mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
9982 lines
346 KiB
9982 lines
346 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
#include "hydrogen.h"
|
|
|
|
#include "codegen.h"
|
|
#include "full-codegen.h"
|
|
#include "hashmap.h"
|
|
#include "lithium-allocator.h"
|
|
#include "parser.h"
|
|
#include "scopeinfo.h"
|
|
#include "scopes.h"
|
|
#include "stub-cache.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
#include "ia32/lithium-codegen-ia32.h"
|
|
#elif V8_TARGET_ARCH_X64
|
|
#include "x64/lithium-codegen-x64.h"
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "arm/lithium-codegen-arm.h"
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "mips/lithium-codegen-mips.h"
|
|
#else
|
|
#error Unsupported target architecture.
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
HBasicBlock::HBasicBlock(HGraph* graph)
|
|
: block_id_(graph->GetNextBlockID()),
|
|
graph_(graph),
|
|
phis_(4, graph->zone()),
|
|
first_(NULL),
|
|
last_(NULL),
|
|
end_(NULL),
|
|
loop_information_(NULL),
|
|
predecessors_(2, graph->zone()),
|
|
dominator_(NULL),
|
|
dominated_blocks_(4, graph->zone()),
|
|
last_environment_(NULL),
|
|
argument_count_(-1),
|
|
first_instruction_index_(-1),
|
|
last_instruction_index_(-1),
|
|
deleted_phis_(4, graph->zone()),
|
|
parent_loop_header_(NULL),
|
|
is_inline_return_target_(false),
|
|
is_deoptimizing_(false),
|
|
dominates_loop_successors_(false) { }
|
|
|
|
|
|
void HBasicBlock::AttachLoopInformation() {
|
|
ASSERT(!IsLoopHeader());
|
|
loop_information_ = new(zone()) HLoopInformation(this, zone());
|
|
}
|
|
|
|
|
|
void HBasicBlock::DetachLoopInformation() {
|
|
ASSERT(IsLoopHeader());
|
|
loop_information_ = NULL;
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddPhi(HPhi* phi) {
|
|
ASSERT(!IsStartBlock());
|
|
phis_.Add(phi, zone());
|
|
phi->SetBlock(this);
|
|
}
|
|
|
|
|
|
void HBasicBlock::RemovePhi(HPhi* phi) {
|
|
ASSERT(phi->block() == this);
|
|
ASSERT(phis_.Contains(phi));
|
|
ASSERT(phi->HasNoUses() || !phi->is_live());
|
|
phi->Kill();
|
|
phis_.RemoveElement(phi);
|
|
phi->SetBlock(NULL);
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddInstruction(HInstruction* instr) {
|
|
ASSERT(!IsStartBlock() || !IsFinished());
|
|
ASSERT(!instr->IsLinked());
|
|
ASSERT(!IsFinished());
|
|
if (first_ == NULL) {
|
|
HBlockEntry* entry = new(zone()) HBlockEntry();
|
|
entry->InitializeAsFirst(this);
|
|
first_ = last_ = entry;
|
|
}
|
|
instr->InsertAfter(last_);
|
|
}
|
|
|
|
|
|
HDeoptimize* HBasicBlock::CreateDeoptimize(
|
|
HDeoptimize::UseEnvironment has_uses) {
|
|
ASSERT(HasEnvironment());
|
|
if (has_uses == HDeoptimize::kNoUses)
|
|
return new(zone()) HDeoptimize(0, zone());
|
|
|
|
HEnvironment* environment = last_environment();
|
|
HDeoptimize* instr = new(zone()) HDeoptimize(environment->length(), zone());
|
|
for (int i = 0; i < environment->length(); i++) {
|
|
HValue* val = environment->values()->at(i);
|
|
instr->AddEnvironmentValue(val, zone());
|
|
}
|
|
|
|
return instr;
|
|
}
|
|
|
|
|
|
HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id) {
|
|
ASSERT(HasEnvironment());
|
|
HEnvironment* environment = last_environment();
|
|
ASSERT(ast_id.IsNone() ||
|
|
environment->closure()->shared()->VerifyBailoutId(ast_id));
|
|
|
|
int push_count = environment->push_count();
|
|
int pop_count = environment->pop_count();
|
|
|
|
HSimulate* instr = new(zone()) HSimulate(ast_id, pop_count, zone());
|
|
for (int i = push_count - 1; i >= 0; --i) {
|
|
instr->AddPushedValue(environment->ExpressionStackAt(i));
|
|
}
|
|
for (int i = 0; i < environment->assigned_variables()->length(); ++i) {
|
|
int index = environment->assigned_variables()->at(i);
|
|
instr->AddAssignedValue(index, environment->Lookup(index));
|
|
}
|
|
environment->ClearHistory();
|
|
return instr;
|
|
}
|
|
|
|
|
|
void HBasicBlock::Finish(HControlInstruction* end) {
|
|
ASSERT(!IsFinished());
|
|
AddInstruction(end);
|
|
end_ = end;
|
|
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
|
|
it.Current()->RegisterPredecessor(this);
|
|
}
|
|
}
|
|
|
|
|
|
void HBasicBlock::Goto(HBasicBlock* block, FunctionState* state) {
|
|
bool drop_extra = state != NULL &&
|
|
state->inlining_kind() == DROP_EXTRA_ON_RETURN;
|
|
|
|
if (block->IsInlineReturnTarget()) {
|
|
AddInstruction(new(zone()) HLeaveInlined());
|
|
last_environment_ = last_environment()->DiscardInlined(drop_extra);
|
|
}
|
|
|
|
AddSimulate(BailoutId::None());
|
|
HGoto* instr = new(zone()) HGoto(block);
|
|
Finish(instr);
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddLeaveInlined(HValue* return_value,
|
|
FunctionState* state) {
|
|
HBasicBlock* target = state->function_return();
|
|
bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN;
|
|
|
|
ASSERT(target->IsInlineReturnTarget());
|
|
ASSERT(return_value != NULL);
|
|
AddInstruction(new(zone()) HLeaveInlined());
|
|
last_environment_ = last_environment()->DiscardInlined(drop_extra);
|
|
last_environment()->Push(return_value);
|
|
AddSimulate(BailoutId::None());
|
|
HGoto* instr = new(zone()) HGoto(target);
|
|
Finish(instr);
|
|
}
|
|
|
|
|
|
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
|
|
ASSERT(!HasEnvironment());
|
|
ASSERT(first() == NULL);
|
|
UpdateEnvironment(env);
|
|
}
|
|
|
|
|
|
void HBasicBlock::SetJoinId(BailoutId ast_id) {
|
|
int length = predecessors_.length();
|
|
ASSERT(length > 0);
|
|
for (int i = 0; i < length; i++) {
|
|
HBasicBlock* predecessor = predecessors_[i];
|
|
ASSERT(predecessor->end()->IsGoto());
|
|
HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
|
|
// We only need to verify the ID once.
|
|
ASSERT(i != 0 ||
|
|
predecessor->last_environment()->closure()->shared()
|
|
->VerifyBailoutId(ast_id));
|
|
simulate->set_ast_id(ast_id);
|
|
}
|
|
}
|
|
|
|
|
|
bool HBasicBlock::Dominates(HBasicBlock* other) const {
|
|
HBasicBlock* current = other->dominator();
|
|
while (current != NULL) {
|
|
if (current == this) return true;
|
|
current = current->dominator();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
int HBasicBlock::LoopNestingDepth() const {
|
|
const HBasicBlock* current = this;
|
|
int result = (current->IsLoopHeader()) ? 1 : 0;
|
|
while (current->parent_loop_header() != NULL) {
|
|
current = current->parent_loop_header();
|
|
result++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
|
|
ASSERT(IsLoopHeader());
|
|
|
|
SetJoinId(stmt->EntryId());
|
|
if (predecessors()->length() == 1) {
|
|
// This is a degenerated loop.
|
|
DetachLoopInformation();
|
|
return;
|
|
}
|
|
|
|
// Only the first entry into the loop is from outside the loop. All other
|
|
// entries must be back edges.
|
|
for (int i = 1; i < predecessors()->length(); ++i) {
|
|
loop_information()->RegisterBackEdge(predecessors()->at(i));
|
|
}
|
|
}
|
|
|
|
|
|
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
|
|
if (HasPredecessor()) {
|
|
// Only loop header blocks can have a predecessor added after
|
|
// instructions have been added to the block (they have phis for all
|
|
// values in the environment, these phis may be eliminated later).
|
|
ASSERT(IsLoopHeader() || first_ == NULL);
|
|
HEnvironment* incoming_env = pred->last_environment();
|
|
if (IsLoopHeader()) {
|
|
ASSERT(phis()->length() == incoming_env->length());
|
|
for (int i = 0; i < phis_.length(); ++i) {
|
|
phis_[i]->AddInput(incoming_env->values()->at(i));
|
|
}
|
|
} else {
|
|
last_environment()->AddIncomingEdge(this, pred->last_environment());
|
|
}
|
|
} else if (!HasEnvironment() && !IsFinished()) {
|
|
ASSERT(!IsLoopHeader());
|
|
SetInitialEnvironment(pred->last_environment()->Copy());
|
|
}
|
|
|
|
predecessors_.Add(pred, zone());
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
|
|
ASSERT(!dominated_blocks_.Contains(block));
|
|
// Keep the list of dominated blocks sorted such that if there is two
|
|
// succeeding block in this list, the predecessor is before the successor.
|
|
int index = 0;
|
|
while (index < dominated_blocks_.length() &&
|
|
dominated_blocks_[index]->block_id() < block->block_id()) {
|
|
++index;
|
|
}
|
|
dominated_blocks_.InsertAt(index, block, zone());
|
|
}
|
|
|
|
|
|
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
|
|
if (dominator_ == NULL) {
|
|
dominator_ = other;
|
|
other->AddDominatedBlock(this);
|
|
} else if (other->dominator() != NULL) {
|
|
HBasicBlock* first = dominator_;
|
|
HBasicBlock* second = other;
|
|
|
|
while (first != second) {
|
|
if (first->block_id() > second->block_id()) {
|
|
first = first->dominator();
|
|
} else {
|
|
second = second->dominator();
|
|
}
|
|
ASSERT(first != NULL && second != NULL);
|
|
}
|
|
|
|
if (dominator_ != first) {
|
|
ASSERT(dominator_->dominated_blocks_.Contains(this));
|
|
dominator_->dominated_blocks_.RemoveElement(this);
|
|
dominator_ = first;
|
|
first->AddDominatedBlock(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HBasicBlock::AssignLoopSuccessorDominators() {
|
|
// Mark blocks that dominate all subsequent reachable blocks inside their
|
|
// loop. Exploit the fact that blocks are sorted in reverse post order. When
|
|
// the loop is visited in increasing block id order, if the number of
|
|
// non-loop-exiting successor edges at the dominator_candidate block doesn't
|
|
// exceed the number of previously encountered predecessor edges, there is no
|
|
// path from the loop header to any block with higher id that doesn't go
|
|
// through the dominator_candidate block. In this case, the
|
|
// dominator_candidate block is guaranteed to dominate all blocks reachable
|
|
// from it with higher ids.
|
|
HBasicBlock* last = loop_information()->GetLastBackEdge();
|
|
int outstanding_successors = 1; // one edge from the pre-header
|
|
// Header always dominates everything.
|
|
MarkAsLoopSuccessorDominator();
|
|
for (int j = block_id(); j <= last->block_id(); ++j) {
|
|
HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
|
|
for (HPredecessorIterator it(dominator_candidate); !it.Done();
|
|
it.Advance()) {
|
|
HBasicBlock* predecessor = it.Current();
|
|
// Don't count back edges.
|
|
if (predecessor->block_id() < dominator_candidate->block_id()) {
|
|
outstanding_successors--;
|
|
}
|
|
}
|
|
|
|
// If more successors than predecessors have been seen in the loop up to
|
|
// now, it's not possible to guarantee that the current block dominates
|
|
// all of the blocks with higher IDs. In this case, assume conservatively
|
|
// that those paths through loop that don't go through the current block
|
|
// contain all of the loop's dependencies. Also be careful to record
|
|
// dominator information about the current loop that's being processed,
|
|
// and not nested loops, which will be processed when
|
|
// AssignLoopSuccessorDominators gets called on their header.
|
|
ASSERT(outstanding_successors >= 0);
|
|
HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
|
|
if (outstanding_successors == 0 &&
|
|
(parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
|
|
dominator_candidate->MarkAsLoopSuccessorDominator();
|
|
}
|
|
HControlInstruction* end = dominator_candidate->end();
|
|
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
|
|
HBasicBlock* successor = it.Current();
|
|
// Only count successors that remain inside the loop and don't loop back
|
|
// to a loop header.
|
|
if (successor->block_id() > dominator_candidate->block_id() &&
|
|
successor->block_id() <= last->block_id()) {
|
|
// Backwards edges must land on loop headers.
|
|
ASSERT(successor->block_id() > dominator_candidate->block_id() ||
|
|
successor->IsLoopHeader());
|
|
outstanding_successors++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
|
|
for (int i = 0; i < predecessors_.length(); ++i) {
|
|
if (predecessors_[i] == predecessor) return i;
|
|
}
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void HBasicBlock::Verify() {
|
|
// Check that every block is finished.
|
|
ASSERT(IsFinished());
|
|
ASSERT(block_id() >= 0);
|
|
|
|
// Check that the incoming edges are in edge split form.
