, Logger::GetLogLines(beyond_write_pos + 100, buffer.start(), 1));
CHECK_EQ(0, GetLogLines(beyond_write_pos + 100, &buffer));
CHECK_EQ(0, Logger::GetLogLines(10 * 1024 * 1024, buffer.start(), 1));
CHECK_EQ(0, GetLogLines(10 * 1024 * 1024, &buffer));
TearDown();
}
TEST(MemoryLoggingTurnedOff) {
// Log to stdout
i::FLAG_logfile = "-";
i::FLAG_log = true;
Logger::Setup();
CHECK_EQ(0, Logger::GetLogLines(0, NULL, 0));
CHECK_EQ(0, Logger::GetLogLines(100, NULL, 0));
CHECK_EQ(0, Logger::GetLogLines(0, NULL, 100));
CHECK_EQ(0, Logger::GetLogLines(100, NULL, 100));
Logger::TearDown();
}
static void CompileAndRunScript(const char *src) {
v8::Script::Compile(v8::String::New(src))->Run();
}
namespace v8 {
namespace internal {
class LoggerTestHelper : public AllStatic {
public:
static bool IsSamplerActive() { return Logger::IsProfilerSamplerActive(); }
};
} // namespace v8::internal
} // namespace v8
using v8::internal::LoggerTestHelper;
// Under Linux, we need to check if signals were delivered to avoid false
// positives. Under other platforms profiling is done via a high-priority
// thread, so this case never happen.
static bool was_sigprof_received = true;
#ifdef __linux__
struct sigaction old_sigprof_handler;
pthread_t our_thread;
static void SigProfSignalHandler(int signal, siginfo_t* info, void* context) {
if (signal != SIGPROF || !pthread_equal(pthread_self(), our_thread)) return;
was_sigprof_received = true;
old_sigprof_handler.sa_sigaction(signal, info, context);
}
#endif // __linux__
static int CheckThatProfilerWorks(int log_pos) {
Logger::ResumeProfiler(v8::PROFILER_MODULE_CPU);
CHECK(LoggerTestHelper::IsSamplerActive());
// Verify that the current map of compiled functions has been logged.
EmbeddedVector<char, 102400> buffer;
int map_log_size = GetLogLines(log_pos, &buffer);
printf("map_log_size: %d\n", map_log_size);
CHECK_GT(map_log_size, 0);
CHECK_GT(buffer.length(), map_log_size);
log_pos += map_log_size;
// Check buffer contents.
buffer[map_log_size] = '\0';
const char* code_creation = "\ncode-creation,"; // eq. to /^code-creation,/
CHECK_NE(NULL, strstr(buffer.start(), code_creation));
#ifdef __linux__
// Intercept SIGPROF handler to make sure that the test process
// had received it. Under load, system can defer it causing test failure.
// It is important to execute this after 'ResumeProfiler'.
our_thread = pthread_self();
was_sigprof_received = false;
struct sigaction sa;
sa.sa_sigaction = SigProfSignalHandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
CHECK_EQ(0, sigaction(SIGPROF, &sa, &old_sigprof_handler));
#endif // __linux__
// Force compiler to generate new code by parametrizing source.
EmbeddedVector<char, 100> script_src;
i::OS::SNPrintF(script_src,
"for (var i = 0; i < 1000; ++i) { "
"(function(x) { return %d * x; })(i); }",
log_pos);
// Run code for 200 msecs to get some ticks.
const double end_time = i::OS::TimeCurrentMillis() + 200;
while (i::OS::TimeCurrentMillis() < end_time) {
CompileAndRunScript(script_src.start());
// Yield CPU to give Profiler thread a chance to process ticks.
i::OS::Sleep(1);
}
Logger::PauseProfiler(v8::PROFILER_MODULE_CPU);
CHECK(!LoggerTestHelper::IsSamplerActive());
// Wait 50 msecs to allow Profiler thread to process the last
// tick sample it has got.
i::OS::Sleep(50);
// Now we must have compiler and tick records.
int log_size = GetLogLines(log_pos, &buffer);
printf("log_size: %d\n", log_size);
CHECK_GT(log_size, 0);
CHECK_GT(buffer.length(), log_size);
log_pos += log_size;
// Check buffer contents.