|
|
if (predecessors_.length() > 1) {
|
|
for (int i = 0; i < predecessors_.length(); ++i) {
|
|
ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
|
|
this->back_edges_.Add(block, block->zone());
|
|
AddBlock(block);
|
|
}
|
|
|
|
|
|
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
|
|
int max_id = -1;
|
|
HBasicBlock* result = NULL;
|
|
for (int i = 0; i < back_edges_.length(); ++i) {
|
|
HBasicBlock* cur = back_edges_[i];
|
|
if (cur->block_id() > max_id) {
|
|
max_id = cur->block_id();
|
|
result = cur;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void HLoopInformation::AddBlock(HBasicBlock* block) {
|
|
if (block == loop_header()) return;
|
|
if (block->parent_loop_header() == loop_header()) return;
|
|
if (block->parent_loop_header() != NULL) {
|
|
AddBlock(block->parent_loop_header());
|
|
} else {
|
|
block->set_parent_loop_header(loop_header());
|
|
blocks_.Add(block, block->zone());
|
|
for (int i = 0; i < block->predecessors()->length(); ++i) {
|
|
AddBlock(block->predecessors()->at(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
// Checks reachability of the blocks in this graph and stores a bit in
|
|
// the BitVector "reachable()" for every block that can be reached
|
|
// from the start block of the graph. If "dont_visit" is non-null, the given
|
|
// block is treated as if it would not be part of the graph. "visited_count()"
|
|
// returns the number of reachable blocks.
|
|
class ReachabilityAnalyzer BASE_EMBEDDED {
|
|
public:
|
|
ReachabilityAnalyzer(HBasicBlock* entry_block,
|
|
int block_count,
|
|
HBasicBlock* dont_visit)
|
|
: visited_count_(0),
|
|
stack_(16, entry_block->zone()),
|
|
reachable_(block_count, entry_block->zone()),
|
|
dont_visit_(dont_visit) {
|
|
PushBlock(entry_block);
|
|
Analyze();
|
|
}
|
|
|
|
int visited_count() const { return visited_count_; }
|
|
const BitVector* reachable() const { return &reachable_; }
|
|
|
|
private:
|
|
void PushBlock(HBasicBlock* block) {
|
|
if (block != NULL && block != dont_visit_ &&
|
|
!reachable_.Contains(block->block_id())) {
|
|
reachable_.Add(block->block_id());
|
|
stack_.Add(block, block->zone());
|
|
visited_count_++;
|
|
}
|
|
}
|
|
|
|
void Analyze() {
|
|
while (!stack_.is_empty()) {
|
|
HControlInstruction* end = stack_.RemoveLast()->end();
|
|
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
|
|
PushBlock(it.Current());
|
|
}
|
|
}
|
|
}
|
|
|
|
int visited_count_;
|
|
ZoneList<HBasicBlock*> stack_;
|
|
BitVector reachable_;
|
|
HBasicBlock* dont_visit_;
|
|
};
|
|
|
|
|
|
void HGraph::Verify(bool do_full_verify) const {
|
|
for (int i = 0; i < blocks_.length(); i++) {
|
|
HBasicBlock* block = blocks_.at(i);
|
|
|
|
block->Verify();
|
|
|
|
// Check that every block contains at least one node and that only the last
|
|
// node is a control instruction.
|
|
HInstruction* current = block->first();
|
|
ASSERT(current != NULL && current->IsBlockEntry());
|
|
while (current != NULL) {
|
|
ASSERT((current->next() == NULL) == current->IsControlInstruction());
|
|
ASSERT(current->block() == block);
|
|
current->Verify();
|
|
current = current->next();
|
|
}
|
|
|
|
// Check that successors are correctly set.
|
|
HBasicBlock* first = block->end()->FirstSuccessor();
|
|
HBasicBlock* second = block->end()->SecondSuccessor();
|
|
ASSERT(second == NULL || first != NULL);
|
|
|
|
// Check that the predecessor array is correct.
|
|
if (first != NULL) {
|
|
ASSERT(first->predecessors()->Contains(block));
|
|
if (second != NULL) {
|
|
ASSERT(second->predecessors()->Contains(block));
|
|
}
|
|
}
|
|
|
|
// Check that phis have correct arguments.
|
|
for (int j = 0; j < block->phis()->length(); j++) {
|
|
HPhi* phi = block->phis()->at(j);
|
|
phi->Verify();
|
|
}
|
|
|
|
// Check that all join blocks have predecessors that end with an
|
|
// unconditional goto and agree on their environment node id.
|
|
if (block->predecessors()->length() >= 2) {
|
|
BailoutId id =
|
|
block->predecessors()->first()->last_environment()->ast_id();
|
|
for (int k = 0; k < block->predecessors()->length(); k++) {
|
|
HBasicBlock* predecessor = block->predecessors()->at(k);
|
|
ASSERT(predecessor->end()->IsGoto());
|
|
ASSERT(predecessor->last_environment()->ast_id() == id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check special property of first block to have no predecessors.
|
|
ASSERT(blocks_.at(0)->predecessors()->is_empty());
|
|
|
|
if (do_full_verify) {
|
|
// Check that the graph is fully connected.
|
|
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
|
|
ASSERT(analyzer.visited_count() == blocks_.length());
|
|
|
|
// Check that entry block dominator is NULL.
|
|
ASSERT(entry_block_->dominator() == NULL);
|
|
|
|
// Check dominators.
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
HBasicBlock* block = blocks_.at(i);
|
|
if (block->dominator() == NULL) {
|
|
// Only start block may have no dominator assigned to.
|
|
ASSERT(i == 0);
|
|
} else {
|
|
// Assert that block is unreachable if dominator must not be visited.
|
|
ReachabilityAnalyzer dominator_analyzer(entry_block_,
|
|
blocks_.length(),
|
|
block->dominator());
|
|
ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
|
|
Handle<Object> value) {
|
|
if (!pointer->is_set()) {
|
|
HConstant* constant = new(zone()) HConstant(value,
|
|
Representation::Tagged());
|
|
constant->InsertAfter(GetConstantUndefined());
|
|
pointer->set(constant);
|
|
}
|
|
return pointer->get();
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstantInt32(SetOncePointer<HConstant>* pointer,
|
|
int32_t value) {
|
|
if (!pointer->is_set()) {
|
|
HConstant* constant =
|
|
new(zone()) HConstant(value, Representation::Integer32());
|
|
constant->InsertAfter(GetConstantUndefined());
|
|
pointer->set(constant);
|
|
}
|
|
return pointer->get();
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstant1() {
|
|
return GetConstantInt32(&constant_1_, 1);
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstantMinus1() {
|
|
return GetConstantInt32(&constant_minus1_, -1);
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstantTrue() {
|
|
return GetConstant(&constant_true_, isolate()->factory()->true_value());
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstantFalse() {
|
|
return GetConstant(&constant_false_, isolate()->factory()->false_value());
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstantHole() {
|
|
return GetConstant(&constant_hole_, isolate()->factory()->the_hole_value());
|
|
}
|
|
|
|
|
|
HGraphBuilder::HGraphBuilder(CompilationInfo* info,
|
|
TypeFeedbackOracle* oracle)
|
|
: function_state_(NULL),
|
|
initial_function_state_(this, info, oracle, NORMAL_RETURN),
|
|
ast_context_(NULL),
|
|
break_scope_(NULL),
|
|
graph_(NULL),
|
|
current_block_(NULL),
|
|
inlined_count_(0),
|
|
globals_(10, info->zone()),
|
|
zone_(info->zone()),
|
|
inline_bailout_(false) {
|
|
// This is not initialized in the initializer list because the
|
|
// constructor for the initial state relies on function_state_ == NULL
|
|
// to know it's the initial state.
|
|
function_state_= &initial_function_state_;
|
|
}
|
|
|
|
HBasicBlock* HGraphBuilder::CreateJoin(HBasicBlock* first,
|
|
HBasicBlock* second,
|
|
BailoutId join_id) {
|
|
if (first == NULL) {
|
|
return second;
|
|
} else if (second == NULL) {
|
|
return first;
|
|
} else {
|
|
HBasicBlock* join_block = graph_->CreateBasicBlock();
|
|
first->Goto(join_block);
|
|
second->Goto(join_block);
|
|
join_block->SetJoinId(join_id);
|
|
return join_block;
|
|
}
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::JoinContinue(IterationStatement* statement,
|
|
HBasicBlock* exit_block,
|
|
HBasicBlock* continue_block) {
|
|
if (continue_block != NULL) {
|
|
if (exit_block != NULL) exit_block->Goto(continue_block);
|
|
continue_block->SetJoinId(statement->ContinueId());
|
|
return continue_block;
|
|
}
|
|
return exit_block;
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::CreateLoop(IterationStatement* statement,
|
|
HBasicBlock* loop_entry,
|
|
HBasicBlock* body_exit,
|
|
HBasicBlock* loop_successor,
|
|
HBasicBlock* break_block) {
|
|
if (body_exit != NULL) body_exit->Goto(loop_entry);
|
|
loop_entry->PostProcessLoopHeader(statement);
|
|
if (break_block != NULL) {
|
|
if (loop_successor != NULL) loop_successor->Goto(break_block);
|
|
break_block->SetJoinId(statement->ExitId());
|
|
return break_block;
|
|
}
|
|
return loop_successor;
|
|
}
|
|
|
|
|
|
void HBasicBlock::FinishExit(HControlInstruction* instruction) {
|
|
Finish(instruction);
|
|
ClearEnvironment();
|
|
}
|
|
|
|
|
|
HGraph::HGraph(CompilationInfo* info)
|
|
: isolate_(info->isolate()),
|
|
next_block_id_(0),
|
|
entry_block_(NULL),
|
|
blocks_(8, info->zone()),
|
|
values_(16, info->zone()),
|
|
phi_list_(NULL),
|
|
uint32_instructions_(NULL),
|
|
info_(info),
|
|
zone_(info->zone()),
|
|
is_recursive_(false),
|
|
use_optimistic_licm_(false),
|
|
type_change_checksum_(0) {
|
|
start_environment_ =
|
|
new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
|
|
start_environment_->set_ast_id(BailoutId::FunctionEntry());
|
|
entry_block_ = CreateBasicBlock();
|
|
entry_block_->SetInitialEnvironment(start_environment_);
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraph::CreateBasicBlock() {
|
|
HBasicBlock* result = new(zone()) HBasicBlock(this);
|
|
blocks_.Add(result, zone());
|
|
return result;
|
|
}
|
|
|
|
|
|
void HGraph::Canonicalize() {
|
|
if (!FLAG_use_canonicalizing) return;
|
|
HPhase phase("H_Canonicalize", this);
|
|
for (int i = 0; i < blocks()->length(); ++i) {
|
|
HInstruction* instr = blocks()->at(i)->first();
|
|
while (instr != NULL) {
|
|
HValue* value = instr->Canonicalize();
|
|
if (value != instr) instr->DeleteAndReplaceWith(value);
|
|
instr = instr->next();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Block ordering was implemented with two mutually recursive methods,
|
|
// HGraph::Postorder and HGraph::PostorderLoopBlocks.
|
|
// The recursion could lead to stack overflow so the algorithm has been
|
|
// implemented iteratively.
|
|
// At a high level the algorithm looks like this:
|
|
//
|
|
// Postorder(block, loop_header) : {
|
|
// if (block has already been visited or is of another loop) return;
|
|
// mark block as visited;
|
|
// if (block is a loop header) {
|
|
// VisitLoopMembers(block, loop_header);
|
|
// VisitSuccessorsOfLoopHeader(block);
|
|
// } else {
|
|
// VisitSuccessors(block)
|
|
// }
|
|
// put block in result list;
|
|
// }
|
|
//
|
|
// VisitLoopMembers(block, outer_loop_header) {
|
|
// foreach (block b in block loop members) {
|
|
// VisitSuccessorsOfLoopMember(b, outer_loop_header);
|
|
// if (b is loop header) VisitLoopMembers(b);
|
|
// }
|
|
// }
|
|
//
|
|
// VisitSuccessorsOfLoopMember(block, outer_loop_header) {
|
|
// foreach (block b in block successors) Postorder(b, outer_loop_header)
|
|
// }
|
|
//
|
|
// VisitSuccessorsOfLoopHeader(block) {
|
|
// foreach (block b in block successors) Postorder(b, block)
|
|
// }
|
|
//
|
|
// VisitSuccessors(block, loop_header) {
|
|
// foreach (block b in block successors) Postorder(b, loop_header)
|
|
// }
|
|
//
|
|
// The ordering is started calling Postorder(entry, NULL).
|
|
//
|
|
// Each instance of PostorderProcessor represents the "stack frame" of the
|
|
// recursion, and particularly keeps the state of the loop (iteration) of the
|
|
// "Visit..." function it represents.
|
|
// To recycle memory we keep all the frames in a double linked list but
|
|
// this means that we cannot use constructors to initialize the frames.
|
|
//
|
|
class PostorderProcessor : public ZoneObject {
|
|
public:
|
|
// Back link (towards the stack bottom).
|
|
PostorderProcessor* parent() {return father_; }
|
|
// Forward link (towards the stack top).
|
|
PostorderProcessor* child() {return child_; }
|
|
HBasicBlock* block() { return block_; }
|
|
HLoopInformation* loop() { return loop_; }
|
|
HBasicBlock* loop_header() { return loop_header_; }
|
|
|
|
static PostorderProcessor* CreateEntryProcessor(Zone* zone,
|
|
HBasicBlock* block,
|
|
BitVector* visited) {
|
|
PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
|
|
return result->SetupSuccessors(zone, block, NULL, visited);
|
|
}
|
|
|
|
PostorderProcessor* PerformStep(Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
PostorderProcessor* next =
|
|
PerformNonBacktrackingStep(zone, visited, order);
|
|
if (next != NULL) {
|
|
return next;
|
|
} else {
|
|
return Backtrack(zone, visited, order);
|
|
}
|
|
}
|
|
|
|
private:
|
|
explicit PostorderProcessor(PostorderProcessor* father)
|
|
: father_(father), child_(NULL), successor_iterator(NULL) { }
|
|
|
|
// Each enum value states the cycle whose state is kept by this instance.
|
|
enum LoopKind {
|
|
NONE,
|
|
SUCCESSORS,
|
|
SUCCESSORS_OF_LOOP_HEADER,
|
|
LOOP_MEMBERS,
|
|
SUCCESSORS_OF_LOOP_MEMBER
|
|
};
|
|
|
|
// Each "Setup..." method is like a constructor for a cycle state.
|
|
PostorderProcessor* SetupSuccessors(Zone* zone,
|
|
HBasicBlock* block,
|
|
HBasicBlock* loop_header,
|
|
BitVector* visited) {
|
|
if (block == NULL || visited->Contains(block->block_id()) ||
|
|
block->parent_loop_header() != loop_header) {
|
|
kind_ = NONE;
|
|
block_ = NULL;
|
|
loop_ = NULL;
|
|
loop_header_ = NULL;
|
|
return this;
|
|
} else {
|
|
block_ = block;
|
|
loop_ = NULL;
|
|
visited->Add(block->block_id());
|
|
|
|
if (block->IsLoopHeader()) {
|
|
kind_ = SUCCESSORS_OF_LOOP_HEADER;
|
|
loop_header_ = block;
|
|
InitializeSuccessors();
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupLoopMembers(zone, block, block->loop_information(),
|
|
loop_header);
|
|
} else {
|
|
ASSERT(block->IsFinished());
|
|
kind_ = SUCCESSORS;
|
|
loop_header_ = loop_header;
|
|
InitializeSuccessors();
|
|
return this;
|
|
}
|
|
}
|
|
}
|
|
|
|
PostorderProcessor* SetupLoopMembers(Zone* zone,
|
|
HBasicBlock* block,
|
|
HLoopInformation* loop,
|
|
HBasicBlock* loop_header) {
|
|
kind_ = LOOP_MEMBERS;
|
|
block_ = block;
|
|
loop_ = loop;
|
|
loop_header_ = loop_header;
|
|
InitializeLoopMembers();
|
|
return this;
|
|
}
|
|
|
|
PostorderProcessor* SetupSuccessorsOfLoopMember(
|
|
HBasicBlock* block,
|
|
HLoopInformation* loop,
|
|
HBasicBlock* loop_header) {
|
|
kind_ = SUCCESSORS_OF_LOOP_MEMBER;
|
|
block_ = block;
|
|
loop_ = loop;
|
|
loop_header_ = loop_header;
|
|
InitializeSuccessors();
|
|
return this;
|
|
}
|
|
|
|
// This method "allocates" a new stack frame.
|
|
PostorderProcessor* Push(Zone* zone) {
|
|
if (child_ == NULL) {
|
|
child_ = new(zone) PostorderProcessor(this);
|
|
}
|
|
return child_;
|
|
}
|
|
|
|
void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
|
|
ASSERT(block_->end()->FirstSuccessor() == NULL ||
|
|
order->Contains(block_->end()->FirstSuccessor()) ||
|
|
block_->end()->FirstSuccessor()->IsLoopHeader());
|
|
ASSERT(block_->end()->SecondSuccessor() == NULL ||
|
|
order->Contains(block_->end()->SecondSuccessor()) ||
|
|
block_->end()->SecondSuccessor()->IsLoopHeader());
|
|
order->Add(block_, zone);
|
|
}
|
|
|
|
// This method is the basic block to walk up the stack.
|
|
PostorderProcessor* Pop(Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
switch (kind_) {
|
|
case SUCCESSORS:
|
|
case SUCCESSORS_OF_LOOP_HEADER:
|
|
ClosePostorder(order, zone);
|
|
return father_;
|
|
case LOOP_MEMBERS:
|
|
return father_;
|
|
case SUCCESSORS_OF_LOOP_MEMBER:
|
|
if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
|
|
// In this case we need to perform a LOOP_MEMBERS cycle so we
|
|
// initialize it and return this instead of father.
|
|
return SetupLoopMembers(zone, block(),
|
|
block()->loop_information(), loop_header_);
|
|
} else {
|
|
return father_;
|
|
}
|
|
case NONE:
|
|
return father_;
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
// Walks up the stack.
|
|
PostorderProcessor* Backtrack(Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
PostorderProcessor* parent = Pop(zone, visited, order);
|
|
while (parent != NULL) {
|
|
PostorderProcessor* next =
|
|
parent->PerformNonBacktrackingStep(zone, visited, order);
|
|
if (next != NULL) {
|
|
return next;
|
|
} else {
|
|
parent = parent->Pop(zone, visited, order);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
PostorderProcessor* PerformNonBacktrackingStep(
|
|
Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
HBasicBlock* next_block;
|
|
switch (kind_) {
|
|
case SUCCESSORS:
|
|
next_block = AdvanceSuccessors();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessors(zone, next_block,
|
|
loop_header_, visited);
|
|
}
|
|
break;
|
|
case SUCCESSORS_OF_LOOP_HEADER:
|
|
next_block = AdvanceSuccessors();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessors(zone, next_block,
|
|
block(), visited);
|
|
}
|
|
break;
|
|
case LOOP_MEMBERS:
|
|
next_block = AdvanceLoopMembers();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessorsOfLoopMember(next_block,
|
|
loop_, loop_header_);
|
|
}
|
|
break;
|
|
case SUCCESSORS_OF_LOOP_MEMBER:
|
|
next_block = AdvanceSuccessors();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessors(zone, next_block,
|
|
loop_header_, visited);
|
|
}
|
|
break;
|
|
case NONE:
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// The following two methods implement a "foreach b in successors" cycle.
|
|
void InitializeSuccessors() {
|
|
loop_index = 0;
|
|
loop_length = 0;
|
|
successor_iterator = HSuccessorIterator(block_->end());
|
|
}
|
|
|
|
HBasicBlock* AdvanceSuccessors() {
|
|
if (!successor_iterator.Done()) {
|
|
HBasicBlock* result = successor_iterator.Current();
|
|
successor_iterator.Advance();
|
|
return result;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// The following two methods implement a "foreach b in loop members" cycle.
|
|
void InitializeLoopMembers() {
|
|
loop_index = 0;
|
|
loop_length = loop_->blocks()->length();
|
|
}
|
|
|
|
HBasicBlock* AdvanceLoopMembers() {
|
|
if (loop_index < loop_length) {
|
|
HBasicBlock* result = loop_->blocks()->at(loop_index);
|
|
loop_index++;
|
|
return result;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
LoopKind kind_;
|
|
PostorderProcessor* father_;
|
|
PostorderProcessor* child_;
|
|
HLoopInformation* loop_;
|
|
HBasicBlock* block_;
|
|
HBasicBlock* loop_header_;
|
|
int loop_index;
|
|
int loop_length;
|
|
HSuccessorIterator successor_iterator;
|
|
};
|
|
|
|
|
|
void HGraph::OrderBlocks() {
|
|
HPhase phase("H_Block ordering");
|
|
BitVector visited(blocks_.length(), zone());
|
|
|
|
ZoneList<HBasicBlock*> reverse_result(8, zone());
|
|
HBasicBlock* start = blocks_[0];
|
|
PostorderProcessor* postorder =
|
|
PostorderProcessor::CreateEntryProcessor(zone(), start, &visited);
|
|
while (postorder != NULL) {
|
|
postorder = postorder->PerformStep(zone(), &visited, &reverse_result);
|
|
}
|
|
blocks_.Rewind(0);
|
|
int index = 0;
|
|
for (int i = reverse_result.length() - 1; i >= 0; --i) {
|
|
HBasicBlock* b = reverse_result[i];
|
|
blocks_.Add(b, zone());
|
|
b->set_block_id(index++);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::AssignDominators() {
|
|
HPhase phase("H_Assign dominators", this);
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
HBasicBlock* block = blocks_[i];
|
|
if (block->IsLoopHeader()) {
|
|
// Only the first predecessor of a loop header is from outside the loop.
|
|
// All others are back edges, and thus cannot dominate the loop header.
|
|
block->AssignCommonDominator(block->predecessors()->first());
|
|
block->AssignLoopSuccessorDominators();
|
|
} else {
|
|
for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
|
|
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark all blocks that are dominated by an unconditional soft deoptimize to
|
|
// prevent code motion across those blocks.
|
|
void HGraph::PropagateDeoptimizingMark() {
|
|
HPhase phase("H_Propagate deoptimizing mark", this);
|
|
MarkAsDeoptimizingRecursively(entry_block());
|
|
}
|
|
|
|
void HGraph::MarkAsDeoptimizingRecursively(HBasicBlock* block) {
|
|
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
|
|
HBasicBlock* dominated = block->dominated_blocks()->at(i);
|
|
if (block->IsDeoptimizing()) dominated->MarkAsDeoptimizing();
|
|
MarkAsDeoptimizingRecursively(dominated);
|
|
}
|
|
}
|
|
|
|
void HGraph::EliminateRedundantPhis() {
|
|
HPhase phase("H_Redundant phi elimination", this);
|
|
|
|
// Worklist of phis that can potentially be eliminated. Initialized with
|
|
// all phi nodes. When elimination of a phi node modifies another phi node
|
|
// the modified phi node is added to the worklist.
|
|
ZoneList<HPhi*> worklist(blocks_.length(), zone());
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
worklist.AddAll(*blocks_[i]->phis(), zone());
|
|
}
|
|
|
|
while (!worklist.is_empty()) {
|
|
HPhi* phi = worklist.RemoveLast();
|
|
HBasicBlock* block = phi->block();
|
|
|
|
// Skip phi node if it was already replaced.
|
|
if (block == NULL) continue;
|
|
|
|
// Get replacement value if phi is redundant.
|
|
HValue* replacement = phi->GetRedundantReplacement();
|
|
|
|
if (replacement != NULL) {
|
|
// Iterate through the uses and replace them all.
|
|
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
|
|
HValue* value = it.value();
|
|
value->SetOperandAt(it.index(), replacement);
|
|
if (value->IsPhi()) worklist.Add(HPhi::cast(value), zone());
|
|
}
|
|
block->RemovePhi(phi);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::EliminateUnreachablePhis() {
|
|
HPhase phase("H_Unreachable phi elimination", this);
|
|
|
|
// Initialize worklist.
|
|
ZoneList<HPhi*> phi_list(blocks_.length(), zone());
|
|
ZoneList<HPhi*> worklist(blocks_.length(), zone());
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
phi_list.Add(phi, zone());
|
|
// We can't eliminate phis in the receiver position in the environment
|
|
// because in case of throwing an error we need this value to
|
|
// construct a stack trace.
|
|
if (phi->HasRealUses() || phi->IsReceiver()) {
|
|
phi->set_is_live(true);
|
|
worklist.Add(phi, zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iteratively mark live phis.
|
|
while (!worklist.is_empty()) {
|
|
HPhi* phi = worklist.RemoveLast();
|
|
for (int i = 0; i < phi->OperandCount(); i++) {
|
|
HValue* operand = phi->OperandAt(i);
|
|
if (operand->IsPhi() && !HPhi::cast(operand)->is_live()) {
|
|
HPhi::cast(operand)->set_is_live(true);
|
|
worklist.Add(HPhi::cast(operand), zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove unreachable phis.
|
|
for (int i = 0; i < phi_list.length(); i++) {
|
|
HPhi* phi = phi_list[i];
|
|
if (!phi->is_live()) {
|
|
HBasicBlock* block = phi->block();
|
|
block->RemovePhi(phi);
|
|
block->RecordDeletedPhi(phi->merged_index());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool HGraph::CheckArgumentsPhiUses() {
|
|
int block_count = blocks_.length();
|
|
for (int i = 0; i < block_count; ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
// We don't support phi uses of arguments for now.
|
|
if (phi->CheckFlag(HValue::kIsArguments)) return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HGraph::CheckConstPhiUses() {
|
|
int block_count = blocks_.length();
|
|
for (int i = 0; i < block_count; ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
// Check for the hole value (from an uninitialized const).
|
|
for (int k = 0; k < phi->OperandCount(); k++) {
|
|
if (phi->OperandAt(k) == GetConstantHole()) return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraph::CollectPhis() {
|
|
int block_count = blocks_.length();
|
|
phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
|
|
for (int i = 0; i < block_count; ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
phi_list_->Add(phi, zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::InferTypes(ZoneList<HValue*>* worklist) {
|
|
BitVector in_worklist(GetMaximumValueID(), zone());
|
|
for (int i = 0; i < worklist->length(); ++i) {
|
|
ASSERT(!in_worklist.Contains(worklist->at(i)->id()));
|
|
in_worklist.Add(worklist->at(i)->id());
|
|
}
|
|
|
|
while (!worklist->is_empty()) {
|
|
HValue* current = worklist->RemoveLast();
|
|
in_worklist.Remove(current->id());
|
|
if (current->UpdateInferredType()) {
|
|
for (HUseIterator it(current->uses()); !it.Done(); it.Advance()) {
|
|
HValue* use = it.value();
|
|
if (!in_worklist.Contains(use->id())) {
|
|
in_worklist.Add(use->id());
|
|
worklist->Add(use, zone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
class HRangeAnalysis BASE_EMBEDDED {
|
|
public:
|
|
explicit HRangeAnalysis(HGraph* graph) :
|
|
graph_(graph), zone_(graph->zone()), changed_ranges_(16, zone_) { }
|
|
|
|
void Analyze();
|
|
|
|
private:
|
|
void TraceRange(const char* msg, ...);
|
|
void Analyze(HBasicBlock* block);
|
|
void InferControlFlowRange(HCompareIDAndBranch* test, HBasicBlock* dest);
|
|
void UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other);
|
|
void InferRange(HValue* value);
|
|
void RollBackTo(int index);
|
|
void AddRange(HValue* value, Range* range);
|
|
|
|
HGraph* graph_;
|
|
Zone* zone_;
|
|
ZoneList<HValue*> changed_ranges_;
|
|
};
|
|
|
|
|
|
void HRangeAnalysis::TraceRange(const char* msg, ...) {
|
|
if (FLAG_trace_range) {
|
|
va_list arguments;
|
|
va_start(arguments, msg);
|
|
OS::VPrint(msg, arguments);
|
|
va_end(arguments);
|
|
}
|
|
}
|
|
|
|
|
|
void HRangeAnalysis::Analyze() {
|
|
HPhase phase("H_Range analysis", graph_);
|
|
Analyze(graph_->entry_block());
|
|
}
|
|
|
|
|
|
void HRangeAnalysis::Analyze(HBasicBlock* block) {
|
|
TraceRange("Analyzing block B%d\n", block->block_id());
|
|
|
|
int last_changed_range = changed_ranges_.length() - 1;
|
|
|
|
// Infer range based on control flow.