buffer[log_size] = '\0';
const char* tick = "\ntick,";
CHECK_NE(NULL, strstr(buffer.start(), code_creation));
const bool ticks_found = strstr(buffer.start(), tick) != NULL;
CHECK_EQ(was_sigprof_received, ticks_found);
return log_pos;
}
TEST(ProfLazyMode) {
const bool saved_prof_lazy = i::FLAG_prof_lazy;
const bool saved_prof = i::FLAG_prof;
const bool saved_prof_auto = i::FLAG_prof_auto;
i::FLAG_prof = true;
i::FLAG_prof_lazy = true;
i::FLAG_prof_auto = false;
i::FLAG_logfile = "*";
// If tests are being run manually, V8 will be already initialized
// by the test below.
const bool need_to_set_up_logger = i::V8::IsRunning();
v8::HandleScope scope;
v8::Handle<v8::Context> env = v8::Context::New();
if (need_to_set_up_logger) Logger::Setup();
env->Enter();
// No sampling should happen prior to resuming profiler.
CHECK(!LoggerTestHelper::IsSamplerActive());
// Read initial logged data (static libs map).
EmbeddedVector<char, 102400> buffer;
int log_pos = GetLogLines(0, &buffer);
CHECK_GT(log_pos, 0);
CHECK_GT(buffer.length(), log_pos);
CompileAndRunScript("var a = (function(x) { return x + 1; })(10);");
// Nothing must be logged while profiling is suspended.
CHECK_EQ(0, GetLogLines(log_pos, &buffer));
log_pos = CheckThatProfilerWorks(log_pos);
CompileAndRunScript("var a = (function(x) { return x + 1; })(10);");
// No new data beyond last retrieved position.
CHECK_EQ(0, GetLogLines(log_pos, &buffer));
// Check that profiling can be resumed again.
CheckThatProfilerWorks(log_pos);
env->Exit();
Logger::TearDown();
i::FLAG_prof_lazy = saved_prof_lazy;
i::FLAG_prof = saved_prof;
i::FLAG_prof_auto = saved_prof_auto;
}
// Profiling multiple threads that use V8 is currently only available on Linux.
#ifdef __linux__
namespace {
class LoopingThread : public v8::internal::Thread {
public:
LoopingThread()
: v8::internal::Thread(),
semaphore_(v8::internal::OS::CreateSemaphore(0)),
run_(true) {
}
virtual ~LoopingThread() { delete semaphore_; }
void Run() {
self_ = pthread_self();
RunLoop();
}
void SendSigProf() { pthread_kill(self_, SIGPROF); }
void Stop() { run_ = false; }
bool WaitForRunning() { return semaphore_->Wait(1000000); }
protected:
bool IsRunning() { return run_; }
virtual void RunLoop() = 0;
void SetV8ThreadId() {
v8_thread_id_ = v8::V8::GetCurrentThreadId();
}
void SignalRunning() { semaphore_->Signal(); }
private:
v8::internal::Semaphore* semaphore_;
bool run_;
pthread_t self_;
int v8_thread_id_;
};
class LoopingJsThread : public LoopingThread {
public:
void RunLoop() {
{
v8::Locker locker;
CHECK(v8::internal::ThreadManager::HasId());
SetV8ThreadId();
}
while (IsRunning()) {
v8::Locker locker;
v8::HandleScope scope;
v8::Persistent<v8::Context> context = v8::Context::New();
v8::Context::Scope context_scope(context);
SignalRunning();
CompileAndRunScript(
"var j; for (var i=0; i<10000; ++i) { j = Math.sin(i); }");
context.Dispose();
i::OS::Sleep(1);
}
}
};
class LoopingNonJsThread : public LoopingThread {
public:
void RunLoop() {
v8::Locker locker;
v8::Unlocker unlocker;
// Now thread has V8's id, but will not run VM code.
CHECK(v8::internal::ThreadManager::HasId());
double i = 10;
SignalRunning();
while (IsRunning()) {
i = sin(i);
i::OS::Sleep(1);
}
}
};
class TestSampler : public v8::internal::Sampler {
public:
TestSampler()
: Sampler(0, true),
semaphore_(v8::internal::OS::CreateSemaphore(0)),
was_sample_stack_called_(false) {
}
~TestSampler() { delete semaphore_; }
void SampleStack(v8::internal::TickSample*) {
was_sample_stack_called_ = true;
}
void Tick(v8::internal::TickSample*) { semaphore_->Signal(); }
bool WaitForTick() { return semaphore_->Wait(1000000); }
void Reset() { was_sample_stack_called_ = false; }
bool WasSampleStackCalled() { return was_sample_stack_called_; }
private:
v8::internal::Semaphore* semaphore_;
bool was_sample_stack_called_;
};
} // namespace
TEST(ProfMultipleThreads) {
// V8 needs to be initialized before the first Locker
// instantiation. Otherwise, Top::Initialize will reset
// thread_id_ in ThreadTopLocal.
v8::HandleScope scope;
v8::Handle<v8::Context> env = v8::Context::New();
env->Enter();
LoopingJsThread jsThread;
jsThread.Start();
LoopingNonJsThread nonJsThread;
nonJsThread.Start();
TestSampler sampler;
sampler.Start();
CHECK(!sampler.WasSampleStackCalled());
jsThread.WaitForRunning();
jsThread.SendSigProf();
CHECK(sampler.WaitForTick());
CHECK(sampler.WasSampleStackCalled());
sampler.Reset();
CHECK(!sampler.WasSampleStackCalled());
nonJsThread.WaitForRunning();
nonJsThread.SendSigProf();
CHECK(sampler.WaitForTick());
CHECK(!sampler.WasSampleStackCalled());
sampler.Stop();
jsThread.Stop();
nonJsThread.Stop();
jsThread.Join();
nonJsThread.Join();
}
#endif // __linux__
static inline bool IsStringEqualTo(const char* r, const char* s) {
return strncmp(r, s, strlen(r)) == 0;
}
static bool Consume(const char* str, char** buf) {
if (IsStringEqualTo(str, *buf)) {
*buf += strlen(str);
return true;
}
return false;
}
namespace {
// A code entity is a pointer to a position of code-creation event in buffer log
// offset to a point where entity size begins, i.e.: '255,"func"\n'. This makes
// comparing code entities pretty easy.
typedef char* CodeEntityInfo;
class Interval {
public:
Interval()
: min_addr_(reinterpret_cast<Address>(-1)),
max_addr_(reinterpret_cast<Address>(0)), next_(NULL) {}
~Interval() { delete next_; }
size_t Length() {
size_t result = max_addr_ - min_addr_ + 1;
if (next_ != NULL) result += next_->Length();
return result;
}
void CloneFrom(Interval* src) {
while (src != NULL) {
RegisterAddress(src->min_addr_);
RegisterAddress(src->max_addr_);
src = src->next_;
}
}
bool Contains(Address addr) {
if (min_addr_ <= addr && addr <= max_addr_) {
return true;
}
if (next_ != NULL) {
return next_->Contains(addr);
} else {
return false;
}
}
size_t GetIndex(Address addr) {
if (min_addr_ <= addr && addr <= max_addr_) {
return addr - min_addr_;
}
CHECK_NE(NULL, next_);
return (max_addr_ - min_addr_ + 1) + next_->GetIndex(addr);
}
Address GetMinAddr() {
return next_ == NULL ? min_addr_ : i::Min(min_addr_, next_->GetMinAddr());
}
Address GetMaxAddr() {
return next_ == NULL ? max_addr_ : i::Max(max_addr_, next_->GetMaxAddr());
}
void RegisterAddress(Address addr) {
if (min_addr_ == reinterpret_cast<Address>(-1)
|| (size_t)(addr > min_addr_ ?
addr - min_addr_ : min_addr_ - addr) < MAX_DELTA) {
if (addr < min_addr_) min_addr_ = addr;
if (addr > max_addr_) max_addr_ = addr;
} else {
if (next_ == NULL) next_ = new Interval();
next_->RegisterAddress(addr);
}
}
Address raw_min_addr() { return min_addr_; }
Address raw_max_addr() { return max_addr_; }
Interval* get_next() { return next_; }
private:
static const size_t MAX_DELTA = 0x100000;
Address min_addr_;
Address max_addr_;
Interval* next_;
};
// A structure used to return log parsing results.
class ParseLogResult {
public:
ParseLogResult()
: entities_map(NULL), entities(NULL),
max_entities(0) {}
~ParseLogResult() {
i::DeleteArray(entities_map);
i::DeleteArray(entities);
}
void AllocateEntities() {
// Make sure that the test doesn't operate on a bogus log.