|
|
if (block->predecessors()->length() == 1) {
|
|
HBasicBlock* pred = block->predecessors()->first();
|
|
if (pred->end()->IsCompareIDAndBranch()) {
|
|
InferControlFlowRange(HCompareIDAndBranch::cast(pred->end()), block);
|
|
}
|
|
}
|
|
|
|
// Process phi instructions.
|
|
for (int i = 0; i < block->phis()->length(); ++i) {
|
|
HPhi* phi = block->phis()->at(i);
|
|
InferRange(phi);
|
|
}
|
|
|
|
// Go through all instructions of the current block.
|
|
HInstruction* instr = block->first();
|
|
while (instr != block->end()) {
|
|
InferRange(instr);
|
|
instr = instr->next();
|
|
}
|
|
|
|
// Continue analysis in all dominated blocks.
|
|
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
|
|
Analyze(block->dominated_blocks()->at(i));
|
|
}
|
|
|
|
RollBackTo(last_changed_range);
|
|
}
|
|
|
|
|
|
void HRangeAnalysis::InferControlFlowRange(HCompareIDAndBranch* test,
|
|
HBasicBlock* dest) {
|
|
ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest));
|
|
if (test->GetInputRepresentation().IsInteger32()) {
|
|
Token::Value op = test->token();
|
|
if (test->SecondSuccessor() == dest) {
|
|
op = Token::NegateCompareOp(op);
|
|
}
|
|
Token::Value inverted_op = Token::InvertCompareOp(op);
|
|
UpdateControlFlowRange(op, test->left(), test->right());
|
|
UpdateControlFlowRange(inverted_op, test->right(), test->left());
|
|
}
|
|
}
|
|
|
|
|
|
// We know that value [op] other. Use this information to update the range on
|
|
// value.
|
|
void HRangeAnalysis::UpdateControlFlowRange(Token::Value op,
|
|
HValue* value,
|
|
HValue* other) {
|
|
Range temp_range;
|
|
Range* range = other->range() != NULL ? other->range() : &temp_range;
|
|
Range* new_range = NULL;
|
|
|
|
TraceRange("Control flow range infer %d %s %d\n",
|
|
value->id(),
|
|
Token::Name(op),
|
|
other->id());
|
|
|
|
if (op == Token::EQ || op == Token::EQ_STRICT) {
|
|
// The same range has to apply for value.
|
|
new_range = range->Copy(zone_);
|
|
} else if (op == Token::LT || op == Token::LTE) {
|
|
new_range = range->CopyClearLower(zone_);
|
|
if (op == Token::LT) {
|
|
new_range->AddConstant(-1);
|
|
}
|
|
} else if (op == Token::GT || op == Token::GTE) {
|
|
new_range = range->CopyClearUpper(zone_);
|
|
if (op == Token::GT) {
|
|
new_range->AddConstant(1);
|
|
}
|
|
}
|
|
|
|
if (new_range != NULL && !new_range->IsMostGeneric()) {
|
|
AddRange(value, new_range);
|
|
}
|
|
}
|
|
|
|
|
|
void HRangeAnalysis::InferRange(HValue* value) {
|
|
ASSERT(!value->HasRange());
|
|
if (!value->representation().IsNone()) {
|
|
value->ComputeInitialRange(zone_);
|
|
Range* range = value->range();
|
|
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
|
|
value->id(),
|
|
value->Mnemonic(),
|
|
range->lower(),
|
|
range->upper());
|
|
}
|
|
}
|
|
|
|
|
|
void HRangeAnalysis::RollBackTo(int index) {
|
|
for (int i = index + 1; i < changed_ranges_.length(); ++i) {
|
|
changed_ranges_[i]->RemoveLastAddedRange();
|
|
}
|
|
changed_ranges_.Rewind(index + 1);
|
|
}
|
|
|
|
|
|
void HRangeAnalysis::AddRange(HValue* value, Range* range) {
|
|
Range* original_range = value->range();
|
|
value->AddNewRange(range, zone_);
|
|
changed_ranges_.Add(value, zone_);
|
|
Range* new_range = value->range();
|
|
TraceRange("Updated range of %d set to [%d,%d]\n",
|
|
value->id(),
|
|
new_range->lower(),
|
|
new_range->upper());
|
|
if (original_range != NULL) {
|
|
TraceRange("Original range was [%d,%d]\n",
|
|
original_range->lower(),
|
|
original_range->upper());
|
|
}
|
|
TraceRange("New information was [%d,%d]\n",
|
|
range->lower(),
|
|
range->upper());
|
|
}
|
|
|
|
|
|
void TraceGVN(const char* msg, ...) {
|
|
va_list arguments;
|
|
va_start(arguments, msg);
|
|
OS::VPrint(msg, arguments);
|
|
va_end(arguments);
|
|
}
|
|
|
|
// Wrap TraceGVN in macros to avoid the expense of evaluating its arguments when
|
|
// --trace-gvn is off.
|
|
#define TRACE_GVN_1(msg, a1) \
|
|
if (FLAG_trace_gvn) { \
|
|
TraceGVN(msg, a1); \
|
|
}
|
|
|
|
#define TRACE_GVN_2(msg, a1, a2) \
|
|
if (FLAG_trace_gvn) { \
|
|
TraceGVN(msg, a1, a2); \
|
|
}
|
|
|
|
#define TRACE_GVN_3(msg, a1, a2, a3) \
|
|
if (FLAG_trace_gvn) { \
|
|
TraceGVN(msg, a1, a2, a3); \
|
|
}
|
|
|
|
#define TRACE_GVN_4(msg, a1, a2, a3, a4) \
|
|
if (FLAG_trace_gvn) { \
|
|
TraceGVN(msg, a1, a2, a3, a4); \
|
|
}
|
|
|
|
#define TRACE_GVN_5(msg, a1, a2, a3, a4, a5) \
|
|
if (FLAG_trace_gvn) { \
|
|
TraceGVN(msg, a1, a2, a3, a4, a5); \
|
|
}
|
|
|
|
|
|
HValueMap::HValueMap(Zone* zone, const HValueMap* other)
|
|
: array_size_(other->array_size_),
|
|
lists_size_(other->lists_size_),
|
|
count_(other->count_),
|
|
present_flags_(other->present_flags_),
|
|
array_(zone->NewArray<HValueMapListElement>(other->array_size_)),
|
|
lists_(zone->NewArray<HValueMapListElement>(other->lists_size_)),
|
|
free_list_head_(other->free_list_head_) {
|
|
memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement));
|
|
memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement));
|
|
}
|
|
|
|
|
|
void HValueMap::Kill(GVNFlagSet flags) {
|
|
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(flags);
|
|
if (!present_flags_.ContainsAnyOf(depends_flags)) return;
|
|
present_flags_.RemoveAll();
|
|
for (int i = 0; i < array_size_; ++i) {
|
|
HValue* value = array_[i].value;
|
|
if (value != NULL) {
|
|
// Clear list of collisions first, so we know if it becomes empty.
|
|
int kept = kNil; // List of kept elements.
|
|
int next;
|
|
for (int current = array_[i].next; current != kNil; current = next) {
|
|
next = lists_[current].next;
|
|
HValue* value = lists_[current].value;
|
|
if (value->gvn_flags().ContainsAnyOf(depends_flags)) {
|
|
// Drop it.
|
|
count_--;
|
|
lists_[current].next = free_list_head_;
|
|
free_list_head_ = current;
|
|
} else {
|
|
// Keep it.
|
|
lists_[current].next = kept;
|
|
kept = current;
|
|
present_flags_.Add(value->gvn_flags());
|
|
}
|
|
}
|
|
array_[i].next = kept;
|
|
|
|
// Now possibly drop directly indexed element.
|
|
value = array_[i].value;
|
|
if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it.
|
|
count_--;
|
|
int head = array_[i].next;
|
|
if (head == kNil) {
|
|
array_[i].value = NULL;
|
|
} else {
|
|
array_[i].value = lists_[head].value;
|
|
array_[i].next = lists_[head].next;
|
|
lists_[head].next = free_list_head_;
|
|
free_list_head_ = head;
|
|
}
|
|
} else {
|
|
present_flags_.Add(value->gvn_flags()); // Keep it.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
HValue* HValueMap::Lookup(HValue* value) const {
|
|
uint32_t hash = static_cast<uint32_t>(value->Hashcode());
|
|
uint32_t pos = Bound(hash);
|
|
if (array_[pos].value != NULL) {
|
|
if (array_[pos].value->Equals(value)) return array_[pos].value;
|
|
int next = array_[pos].next;
|
|
while (next != kNil) {
|
|
if (lists_[next].value->Equals(value)) return lists_[next].value;
|
|
next = lists_[next].next;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void HValueMap::Resize(int new_size, Zone* zone) {
|
|
ASSERT(new_size > count_);
|
|
// Hashing the values into the new array has no more collisions than in the
|
|
// old hash map, so we can use the existing lists_ array, if we are careful.
|
|
|
|
// Make sure we have at least one free element.
|
|
if (free_list_head_ == kNil) {
|
|
ResizeLists(lists_size_ << 1, zone);
|
|
}
|
|
|
|
HValueMapListElement* new_array =
|
|
zone->NewArray<HValueMapListElement>(new_size);
|
|
memset(new_array, 0, sizeof(HValueMapListElement) * new_size);
|
|
|
|
HValueMapListElement* old_array = array_;
|
|
int old_size = array_size_;
|
|
|
|
int old_count = count_;
|
|
count_ = 0;
|
|
// Do not modify present_flags_. It is currently correct.
|
|
array_size_ = new_size;
|
|
array_ = new_array;
|
|
|
|
if (old_array != NULL) {
|
|
// Iterate over all the elements in lists, rehashing them.
|
|
for (int i = 0; i < old_size; ++i) {
|
|
if (old_array[i].value != NULL) {
|
|
int current = old_array[i].next;
|
|
while (current != kNil) {
|
|
Insert(lists_[current].value, zone);
|
|
int next = lists_[current].next;
|
|
lists_[current].next = free_list_head_;
|
|
free_list_head_ = current;
|
|
current = next;
|
|
}
|
|
// Rehash the directly stored value.
|
|
Insert(old_array[i].value, zone);
|
|
}
|
|
}
|
|
}
|
|
USE(old_count);
|
|
ASSERT(count_ == old_count);
|
|
}
|
|
|
|
|
|
void HValueMap::ResizeLists(int new_size, Zone* zone) {
|
|
ASSERT(new_size > lists_size_);
|
|
|
|
HValueMapListElement* new_lists =
|
|
zone->NewArray<HValueMapListElement>(new_size);
|
|
memset(new_lists, 0, sizeof(HValueMapListElement) * new_size);
|
|
|
|
HValueMapListElement* old_lists = lists_;
|
|
int old_size = lists_size_;
|
|
|
|
lists_size_ = new_size;
|
|
lists_ = new_lists;
|
|
|
|
if (old_lists != NULL) {
|
|
memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement));
|
|
}
|
|
for (int i = old_size; i < lists_size_; ++i) {
|
|
lists_[i].next = free_list_head_;
|
|
free_list_head_ = i;
|
|
}
|
|
}
|
|
|
|
|
|
void HValueMap::Insert(HValue* value, Zone* zone) {
|
|
ASSERT(value != NULL);
|
|
// Resizing when half of the hashtable is filled up.
|
|
if (count_ >= array_size_ >> 1) Resize(array_size_ << 1, zone);
|
|
ASSERT(count_ < array_size_);
|
|
count_++;
|
|
uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode()));
|
|
if (array_[pos].value == NULL) {
|
|
array_[pos].value = value;
|
|
array_[pos].next = kNil;
|
|
} else {
|
|
if (free_list_head_ == kNil) {
|
|
ResizeLists(lists_size_ << 1, zone);
|
|
}
|
|
int new_element_pos = free_list_head_;
|
|
ASSERT(new_element_pos != kNil);
|
|
free_list_head_ = lists_[free_list_head_].next;
|
|
lists_[new_element_pos].value = value;
|
|
lists_[new_element_pos].next = array_[pos].next;
|
|
ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL);
|
|
array_[pos].next = new_element_pos;
|
|
}
|
|
}
|
|
|
|
|
|
HSideEffectMap::HSideEffectMap() : count_(0) {
|
|
memset(data_, 0, kNumberOfTrackedSideEffects * kPointerSize);
|
|
}
|
|
|
|
|
|
HSideEffectMap::HSideEffectMap(HSideEffectMap* other) : count_(other->count_) {
|
|
*this = *other; // Calls operator=.
|
|
}
|
|
|
|
|
|
HSideEffectMap& HSideEffectMap::operator= (const HSideEffectMap& other) {
|
|
if (this != &other) {
|
|
memcpy(data_, other.data_, kNumberOfTrackedSideEffects * kPointerSize);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void HSideEffectMap::Kill(GVNFlagSet flags) {
|
|
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
|
|
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
|
|
if (flags.Contains(changes_flag)) {
|
|
if (data_[i] != NULL) count_--;
|
|
data_[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HSideEffectMap::Store(GVNFlagSet flags, HInstruction* instr) {
|
|
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
|
|
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
|
|
if (flags.Contains(changes_flag)) {
|
|
if (data_[i] == NULL) count_++;
|
|
data_[i] = instr;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
class HStackCheckEliminator BASE_EMBEDDED {
|
|
public:
|
|
explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { }
|
|
|
|
void Process();
|
|
|
|
private:
|
|
HGraph* graph_;
|
|
};
|
|
|
|
|
|
void HStackCheckEliminator::Process() {
|
|
// For each loop block walk the dominator tree from the backwards branch to
|
|
// the loop header. If a call instruction is encountered the backwards branch
|
|
// is dominated by a call and the stack check in the backwards branch can be
|
|
// removed.
|
|
for (int i = 0; i < graph_->blocks()->length(); i++) {
|
|
HBasicBlock* block = graph_->blocks()->at(i);
|
|
if (block->IsLoopHeader()) {
|
|
HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
|
|
HBasicBlock* dominator = back_edge;
|
|
while (true) {
|
|
HInstruction* instr = dominator->first();
|
|
while (instr != NULL) {
|
|
if (instr->IsCall()) {
|
|
block->loop_information()->stack_check()->Eliminate();
|
|
break;
|
|
}
|
|
instr = instr->next();
|
|
}
|
|
|
|
// Done when the loop header is processed.
|
|
if (dominator == block) break;
|
|
|
|
// Move up the dominator tree.
|
|
dominator = dominator->dominator();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Simple sparse set with O(1) add, contains, and clear.
|
|
class SparseSet {
|
|
public:
|
|
SparseSet(Zone* zone, int capacity)
|
|
: capacity_(capacity),
|
|
length_(0),
|
|
dense_(zone->NewArray<int>(capacity)),
|
|
sparse_(zone->NewArray<int>(capacity)) {
|
|
#ifndef NVALGRIND
|
|
// Initialize the sparse array to make valgrind happy.
|
|
memset(sparse_, 0, sizeof(sparse_[0]) * capacity);
|
|
#endif
|
|
}
|
|
|
|
bool Contains(int n) const {
|
|
ASSERT(0 <= n && n < capacity_);
|
|
int d = sparse_[n];
|
|
return 0 <= d && d < length_ && dense_[d] == n;
|
|
}
|
|
|
|
bool Add(int n) {
|
|
if (Contains(n)) return false;
|
|
dense_[length_] = n;
|
|
sparse_[n] = length_;
|
|
++length_;
|
|
return true;
|
|
}
|
|
|
|
void Clear() { length_ = 0; }
|
|
|
|
private:
|
|
int capacity_;
|
|
int length_;
|
|
int* dense_;
|
|
int* sparse_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SparseSet);
|
|
};
|
|
|
|
|
|
class HGlobalValueNumberer BASE_EMBEDDED {
|
|
public:
|
|
explicit HGlobalValueNumberer(HGraph* graph, CompilationInfo* info)
|
|
: graph_(graph),
|
|
info_(info),
|
|
removed_side_effects_(false),
|
|
block_side_effects_(graph->blocks()->length(), graph->zone()),
|
|
loop_side_effects_(graph->blocks()->length(), graph->zone()),
|
|
visited_on_paths_(graph->zone(), graph->blocks()->length()) {
|
|
#ifdef DEBUG
|
|
ASSERT(info->isolate()->optimizing_compiler_thread()->IsOptimizerThread() ||
|
|
!info->isolate()->heap()->IsAllocationAllowed());
|
|
#endif
|
|
block_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(),
|
|
graph_->zone());
|
|
loop_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(),
|
|
graph_->zone());
|
|
}
|
|
|
|
// Returns true if values with side effects are removed.
|
|
bool Analyze();
|
|
|
|
private:
|
|
GVNFlagSet CollectSideEffectsOnPathsToDominatedBlock(
|
|
HBasicBlock* dominator,
|
|
HBasicBlock* dominated);
|
|
void AnalyzeGraph();
|
|
void ComputeBlockSideEffects();
|
|
void LoopInvariantCodeMotion();
|
|
void ProcessLoopBlock(HBasicBlock* block,
|
|
HBasicBlock* before_loop,
|
|
GVNFlagSet loop_kills,
|
|
GVNFlagSet* accumulated_first_time_depends,
|
|
GVNFlagSet* accumulated_first_time_changes);
|
|
bool AllowCodeMotion();
|
|
bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header);
|
|
|
|
HGraph* graph() { return graph_; }
|
|
CompilationInfo* info() { return info_; }
|
|
Zone* zone() const { return graph_->zone(); }
|
|
|
|
HGraph* graph_;
|
|
CompilationInfo* info_;
|
|
bool removed_side_effects_;
|
|
|
|
// A map of block IDs to their side effects.
|
|
ZoneList<GVNFlagSet> block_side_effects_;
|
|
|
|
// A map of loop header block IDs to their loop's side effects.
|
|
ZoneList<GVNFlagSet> loop_side_effects_;
|
|
|
|
// Used when collecting side effects on paths from dominator to
|
|
// dominated.
|
|
SparseSet visited_on_paths_;
|
|
};
|
|
|
|
|
|
bool HGlobalValueNumberer::Analyze() {
|
|
removed_side_effects_ = false;
|
|
ComputeBlockSideEffects();
|
|
if (FLAG_loop_invariant_code_motion) {
|
|
LoopInvariantCodeMotion();
|
|
}
|
|
AnalyzeGraph();
|
|
return removed_side_effects_;
|
|
}
|
|
|
|
|
|
void HGlobalValueNumberer::ComputeBlockSideEffects() {
|
|
// The Analyze phase of GVN can be called multiple times. Clear loop side
|
|
// effects before computing them to erase the contents from previous Analyze
|
|
// passes.
|
|
for (int i = 0; i < loop_side_effects_.length(); ++i) {
|
|
loop_side_effects_[i].RemoveAll();
|
|
}
|
|
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
|
|
// Compute side effects for the block.
|
|
HBasicBlock* block = graph_->blocks()->at(i);
|
|
HInstruction* instr = block->first();
|
|
int id = block->block_id();
|
|
GVNFlagSet side_effects;
|
|
while (instr != NULL) {
|
|
side_effects.Add(instr->ChangesFlags());
|
|
if (instr->IsSoftDeoptimize()) {
|
|
block_side_effects_[id].RemoveAll();
|
|
side_effects.RemoveAll();
|
|
break;
|
|
}
|
|
instr = instr->next();
|
|
}
|
|
block_side_effects_[id].Add(side_effects);
|
|
|
|
// Loop headers are part of their loop.
|
|
if (block->IsLoopHeader()) {
|
|
loop_side_effects_[id].Add(side_effects);
|
|
}
|
|
|
|
// Propagate loop side effects upwards.
|
|
if (block->HasParentLoopHeader()) {
|
|
int header_id = block->parent_loop_header()->block_id();
|
|
loop_side_effects_[header_id].Add(block->IsLoopHeader()
|
|
? loop_side_effects_[id]
|
|
: side_effects);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
SmartArrayPointer<char> GetGVNFlagsString(GVNFlagSet flags) {
|
|
char underlying_buffer[kLastFlag * 128];
|
|
Vector<char> buffer(underlying_buffer, sizeof(underlying_buffer));
|
|
#if DEBUG
|
|
int offset = 0;
|
|
const char* separator = "";
|
|
const char* comma = ", ";
|
|
buffer[0] = 0;
|
|
uint32_t set_depends_on = 0;
|
|
uint32_t set_changes = 0;
|
|
for (int bit = 0; bit < kLastFlag; ++bit) {
|
|
if ((flags.ToIntegral() & (1 << bit)) != 0) {
|
|
if (bit % 2 == 0) {
|
|
set_changes++;
|
|
} else {
|
|
set_depends_on++;
|
|
}
|
|
}
|
|
}
|
|
bool positive_changes = set_changes < (kLastFlag / 2);
|
|
bool positive_depends_on = set_depends_on < (kLastFlag / 2);
|
|
if (set_changes > 0) {
|
|
if (positive_changes) {
|
|
offset += OS::SNPrintF(buffer + offset, "changes [");
|
|
} else {
|
|
offset += OS::SNPrintF(buffer + offset, "changes all except [");
|
|
}
|
|
for (int bit = 0; bit < kLastFlag; ++bit) {
|
|
if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_changes) {
|
|
switch (static_cast<GVNFlag>(bit)) {
|
|
#define DECLARE_FLAG(type) \
|
|
case kChanges##type: \
|
|
offset += OS::SNPrintF(buffer + offset, separator); \
|
|
offset += OS::SNPrintF(buffer + offset, #type); \
|
|
separator = comma; \
|
|
break;
|
|
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
|
|
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
|
|
#undef DECLARE_FLAG
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
offset += OS::SNPrintF(buffer + offset, "]");
|
|
}
|
|
if (set_depends_on > 0) {
|
|
separator = "";
|
|
if (set_changes > 0) {
|
|
offset += OS::SNPrintF(buffer + offset, ", ");
|
|
}
|
|
if (positive_depends_on) {
|
|
offset += OS::SNPrintF(buffer + offset, "depends on [");
|
|
} else {
|
|
offset += OS::SNPrintF(buffer + offset, "depends on all except [");
|
|
}
|
|
for (int bit = 0; bit < kLastFlag; ++bit) {
|
|
if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_depends_on) {
|
|
switch (static_cast<GVNFlag>(bit)) {
|
|
#define DECLARE_FLAG(type) \
|
|
case kDependsOn##type: \
|
|
offset += OS::SNPrintF(buffer + offset, separator); \
|
|
offset += OS::SNPrintF(buffer + offset, #type); \
|
|
separator = comma; \
|
|
break;
|
|
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
|
|
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
|
|
#undef DECLARE_FLAG
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
offset += OS::SNPrintF(buffer + offset, "]");
|
|
}
|
|
#else
|
|
OS::SNPrintF(buffer, "0x%08X", flags.ToIntegral());
|
|
#endif
|
|
size_t string_len = strlen(underlying_buffer) + 1;
|
|
ASSERT(string_len <= sizeof(underlying_buffer));
|
|
char* result = new char[strlen(underlying_buffer) + 1];
|
|
memcpy(result, underlying_buffer, string_len);
|
|
return SmartArrayPointer<char>(result);
|
|
}
|
|
|
|
|
|
void HGlobalValueNumberer::LoopInvariantCodeMotion() {
|
|
TRACE_GVN_1("Using optimistic loop invariant code motion: %s\n",
|
|
graph_->use_optimistic_licm() ? "yes" : "no");
|
|
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
|
|
HBasicBlock* block = graph_->blocks()->at(i);
|
|
if (block->IsLoopHeader()) {
|
|
GVNFlagSet side_effects = loop_side_effects_[block->block_id()];
|
|
TRACE_GVN_2("Try loop invariant motion for block B%d %s\n",
|
|
block->block_id(),
|
|
*GetGVNFlagsString(side_effects));
|
|
|
|
GVNFlagSet accumulated_first_time_depends;
|
|
GVNFlagSet accumulated_first_time_changes;
|
|
HBasicBlock* last = block->loop_information()->GetLastBackEdge();
|
|
for (int j = block->block_id(); j <= last->block_id(); ++j) {
|
|
ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects,
|
|
&accumulated_first_time_depends,
|
|
&accumulated_first_time_changes);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGlobalValueNumberer::ProcessLoopBlock(
|
|
HBasicBlock* block,
|
|
HBasicBlock* loop_header,
|
|
GVNFlagSet loop_kills,
|
|
GVNFlagSet* first_time_depends,
|
|
GVNFlagSet* first_time_changes) {
|
|
HBasicBlock* pre_header = loop_header->predecessors()->at(0);
|
|
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills);
|
|
TRACE_GVN_2("Loop invariant motion for B%d %s\n",
|
|
block->block_id(),
|
|
*GetGVNFlagsString(depends_flags));
|
|
HInstruction* instr = block->first();
|
|
while (instr != NULL) {
|
|
HInstruction* next = instr->next();
|
|
bool hoisted = false;
|
|
if (instr->CheckFlag(HValue::kUseGVN)) {
|
|
TRACE_GVN_4("Checking instruction %d (%s) %s. Loop %s\n",
|
|
instr->id(),
|
|
instr->Mnemonic(),
|
|
*GetGVNFlagsString(instr->gvn_flags()),
|
|
*GetGVNFlagsString(loop_kills));
|
|
bool can_hoist = !instr->gvn_flags().ContainsAnyOf(depends_flags);
|
|
if (can_hoist && !graph()->use_optimistic_licm()) {
|
|
can_hoist = block->IsLoopSuccessorDominator();
|
|
}
|
|
|
|
if (can_hoist) {
|
|
bool inputs_loop_invariant = true;
|
|
for (int i = 0; i < instr->OperandCount(); ++i) {
|
|
if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) {
|
|
inputs_loop_invariant = false;
|
|
}
|
|
}
|
|
|
|
if (inputs_loop_invariant && ShouldMove(instr, loop_header)) {
|
|
TRACE_GVN_1("Hoisting loop invariant instruction %d\n", instr->id());
|
|
// Move the instruction out of the loop.