CHECK_GT(max_entities, 0);
CHECK_GT(bounds.GetMinAddr(), 0);
CHECK_GT(bounds.GetMaxAddr(), bounds.GetMinAddr());
entities = i::NewArray<CodeEntityInfo>(max_entities);
for (int i = 0; i < max_entities; ++i) {
entities[i] = NULL;
}
const size_t map_length = bounds.Length();
entities_map = i::NewArray<int>(map_length);
for (size_t i = 0; i < map_length; ++i) {
entities_map[i] = -1;
}
}
bool HasIndexForAddress(Address addr) {
return bounds.Contains(addr);
}
size_t GetIndexForAddress(Address addr) {
CHECK(HasIndexForAddress(addr));
return bounds.GetIndex(addr);
}
CodeEntityInfo GetEntity(Address addr) {
if (HasIndexForAddress(addr)) {
size_t idx = GetIndexForAddress(addr);
int item = entities_map[idx];
return item != -1 ? entities[item] : NULL;
}
return NULL;
}
void ParseAddress(char* start) {
Address addr =
reinterpret_cast<Address>(strtoul(start, NULL, 16)); // NOLINT
bounds.RegisterAddress(addr);
}
Address ConsumeAddress(char** start) {
char* end_ptr;
Address addr =
reinterpret_cast<Address>(strtoul(*start, &end_ptr, 16)); // NOLINT
CHECK(HasIndexForAddress(addr));
*start = end_ptr;
return addr;
}
Interval bounds;
// Memory map of entities start addresses.
int* entities_map;
// An array of code entities.
CodeEntityInfo* entities;
// Maximal entities count. Actual entities count can be lower,
// empty entity slots are pointing to NULL.
int max_entities;
};
} // namespace
typedef void (*ParserBlock)(char* start, char* end, ParseLogResult* result);
static void ParserCycle(
char* start, char* end, ParseLogResult* result,
ParserBlock block_creation, ParserBlock block_delete,
ParserBlock block_move) {
const char* code_creation = "code-creation,";
const char* code_delete = "code-delete,";
const char* code_move = "code-move,";
const char* lazy_compile = "LazyCompile,";
const char* script = "Script,";
const char* function = "Function,";
while (start < end) {
if (Consume(code_creation, &start)) {
if (Consume(lazy_compile, &start)
|| Consume(script, &start)
|| Consume(function, &start)) {
block_creation(start, end, result);
}
} else if (Consume(code_delete, &start)) {
block_delete(start, end, result);
} else if (Consume(code_move, &start)) {
block_move(start, end, result);
}
while (start < end && *start != '\n') ++start;
++start;
}
}
static void Pass1CodeCreation(char* start, char* end, ParseLogResult* result) {
result->ParseAddress(start);
++result->max_entities;
}
static void Pass1CodeDelete(char* start, char* end, ParseLogResult* result) {
result->ParseAddress(start);
}
static void Pass1CodeMove(char* start, char* end, ParseLogResult* result) {
result->ParseAddress(start);
// Skip old address.
while (start < end && *start != ',') ++start;
CHECK_GT(end, start);
++start; // Skip ','.
result->ParseAddress(start);
}
static void Pass2CodeCreation(char* start, char* end, ParseLogResult* result) {
Address addr = result->ConsumeAddress(&start);
CHECK_GT(end, start);
++start; // Skip ','.
size_t idx = result->GetIndexForAddress(addr);
result->entities_map[idx] = -1;
for (int i = 0; i < result->max_entities; ++i) {
// Find an empty slot and fill it.
if (result->entities[i] == NULL) {
result->entities[i] = start;
result->entities_map[idx] = i;
break;
}
}
// Make sure that a slot was found.