|
|
instr->Unlink();
|
|
instr->InsertBefore(pre_header->end());
|
|
if (instr->HasSideEffects()) removed_side_effects_ = true;
|
|
hoisted = true;
|
|
}
|
|
}
|
|
}
|
|
if (!hoisted) {
|
|
// If an instruction is not hoisted, we have to account for its side
|
|
// effects when hoisting later HTransitionElementsKind instructions.
|
|
GVNFlagSet previous_depends = *first_time_depends;
|
|
GVNFlagSet previous_changes = *first_time_changes;
|
|
first_time_depends->Add(instr->DependsOnFlags());
|
|
first_time_changes->Add(instr->ChangesFlags());
|
|
if (!(previous_depends == *first_time_depends)) {
|
|
TRACE_GVN_1("Updated first-time accumulated %s\n",
|
|
*GetGVNFlagsString(*first_time_depends));
|
|
}
|
|
if (!(previous_changes == *first_time_changes)) {
|
|
TRACE_GVN_1("Updated first-time accumulated %s\n",
|
|
*GetGVNFlagsString(*first_time_changes));
|
|
}
|
|
}
|
|
instr = next;
|
|
}
|
|
}
|
|
|
|
|
|
bool HGlobalValueNumberer::AllowCodeMotion() {
|
|
return info()->shared_info()->opt_count() + 1 < FLAG_max_opt_count;
|
|
}
|
|
|
|
|
|
bool HGlobalValueNumberer::ShouldMove(HInstruction* instr,
|
|
HBasicBlock* loop_header) {
|
|
// If we've disabled code motion or we're in a block that unconditionally
|
|
// deoptimizes, don't move any instructions.
|
|
return AllowCodeMotion() && !instr->block()->IsDeoptimizing();
|
|
}
|
|
|
|
|
|
GVNFlagSet HGlobalValueNumberer::CollectSideEffectsOnPathsToDominatedBlock(
|
|
HBasicBlock* dominator, HBasicBlock* dominated) {
|
|
GVNFlagSet side_effects;
|
|
for (int i = 0; i < dominated->predecessors()->length(); ++i) {
|
|
HBasicBlock* block = dominated->predecessors()->at(i);
|
|
if (dominator->block_id() < block->block_id() &&
|
|
block->block_id() < dominated->block_id() &&
|
|
visited_on_paths_.Add(block->block_id())) {
|
|
side_effects.Add(block_side_effects_[block->block_id()]);
|
|
if (block->IsLoopHeader()) {
|
|
side_effects.Add(loop_side_effects_[block->block_id()]);
|
|
}
|
|
side_effects.Add(CollectSideEffectsOnPathsToDominatedBlock(
|
|
dominator, block));
|
|
}
|
|
}
|
|
return side_effects;
|
|
}
|
|
|
|
|
|
// Each instance of this class is like a "stack frame" for the recursive
|
|
// traversal of the dominator tree done during GVN (the stack is handled
|
|
// as a double linked list).
|
|
// We reuse frames when possible so the list length is limited by the depth
|
|
// of the dominator tree but this forces us to initialize each frame calling
|
|
// an explicit "Initialize" method instead of a using constructor.
|
|
class GvnBasicBlockState: public ZoneObject {
|
|
public:
|
|
static GvnBasicBlockState* CreateEntry(Zone* zone,
|
|
HBasicBlock* entry_block,
|
|
HValueMap* entry_map) {
|
|
return new(zone)
|
|
GvnBasicBlockState(NULL, entry_block, entry_map, NULL, zone);
|
|
}
|
|
|
|
HBasicBlock* block() { return block_; }
|
|
HValueMap* map() { return map_; }
|
|
HSideEffectMap* dominators() { return &dominators_; }
|
|
|
|
GvnBasicBlockState* next_in_dominator_tree_traversal(
|
|
Zone* zone,
|
|
HBasicBlock** dominator) {
|
|
// This assignment needs to happen before calling next_dominated() because
|
|
// that call can reuse "this" if we are at the last dominated block.
|
|
*dominator = block();
|
|
GvnBasicBlockState* result = next_dominated(zone);
|
|
if (result == NULL) {
|
|
GvnBasicBlockState* dominator_state = pop();
|
|
if (dominator_state != NULL) {
|
|
// This branch is guaranteed not to return NULL because pop() never
|
|
// returns a state where "is_done() == true".
|
|
*dominator = dominator_state->block();
|
|
result = dominator_state->next_dominated(zone);
|
|
} else {
|
|
// Unnecessary (we are returning NULL) but done for cleanness.
|
|
*dominator = NULL;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
void Initialize(HBasicBlock* block,
|
|
HValueMap* map,
|
|
HSideEffectMap* dominators,
|
|
bool copy_map,
|
|
Zone* zone) {
|
|
block_ = block;
|
|
map_ = copy_map ? map->Copy(zone) : map;
|
|
dominated_index_ = -1;
|
|
length_ = block->dominated_blocks()->length();
|
|
if (dominators != NULL) {
|
|
dominators_ = *dominators;
|
|
}
|
|
}
|
|
bool is_done() { return dominated_index_ >= length_; }
|
|
|
|
GvnBasicBlockState(GvnBasicBlockState* previous,
|
|
HBasicBlock* block,
|
|
HValueMap* map,
|
|
HSideEffectMap* dominators,
|
|
Zone* zone)
|
|
: previous_(previous), next_(NULL) {
|
|
Initialize(block, map, dominators, true, zone);
|
|
}
|
|
|
|
GvnBasicBlockState* next_dominated(Zone* zone) {
|
|
dominated_index_++;
|
|
if (dominated_index_ == length_ - 1) {
|
|
// No need to copy the map for the last child in the dominator tree.
|
|
Initialize(block_->dominated_blocks()->at(dominated_index_),
|
|
map(),
|
|
dominators(),
|
|
false,
|
|
zone);
|
|
return this;
|
|
} else if (dominated_index_ < length_) {
|
|
return push(zone,
|
|
block_->dominated_blocks()->at(dominated_index_),
|
|
dominators());
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
GvnBasicBlockState* push(Zone* zone,
|
|
HBasicBlock* block,
|
|
HSideEffectMap* dominators) {
|
|
if (next_ == NULL) {
|
|
next_ =
|
|
new(zone) GvnBasicBlockState(this, block, map(), dominators, zone);
|
|
} else {
|
|
next_->Initialize(block, map(), dominators, true, zone);
|
|
}
|
|
return next_;
|
|
}
|
|
GvnBasicBlockState* pop() {
|
|
GvnBasicBlockState* result = previous_;
|
|
while (result != NULL && result->is_done()) {
|
|
TRACE_GVN_2("Backtracking from block B%d to block b%d\n",
|
|
block()->block_id(),
|
|
previous_->block()->block_id())
|
|
result = result->previous_;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
GvnBasicBlockState* previous_;
|
|
GvnBasicBlockState* next_;
|
|
HBasicBlock* block_;
|
|
HValueMap* map_;
|
|
HSideEffectMap dominators_;
|
|
int dominated_index_;
|
|
int length_;
|
|
};
|
|
|
|
// This is a recursive traversal of the dominator tree but it has been turned
|
|
// into a loop to avoid stack overflows.
|
|
// The logical "stack frames" of the recursion are kept in a list of
|
|
// GvnBasicBlockState instances.
|
|
void HGlobalValueNumberer::AnalyzeGraph() {
|
|
HBasicBlock* entry_block = graph_->entry_block();
|
|
HValueMap* entry_map = new(zone()) HValueMap(zone());
|
|
GvnBasicBlockState* current =
|
|
GvnBasicBlockState::CreateEntry(zone(), entry_block, entry_map);
|
|
|
|
while (current != NULL) {
|
|
HBasicBlock* block = current->block();
|
|
HValueMap* map = current->map();
|
|
HSideEffectMap* dominators = current->dominators();
|
|
|
|
TRACE_GVN_2("Analyzing block B%d%s\n",
|
|
block->block_id(),
|
|
block->IsLoopHeader() ? " (loop header)" : "");
|
|
|
|
// If this is a loop header kill everything killed by the loop.
|
|
if (block->IsLoopHeader()) {
|
|
map->Kill(loop_side_effects_[block->block_id()]);
|
|
}
|
|
|
|
// Go through all instructions of the current block.
|
|
HInstruction* instr = block->first();
|
|
while (instr != NULL) {
|
|
HInstruction* next = instr->next();
|
|
GVNFlagSet flags = instr->ChangesFlags();
|
|
if (!flags.IsEmpty()) {
|
|
// Clear all instructions in the map that are affected by side effects.
|
|
// Store instruction as the dominating one for tracked side effects.
|
|
map->Kill(flags);
|
|
dominators->Store(flags, instr);
|
|
TRACE_GVN_2("Instruction %d %s\n", instr->id(),
|
|
*GetGVNFlagsString(flags));
|
|
}
|
|
if (instr->CheckFlag(HValue::kUseGVN)) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
HValue* other = map->Lookup(instr);
|
|
if (other != NULL) {
|
|
ASSERT(instr->Equals(other) && other->Equals(instr));
|
|
TRACE_GVN_4("Replacing value %d (%s) with value %d (%s)\n",
|
|
instr->id(),
|
|
instr->Mnemonic(),
|
|
other->id(),
|
|
other->Mnemonic());
|
|
if (instr->HasSideEffects()) removed_side_effects_ = true;
|
|
instr->DeleteAndReplaceWith(other);
|
|
} else {
|
|
map->Add(instr, zone());
|
|
}
|
|
}
|
|
if (instr->CheckFlag(HValue::kTrackSideEffectDominators)) {
|
|
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
|
|
HValue* other = dominators->at(i);
|
|
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
|
|
GVNFlag depends_on_flag = HValue::DependsOnFlagFromInt(i);
|
|
if (instr->DependsOnFlags().Contains(depends_on_flag) &&
|
|
(other != NULL)) {
|
|
TRACE_GVN_5("Side-effect #%d in %d (%s) is dominated by %d (%s)\n",
|
|
i,
|
|
instr->id(),
|
|
instr->Mnemonic(),
|
|
other->id(),
|
|
other->Mnemonic());
|
|
instr->SetSideEffectDominator(changes_flag, other);
|
|
}
|
|
}
|
|
}
|
|
instr = next;
|
|
}
|
|
|
|
HBasicBlock* dominator_block;
|
|
GvnBasicBlockState* next =
|
|
current->next_in_dominator_tree_traversal(zone(), &dominator_block);
|
|
|
|
if (next != NULL) {
|
|
HBasicBlock* dominated = next->block();
|
|
HValueMap* successor_map = next->map();
|
|
HSideEffectMap* successor_dominators = next->dominators();
|
|
|
|
// Kill everything killed on any path between this block and the
|
|
// dominated block. We don't have to traverse these paths if the
|
|
// value map and the dominators list is already empty. If the range
|
|
// of block ids (block_id, dominated_id) is empty there are no such
|
|
// paths.
|
|
if ((!successor_map->IsEmpty() || !successor_dominators->IsEmpty()) &&
|
|
dominator_block->block_id() + 1 < dominated->block_id()) {
|
|
visited_on_paths_.Clear();
|
|
GVNFlagSet side_effects_on_all_paths =
|
|
CollectSideEffectsOnPathsToDominatedBlock(dominator_block,
|
|
dominated);
|
|
successor_map->Kill(side_effects_on_all_paths);
|
|
successor_dominators->Kill(side_effects_on_all_paths);
|
|
}
|
|
}
|
|
current = next;
|
|
}
|
|
}
|
|
|
|
|
|
class HInferRepresentation BASE_EMBEDDED {
|
|
public:
|
|
explicit HInferRepresentation(HGraph* graph)
|
|
: graph_(graph),
|
|
worklist_(8, graph->zone()),
|
|
in_worklist_(graph->GetMaximumValueID(), graph->zone()) { }
|
|
|
|
void Analyze();
|
|
|
|
private:
|
|
Representation TryChange(HValue* current);
|
|
void AddToWorklist(HValue* current);
|
|
void InferBasedOnInputs(HValue* current);
|
|
void AddDependantsToWorklist(HValue* current);
|
|
void InferBasedOnUses(HValue* current);
|
|
|
|
Zone* zone() const { return graph_->zone(); }
|
|
|
|
HGraph* graph_;
|
|
ZoneList<HValue*> worklist_;
|
|
BitVector in_worklist_;
|
|
};
|
|
|
|
|
|
void HInferRepresentation::AddToWorklist(HValue* current) {
|
|
if (current->representation().IsSpecialization()) return;
|
|
if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return;
|
|
if (in_worklist_.Contains(current->id())) return;
|
|
worklist_.Add(current, zone());
|
|
in_worklist_.Add(current->id());
|
|
}
|
|
|
|
|
|
// This method tries to specialize the representation type of the value
|
|
// given as a parameter. The value is asked to infer its representation type
|
|
// based on its inputs. If the inferred type is more specialized, then this
|
|
// becomes the new representation type of the node.
|
|
void HInferRepresentation::InferBasedOnInputs(HValue* current) {
|
|
Representation r = current->representation();
|
|
if (r.IsSpecialization()) return;
|
|
ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation));
|
|
Representation inferred = current->InferredRepresentation();
|
|
if (inferred.IsSpecialization()) {
|
|
if (FLAG_trace_representation) {
|
|
PrintF("Changing #%d representation %s -> %s based on inputs\n",
|
|
current->id(),
|
|
r.Mnemonic(),
|
|
inferred.Mnemonic());
|
|
}
|
|
current->ChangeRepresentation(inferred);
|
|
AddDependantsToWorklist(current);
|
|
}
|
|
}
|
|
|
|
|
|
void HInferRepresentation::AddDependantsToWorklist(HValue* value) {
|
|
for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) {
|
|
AddToWorklist(it.value());
|
|
}
|
|
for (int i = 0; i < value->OperandCount(); ++i) {
|
|
AddToWorklist(value->OperandAt(i));
|
|
}
|
|
}
|
|
|
|
|
|
// This method calculates whether specializing the representation of the value
|
|
// given as the parameter has a benefit in terms of less necessary type
|
|
// conversions. If there is a benefit, then the representation of the value is
|
|
// specialized.
|
|
void HInferRepresentation::InferBasedOnUses(HValue* value) {
|
|
Representation r = value->representation();
|
|
if (r.IsSpecialization() || value->HasNoUses()) return;
|
|
ASSERT(value->CheckFlag(HValue::kFlexibleRepresentation));
|
|
Representation new_rep = TryChange(value);
|
|
if (!new_rep.IsNone()) {
|
|
if (!value->representation().Equals(new_rep)) {
|
|
if (FLAG_trace_representation) {
|
|
PrintF("Changing #%d representation %s -> %s based on uses\n",
|
|
value->id(),
|
|
r.Mnemonic(),
|
|
new_rep.Mnemonic());
|
|
}
|
|
value->ChangeRepresentation(new_rep);
|
|
AddDependantsToWorklist(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Representation HInferRepresentation::TryChange(HValue* value) {
|
|
// Array of use counts for each representation.
|
|
int use_count[Representation::kNumRepresentations] = { 0 };
|
|
|
|
for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) {
|
|
HValue* use = it.value();
|
|
Representation rep = use->ObservedInputRepresentation(it.index());
|
|
if (rep.IsNone()) continue;
|
|
if (FLAG_trace_representation) {
|
|
PrintF("%d %s is used by %d %s as %s\n",
|
|
value->id(),
|
|
value->Mnemonic(),
|
|
use->id(),
|
|
use->Mnemonic(),
|
|
rep.Mnemonic());
|
|
}
|
|
if (use->IsPhi()) HPhi::cast(use)->AddIndirectUsesTo(&use_count[0]);
|
|
use_count[rep.kind()] += use->LoopWeight();
|
|
}
|
|
int tagged_count = use_count[Representation::kTagged];
|
|
int double_count = use_count[Representation::kDouble];
|
|
int int32_count = use_count[Representation::kInteger32];
|
|
int non_tagged_count = double_count + int32_count;
|
|
|
|
// If a non-loop phi has tagged uses, don't convert it to untagged.
|
|
if (value->IsPhi() && !value->block()->IsLoopHeader() && tagged_count > 0) {
|
|
return Representation::None();
|
|
}
|
|
|
|
// Prefer unboxing over boxing, the latter is more expensive.
|
|
if (tagged_count > non_tagged_count) return Representation::None();
|
|
|
|
// Prefer Integer32 over Double, if possible.
|
|
if (int32_count > 0 && value->IsConvertibleToInteger()) {
|
|
return Representation::Integer32();
|
|
}
|
|
|
|
if (double_count > 0) return Representation::Double();
|
|
|
|
return Representation::None();
|
|
}
|
|
|
|
|
|
void HInferRepresentation::Analyze() {
|
|
HPhase phase("H_Infer representations", graph_);
|
|
|
|
// (1) Initialize bit vectors and count real uses. Each phi gets a
|
|
// bit-vector of length <number of phis>.
|
|
const ZoneList<HPhi*>* phi_list = graph_->phi_list();
|
|
int phi_count = phi_list->length();
|
|
ZoneList<BitVector*> connected_phis(phi_count, graph_->zone());
|
|
for (int i = 0; i < phi_count; ++i) {
|
|
phi_list->at(i)->InitRealUses(i);
|
|
BitVector* connected_set = new(zone()) BitVector(phi_count, graph_->zone());
|
|
connected_set->Add(i);
|
|
connected_phis.Add(connected_set, zone());
|
|
}
|
|
|
|
// (2) Do a fixed point iteration to find the set of connected phis. A
|
|
// phi is connected to another phi if its value is used either directly or
|
|
// indirectly through a transitive closure of the def-use relation.
|
|
bool change = true;
|
|
while (change) {
|
|
change = false;
|
|
// We normally have far more "forward edges" than "backward edges",
|
|
// so we terminate faster when we walk backwards.
|
|
for (int i = phi_count - 1; i >= 0; --i) {
|
|
HPhi* phi = phi_list->at(i);
|
|
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
|
|
HValue* use = it.value();
|
|
if (use->IsPhi()) {
|
|
int id = HPhi::cast(use)->phi_id();
|
|
if (connected_phis[i]->UnionIsChanged(*connected_phis[id]))
|
|
change = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// (3a) Use the phi reachability information from step 2 to
|
|
// push information about values which can't be converted to integer
|
|
// without deoptimization through the phi use-def chains, avoiding
|
|
// unnecessary deoptimizations later.
|
|
for (int i = 0; i < phi_count; ++i) {
|
|
HPhi* phi = phi_list->at(i);
|
|
bool cti = phi->AllOperandsConvertibleToInteger();
|
|
if (cti) continue;
|
|
|
|
for (BitVector::Iterator it(connected_phis.at(i));
|
|
!it.Done();
|
|
it.Advance()) {
|
|
HPhi* phi = phi_list->at(it.Current());
|
|
phi->set_is_convertible_to_integer(false);
|
|
phi->ResetInteger32Uses();
|
|
}
|
|
}
|
|
|
|
// (3b) Use the phi reachability information from step 2 to
|
|
// sum up the non-phi use counts of all connected phis.
|
|
for (int i = 0; i < phi_count; ++i) {
|
|
HPhi* phi = phi_list->at(i);
|
|
for (BitVector::Iterator it(connected_phis.at(i));
|
|
!it.Done();
|
|
it.Advance()) {
|
|
int index = it.Current();
|
|
HPhi* it_use = phi_list->at(index);
|
|
if (index != i) phi->AddNonPhiUsesFrom(it_use); // Don't count twice.
|
|
}
|
|
}
|
|
|
|
// Initialize work list
|
|
for (int i = 0; i < graph_->blocks()->length(); ++i) {
|
|
HBasicBlock* block = graph_->blocks()->at(i);
|
|
const ZoneList<HPhi*>* phis = block->phis();
|
|
for (int j = 0; j < phis->length(); ++j) {
|
|
AddToWorklist(phis->at(j));
|
|
}
|
|
|
|
HInstruction* current = block->first();
|
|
while (current != NULL) {
|
|
AddToWorklist(current);
|
|
current = current->next();
|
|
}
|
|
}
|
|
|
|
// Do a fixed point iteration, trying to improve representations
|
|
while (!worklist_.is_empty()) {
|
|
HValue* current = worklist_.RemoveLast();
|
|
in_worklist_.Remove(current->id());
|
|
InferBasedOnInputs(current);
|
|
InferBasedOnUses(current);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::InitializeInferredTypes() {
|
|
HPhase phase("H_Inferring types", this);
|
|
InitializeInferredTypes(0, this->blocks_.length() - 1);
|
|
}
|
|
|
|
|
|
void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) {
|
|
for (int i = from_inclusive; i <= to_inclusive; ++i) {
|
|
HBasicBlock* block = blocks_[i];
|
|
|
|
const ZoneList<HPhi*>* phis = block->phis();
|
|
for (int j = 0; j < phis->length(); j++) {
|
|
phis->at(j)->UpdateInferredType();
|
|
}
|
|
|
|
HInstruction* current = block->first();
|
|
while (current != NULL) {
|
|
current->UpdateInferredType();
|
|
current = current->next();
|
|
}
|
|
|
|
if (block->IsLoopHeader()) {
|
|
HBasicBlock* last_back_edge =
|
|
block->loop_information()->GetLastBackEdge();
|
|
InitializeInferredTypes(i + 1, last_back_edge->block_id());
|
|
// Skip all blocks already processed by the recursive call.
|
|
i = last_back_edge->block_id();
|
|
// Update phis of the loop header now after the whole loop body is
|
|
// guaranteed to be processed.
|
|
ZoneList<HValue*> worklist(block->phis()->length(), zone());
|
|
for (int j = 0; j < block->phis()->length(); ++j) {
|
|
worklist.Add(block->phis()->at(j), zone());
|
|
}
|
|
InferTypes(&worklist);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) {
|
|
HValue* current = value;
|
|
while (current != NULL) {
|
|
if (visited->Contains(current->id())) return;
|
|
|
|
// For phis, we must propagate the check to all of its inputs.
|
|
if (current->IsPhi()) {
|
|
visited->Add(current->id());
|
|
HPhi* phi = HPhi::cast(current);
|
|
for (int i = 0; i < phi->OperandCount(); ++i) {
|
|
PropagateMinusZeroChecks(phi->OperandAt(i), visited);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// For multiplication, division, and Math.min/max(), we must propagate
|
|
// to the left and the right side.
|
|
if (current->IsMul()) {
|
|
HMul* mul = HMul::cast(current);
|
|
mul->EnsureAndPropagateNotMinusZero(visited);
|
|
PropagateMinusZeroChecks(mul->left(), visited);
|
|
PropagateMinusZeroChecks(mul->right(), visited);
|
|
} else if (current->IsDiv()) {
|
|
HDiv* div = HDiv::cast(current);
|
|
div->EnsureAndPropagateNotMinusZero(visited);
|
|
PropagateMinusZeroChecks(div->left(), visited);
|
|
PropagateMinusZeroChecks(div->right(), visited);
|
|
} else if (current->IsMathMinMax()) {
|
|
HMathMinMax* minmax = HMathMinMax::cast(current);
|
|
visited->Add(minmax->id());
|
|
PropagateMinusZeroChecks(minmax->left(), visited);
|
|
PropagateMinusZeroChecks(minmax->right(), visited);
|
|
}
|
|
|
|
current = current->EnsureAndPropagateNotMinusZero(visited);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::InsertRepresentationChangeForUse(HValue* value,
|
|
HValue* use_value,
|
|
int use_index,
|
|
Representation to) {
|
|
// Insert the representation change right before its use. For phi-uses we
|
|
// insert at the end of the corresponding predecessor.
|
|
HInstruction* next = NULL;
|
|
if (use_value->IsPhi()) {
|
|
next = use_value->block()->predecessors()->at(use_index)->end();
|
|
} else {
|
|
next = HInstruction::cast(use_value);
|
|
}
|
|
|
|
// For constants we try to make the representation change at compile
|
|
// time. When a representation change is not possible without loss of
|
|
// information we treat constants like normal instructions and insert the
|
|
// change instructions for them.
|
|
HInstruction* new_value = NULL;
|
|
bool is_truncating = use_value->CheckFlag(HValue::kTruncatingToInt32);
|
|
bool deoptimize_on_undefined =
|
|
use_value->CheckFlag(HValue::kDeoptimizeOnUndefined);
|
|
if (value->IsConstant()) {
|
|
HConstant* constant = HConstant::cast(value);
|
|
// Try to create a new copy of the constant with the new representation.
|
|
new_value = is_truncating
|
|
? constant->CopyToTruncatedInt32(zone())
|
|
: constant->CopyToRepresentation(to, zone());
|
|
}
|
|
|
|
if (new_value == NULL) {
|
|
new_value = new(zone()) HChange(value, to,
|
|
is_truncating, deoptimize_on_undefined);
|
|
}
|
|
|
|
new_value->InsertBefore(next);
|
|
use_value->SetOperandAt(use_index, new_value);
|
|
}
|
|
|
|
|
|
void HGraph::InsertRepresentationChangesForValue(HValue* value) {
|
|
Representation r = value->representation();
|
|
if (r.IsNone()) return;
|
|
if (value->HasNoUses()) return;
|
|
|
|
for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) {
|
|
HValue* use_value = it.value();
|
|
int use_index = it.index();
|
|
Representation req = use_value->RequiredInputRepresentation(use_index);
|
|
if (req.IsNone() || req.Equals(r)) continue;
|
|
InsertRepresentationChangeForUse(value, use_value, use_index, req);
|
|
}
|
|
if (value->HasNoUses()) {
|
|
ASSERT(value->IsConstant());
|
|
value->DeleteAndReplaceWith(NULL);
|
|
}
|
|
|
|
// The only purpose of a HForceRepresentation is to represent the value
|
|
// after the (possible) HChange instruction. We make it disappear.
|
|
if (value->IsForceRepresentation()) {
|
|
value->DeleteAndReplaceWith(HForceRepresentation::cast(value)->value());
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::InsertRepresentationChanges() {
|
|
HPhase phase("H_Representation changes", this);
|
|
|
|
// Compute truncation flag for phis: Initially assume that all
|
|
// int32-phis allow truncation and iteratively remove the ones that
|
|
// are used in an operation that does not allow a truncating
|
|
// conversion.
|
|
// TODO(fschneider): Replace this with a worklist-based iteration.
|
|
for (int i = 0; i < phi_list()->length(); i++) {
|
|
HPhi* phi = phi_list()->at(i);
|
|
if (phi->representation().IsInteger32()) {
|
|
phi->SetFlag(HValue::kTruncatingToInt32);
|
|
}
|
|
}
|
|
bool change = true;
|
|
while (change) {
|
|
change = false;
|
|
for (int i = 0; i < phi_list()->length(); i++) {
|
|
HPhi* phi = phi_list()->at(i);
|
|
if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue;
|
|
if (!phi->CheckUsesForFlag(HValue::kTruncatingToInt32)) {
|
|
phi->ClearFlag(HValue::kTruncatingToInt32);
|
|
change = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
// Process phi instructions first.