CHECK_GE(result->entities_map[idx], 0);
}
static void Pass2CodeDelete(char* start, char* end, ParseLogResult* result) {
Address addr = result->ConsumeAddress(&start);
size_t idx = result->GetIndexForAddress(addr);
// There can be code deletes that are not related to JS code.
if (result->entities_map[idx] >= 0) {
result->entities[result->entities_map[idx]] = NULL;
result->entities_map[idx] = -1;
}
}
static void Pass2CodeMove(char* start, char* end, ParseLogResult* result) {
Address from_addr = result->ConsumeAddress(&start);
CHECK_GT(end, start);
++start; // Skip ','.
Address to_addr = result->ConsumeAddress(&start);
CHECK_GT(end, start);
size_t from_idx = result->GetIndexForAddress(from_addr);
size_t to_idx = result->GetIndexForAddress(to_addr);
// There can be code moves that are not related to JS code.
if (from_idx != to_idx && result->entities_map[from_idx] >= 0) {
CHECK_EQ(-1, result->entities_map[to_idx]);
result->entities_map[to_idx] = result->entities_map[from_idx];
result->entities_map[from_idx] = -1;
};
}
static void ParseLog(char* start, char* end, ParseLogResult* result) {
// Pass 1: Calculate boundaries of addresses and entities count.
ParserCycle(start, end, result,
Pass1CodeCreation, Pass1CodeDelete, Pass1CodeMove);
printf("min_addr: %p, max_addr: %p, entities: %d\n",
result->bounds.GetMinAddr(), result->bounds.GetMaxAddr(),
result->max_entities);
result->AllocateEntities();
// Pass 2: Fill in code entries data.
ParserCycle(start, end, result,
Pass2CodeCreation, Pass2CodeDelete, Pass2CodeMove);
}
static inline void PrintCodeEntityInfo(CodeEntityInfo entity) {
const int max_len = 50;
if (entity != NULL) {
char* eol = strchr(entity, '\n');
int len = eol - entity;
len = len <= max_len ? len : max_len;
printf("%-*.*s ", max_len, len, entity);
} else {
printf("%*s", max_len + 1, "");
}
}
static void PrintCodeEntitiesInfo(
bool is_equal, Address addr,
CodeEntityInfo l_entity, CodeEntityInfo r_entity) {
printf("%c %p ", is_equal ? ' ' : '*', addr);
PrintCodeEntityInfo(l_entity);
PrintCodeEntityInfo(r_entity);
printf("\n");
}
static inline int StrChrLen(const char* s, char c) {
return strchr(s, c) - s;
}
static bool AreFuncSizesEqual(CodeEntityInfo ref_s, CodeEntityInfo new_s) {
int ref_len = StrChrLen(ref_s, ',');
int new_len = StrChrLen(new_s, ',');
return ref_len == new_len && strncmp(ref_s, new_s, ref_len) == 0;
}
static bool AreFuncNamesEqual(CodeEntityInfo ref_s, CodeEntityInfo new_s) {
// Skip size.
ref_s = strchr(ref_s, ',') + 1;
new_s = strchr(new_s, ',') + 1;
int ref_len = StrChrLen(ref_s, '\n');
int new_len = StrChrLen(new_s, '\n');
// If reference is anonymous (""), it's OK to have anything in new.
if (ref_len == 2) return true;
// A special case for ErrorPrototype. Haven't yet figured out why they
// are different.
const char* error_prototype = "\"ErrorPrototype";
if (IsStringEqualTo(error_prototype, ref_s)
&& IsStringEqualTo(error_prototype, new_s)) {
return true;
}
// Built-in objects have problems too.
const char* built_ins[] = {
"\"Boolean\"", "\"Function\"", "\"Number\"",
"\"Object\"", "\"Script\"", "\"String\""
};
for (size_t i = 0; i < sizeof(built_ins) / sizeof(*built_ins); ++i) {
if (IsStringEqualTo(built_ins[i], new_s)) {
return true;
}
}
return ref_len == new_len && strncmp(ref_s, new_s, ref_len) == 0;
}
static bool AreEntitiesEqual(CodeEntityInfo ref_e, CodeEntityInfo new_e) {
if (ref_e == NULL && new_e != NULL) return true;
if (ref_e != NULL && new_e != NULL) {
return AreFuncSizesEqual(ref_e, new_e) && AreFuncNamesEqual(ref_e, new_e);
}
if (ref_e != NULL && new_e == NULL) {
// args_count entities (argument adapters) are not found by heap traversal,
// but they are not needed because they doesn't contain any code.
ref_e = strchr(ref_e, ',') + 1;
const char* args_count = "\"args_count:";
return IsStringEqualTo(args_count, ref_e);
}
return false;
}
// Test that logging of code create / move / delete events
// is equivalent to traversal of a resulting heap.
TEST(EquivalenceOfLoggingAndTraversal) {
// This test needs to be run on a "clean" V8 to ensure that snapshot log
// is loaded. This is always true when running using tools/test.py because
// it launches a new cctest instance for every test. To be sure that launching
// cctest manually also works, please be sure that no tests below
// are using V8.
//
// P.S. No, V8 can't be re-initialized after disposal, see include/v8.h.
CHECK(!i::V8::IsRunning());
i::FLAG_logfile = "*";
i::FLAG_log = true;
i::FLAG_log_code = true;
// Make sure objects move.
bool saved_always_compact = i::FLAG_always_compact;
if (!i::FLAG_never_compact) {
i::FLAG_always_compact = true;
}
v8::HandleScope scope;
v8::Handle<v8::Value> global_object = v8::Handle<v8::Value>();
v8::Handle<v8::Context> env = v8::Context::New(
0, v8::Handle<v8::ObjectTemplate>(), global_object);
env->Enter();
// Compile and run a function that creates other functions.
CompileAndRunScript(
"(function f(obj) {\n"
" obj.test =\n"
" (function a(j) { return function b() { return j; } })(100);\n"
"})(this);");
i::Heap::CollectAllGarbage(false);
EmbeddedVector<char, 204800> buffer;
int log_size;
ParseLogResult ref_result;
// Retrieve the log.
{
// Make sure that no GCs occur prior to LogCompiledFunctions call.
i::AssertNoAllocation no_alloc;
log_size = GetLogLines(0, &buffer);
CHECK_GT(log_size, 0);
CHECK_GT(buffer.length(), log_size);
// Fill a map of compiled code objects.
ParseLog(buffer.start(), buffer.start() + log_size, &ref_result);
}
// Iterate heap to find compiled functions, will write to log.
i::Logger::LogCompiledFunctions();
char* new_log_start = buffer.start() + log_size;
const int new_log_size = Logger::GetLogLines(
log_size, new_log_start, buffer.length() - log_size);
CHECK_GT(new_log_size, 0);
CHECK_GT(buffer.length(), log_size + new_log_size);
// Fill an equivalent map of compiled code objects.
ParseLogResult new_result;
ParseLog(new_log_start, new_log_start + new_log_size, &new_result);
// Test their actual equivalence.
Interval combined;
combined.CloneFrom(&ref_result.bounds);
combined.CloneFrom(&new_result.bounds);
Interval* iter = &combined;
bool results_equal = true;
while (iter != NULL) {
for (Address addr = iter->raw_min_addr();
addr <= iter->raw_max_addr(); ++addr) {
CodeEntityInfo ref_entity = ref_result.GetEntity(addr);
CodeEntityInfo new_entity = new_result.GetEntity(addr);
if (ref_entity != NULL || new_entity != NULL) {
const bool equal = AreEntitiesEqual(ref_entity, new_entity);
if (!equal) results_equal = false;
PrintCodeEntitiesInfo(equal, addr, ref_entity, new_entity);
}
}
iter = iter->get_next();
}
// Make sure that all log data is written prior crash due to CHECK failure.
fflush(stdout);
CHECK(results_equal);
env->Exit();
Logger::TearDown();
i::FLAG_always_compact = saved_always_compact;
}
#endif // ENABLE_LOGGING_AND_PROFILING