|
|
const ZoneList<HPhi*>* phis = blocks_[i]->phis();
|
|
for (int j = 0; j < phis->length(); j++) {
|
|
InsertRepresentationChangesForValue(phis->at(j));
|
|
}
|
|
|
|
// Process normal instructions.
|
|
HInstruction* current = blocks_[i]->first();
|
|
while (current != NULL) {
|
|
InsertRepresentationChangesForValue(current);
|
|
current = current->next();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi* phi) {
|
|
if (phi->CheckFlag(HValue::kDeoptimizeOnUndefined)) return;
|
|
phi->SetFlag(HValue::kDeoptimizeOnUndefined);
|
|
for (int i = 0; i < phi->OperandCount(); ++i) {
|
|
HValue* input = phi->OperandAt(i);
|
|
if (input->IsPhi()) {
|
|
RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi::cast(input));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::MarkDeoptimizeOnUndefined() {
|
|
HPhase phase("H_MarkDeoptimizeOnUndefined", this);
|
|
// Compute DeoptimizeOnUndefined flag for phis.
|
|
// Any phi that can reach a use with DeoptimizeOnUndefined set must
|
|
// have DeoptimizeOnUndefined set. Currently only HCompareIDAndBranch, with
|
|
// double input representation, has this flag set.
|
|
// The flag is used by HChange tagged->double, which must deoptimize
|
|
// if one of its uses has this flag set.
|
|
for (int i = 0; i < phi_list()->length(); i++) {
|
|
HPhi* phi = phi_list()->at(i);
|
|
if (phi->representation().IsDouble()) {
|
|
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
|
|
if (it.value()->CheckFlag(HValue::kDeoptimizeOnUndefined)) {
|
|
RecursivelyMarkPhiDeoptimizeOnUndefined(phi);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Discover instructions that can be marked with kUint32 flag allowing
|
|
// them to produce full range uint32 values.
|
|
class Uint32Analysis BASE_EMBEDDED {
|
|
public:
|
|
explicit Uint32Analysis(Zone* zone) : zone_(zone), phis_(4, zone) { }
|
|
|
|
void Analyze(HInstruction* current);
|
|
|
|
void UnmarkUnsafePhis();
|
|
|
|
private:
|
|
bool IsSafeUint32Use(HValue* val, HValue* use);
|
|
bool Uint32UsesAreSafe(HValue* uint32val);
|
|
bool CheckPhiOperands(HPhi* phi);
|
|
void UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist);
|
|
|
|
Zone* zone_;
|
|
ZoneList<HPhi*> phis_;
|
|
};
|
|
|
|
|
|
bool Uint32Analysis::IsSafeUint32Use(HValue* val, HValue* use) {
|
|
// Operations that operatate on bits are safe.
|
|
if (use->IsBitwise() ||
|
|
use->IsShl() ||
|
|
use->IsSar() ||
|
|
use->IsShr() ||
|
|
use->IsBitNot()) {
|
|
return true;
|
|
} else if (use->IsChange() || use->IsSimulate()) {
|
|
// Conversions and deoptimization have special support for unt32.
|
|
return true;
|
|
} else if (use->IsStoreKeyedSpecializedArrayElement()) {
|
|
// Storing a value into an external integer array is a bit level operation.
|
|
HStoreKeyedSpecializedArrayElement* store =
|
|
HStoreKeyedSpecializedArrayElement::cast(use);
|
|
|
|
if (store->value() == val) {
|
|
// Clamping or a conversion to double should have beed inserted.
|
|
ASSERT(store->elements_kind() != EXTERNAL_PIXEL_ELEMENTS);
|
|
ASSERT(store->elements_kind() != EXTERNAL_FLOAT_ELEMENTS);
|
|
ASSERT(store->elements_kind() != EXTERNAL_DOUBLE_ELEMENTS);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Iterate over all uses and verify that they are uint32 safe: either don't
|
|
// distinguish between int32 and uint32 due to their bitwise nature or
|
|
// have special support for uint32 values.
|
|
// Encountered phis are optimisitically treated as safe uint32 uses,
|
|
// marked with kUint32 flag and collected in the phis_ list. A separate
|
|
// path will be performed later by UnmarkUnsafePhis to clear kUint32 from
|
|
// phis that are not actually uint32-safe (it requries fix point iteration).
|
|
bool Uint32Analysis::Uint32UsesAreSafe(HValue* uint32val) {
|
|
bool collect_phi_uses = false;
|
|
for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
|
|
HValue* use = it.value();
|
|
|
|
if (use->IsPhi()) {
|
|
if (!use->CheckFlag(HInstruction::kUint32)) {
|
|
// There is a phi use of this value from a phis that is not yet
|
|
// collected in phis_ array. Separate pass is required.
|
|
collect_phi_uses = true;
|
|
}
|
|
|
|
// Optimistically treat phis as uint32 safe.
|
|
continue;
|
|
}
|
|
|
|
if (!IsSafeUint32Use(uint32val, use)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (collect_phi_uses) {
|
|
for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
|
|
HValue* use = it.value();
|
|
|
|
// There is a phi use of this value from a phis that is not yet
|
|
// collected in phis_ array. Separate pass is required.
|
|
if (use->IsPhi() && !use->CheckFlag(HInstruction::kUint32)) {
|
|
use->SetFlag(HInstruction::kUint32);
|
|
phis_.Add(HPhi::cast(use), zone_);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Analyze instruction and mark it with kUint32 if all its uses are uint32
|
|
// safe.
|
|
void Uint32Analysis::Analyze(HInstruction* current) {
|
|
if (Uint32UsesAreSafe(current)) current->SetFlag(HInstruction::kUint32);
|
|
}
|
|
|
|
|
|
// Check if all operands to the given phi are marked with kUint32 flag.
|
|
bool Uint32Analysis::CheckPhiOperands(HPhi* phi) {
|
|
if (!phi->CheckFlag(HInstruction::kUint32)) {
|
|
// This phi is not uint32 safe. No need to check operands.
|
|
return false;
|
|
}
|
|
|
|
for (int j = 0; j < phi->OperandCount(); j++) {
|
|
HValue* operand = phi->OperandAt(j);
|
|
if (!operand->CheckFlag(HInstruction::kUint32)) {
|
|
// Lazyly mark constants that fit into uint32 range with kUint32 flag.
|
|
if (operand->IsConstant() &&
|
|
HConstant::cast(operand)->IsUint32()) {
|
|
operand->SetFlag(HInstruction::kUint32);
|
|
continue;
|
|
}
|
|
|
|
// This phi is not safe, some operands are not uint32 values.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Remove kUint32 flag from the phi itself and its operands. If any operand
|
|
// was a phi marked with kUint32 place it into a worklist for
|
|
// transitive clearing of kUint32 flag.
|
|
void Uint32Analysis::UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist) {
|
|
phi->ClearFlag(HInstruction::kUint32);
|
|
for (int j = 0; j < phi->OperandCount(); j++) {
|
|
HValue* operand = phi->OperandAt(j);
|
|
if (operand->CheckFlag(HInstruction::kUint32)) {
|
|
operand->ClearFlag(HInstruction::kUint32);
|
|
if (operand->IsPhi()) {
|
|
worklist->Add(HPhi::cast(operand), zone_);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Uint32Analysis::UnmarkUnsafePhis() {
|
|
// No phis were collected. Nothing to do.
|
|
if (phis_.length() == 0) return;
|
|
|
|
// Worklist used to transitively clear kUint32 from phis that
|
|
// are used as arguments to other phis.
|
|
ZoneList<HPhi*> worklist(phis_.length(), zone_);
|
|
|
|
// Phi can be used as a uint32 value if and only if
|
|
// all its operands are uint32 values and all its
|
|
// uses are uint32 safe.
|
|
|
|
// Iterate over collected phis and unmark those that
|
|
// are unsafe. When unmarking phi unmark its operands
|
|
// and add it to the worklist if it is a phi as well.
|
|
// Phis that are still marked as safe are shifted down
|
|
// so that all safe phis form a prefix of the phis_ array.
|
|
int phi_count = 0;
|
|
for (int i = 0; i < phis_.length(); i++) {
|
|
HPhi* phi = phis_[i];
|
|
|
|
if (CheckPhiOperands(phi) && Uint32UsesAreSafe(phi)) {
|
|
phis_[phi_count++] = phi;
|
|
} else {
|
|
UnmarkPhi(phi, &worklist);
|
|
}
|
|
}
|
|
|
|
// Now phis array contains only those phis that have safe
|
|
// non-phi uses. Start transitively clearing kUint32 flag
|
|
// from phi operands of discovered non-safe phies until
|
|
// only safe phies are left.
|
|
while (!worklist.is_empty()) {
|
|
while (!worklist.is_empty()) {
|
|
HPhi* phi = worklist.RemoveLast();
|
|
UnmarkPhi(phi, &worklist);
|
|
}
|
|
|
|
// Check if any operands to safe phies were unmarked
|
|
// turning a safe phi into unsafe. The same value
|
|
// can flow into several phis.
|
|
int new_phi_count = 0;
|
|
for (int i = 0; i < phi_count; i++) {
|
|
HPhi* phi = phis_[i];
|
|
|
|
if (CheckPhiOperands(phi)) {
|
|
phis_[new_phi_count++] = phi;
|
|
} else {
|
|
UnmarkPhi(phi, &worklist);
|
|
}
|
|
}
|
|
phi_count = new_phi_count;
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::ComputeSafeUint32Operations() {
|
|
if (!FLAG_opt_safe_uint32_operations || uint32_instructions_ == NULL) {
|
|
return;
|
|
}
|
|
|
|
Uint32Analysis analysis(zone());
|
|
for (int i = 0; i < uint32_instructions_->length(); ++i) {
|
|
HInstruction* current = uint32_instructions_->at(i);
|
|
if (current->IsLinked() && current->representation().IsInteger32()) {
|
|
analysis.Analyze(current);
|
|
}
|
|
}
|
|
|
|
// Some phis might have been optimistically marked with kUint32 flag.
|
|
// Remove this flag from those phis that are unsafe and propagate
|
|
// this information transitively potentially clearing kUint32 flag
|
|
// from some non-phi operations that are used as operands to unsafe phis.
|
|
analysis.UnmarkUnsafePhis();
|
|
}
|
|
|
|
|
|
void HGraph::ComputeMinusZeroChecks() {
|
|
BitVector visited(GetMaximumValueID(), zone());
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
for (HInstruction* current = blocks_[i]->first();
|
|
current != NULL;
|
|
current = current->next()) {
|
|
if (current->IsChange()) {
|
|
HChange* change = HChange::cast(current);
|
|
// Propagate flags for negative zero checks upwards from conversions
|
|
// int32-to-tagged and int32-to-double.
|
|
Representation from = change->value()->representation();
|
|
ASSERT(from.Equals(change->from()));
|
|
if (from.IsInteger32()) {
|
|
ASSERT(change->to().IsTagged() || change->to().IsDouble());
|
|
ASSERT(visited.IsEmpty());
|
|
PropagateMinusZeroChecks(change->value(), &visited);
|
|
visited.Clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Implementation of utility class to encapsulate the translation state for
|
|
// a (possibly inlined) function.
|
|
FunctionState::FunctionState(HGraphBuilder* owner,
|
|
CompilationInfo* info,
|
|
TypeFeedbackOracle* oracle,
|
|
InliningKind inlining_kind)
|
|
: owner_(owner),
|
|
compilation_info_(info),
|
|
oracle_(oracle),
|
|
call_context_(NULL),
|
|
inlining_kind_(inlining_kind),
|
|
function_return_(NULL),
|
|
test_context_(NULL),
|
|
entry_(NULL),
|
|
arguments_elements_(NULL),
|
|
outer_(owner->function_state()) {
|
|
if (outer_ != NULL) {
|
|
// State for an inline function.
|
|
if (owner->ast_context()->IsTest()) {
|
|
HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
|
|
if_true->MarkAsInlineReturnTarget();
|
|
if_false->MarkAsInlineReturnTarget();
|
|
TestContext* outer_test_context = TestContext::cast(owner->ast_context());
|
|
Expression* cond = outer_test_context->condition();
|
|
TypeFeedbackOracle* outer_oracle = outer_test_context->oracle();
|
|
// The AstContext constructor pushed on the context stack. This newed
|
|
// instance is the reason that AstContext can't be BASE_EMBEDDED.
|
|
test_context_ =
|
|
new TestContext(owner, cond, outer_oracle, if_true, if_false);
|
|
} else {
|
|
function_return_ = owner->graph()->CreateBasicBlock();
|
|
function_return()->MarkAsInlineReturnTarget();
|
|
}
|
|
// Set this after possibly allocating a new TestContext above.
|
|
call_context_ = owner->ast_context();
|
|
}
|
|
|
|
// Push on the state stack.
|
|
owner->set_function_state(this);
|
|
}
|
|
|
|
|
|
FunctionState::~FunctionState() {
|
|
delete test_context_;
|
|
owner_->set_function_state(outer_);
|
|
}
|
|
|
|
|
|
// Implementation of utility classes to represent an expression's context in
|
|
// the AST.
|
|
AstContext::AstContext(HGraphBuilder* owner, Expression::Context kind)
|
|
: owner_(owner),
|
|
kind_(kind),
|
|
outer_(owner->ast_context()),
|
|
for_typeof_(false) {
|
|
owner->set_ast_context(this); // Push.
|
|
#ifdef DEBUG
|
|
ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
|
|
original_length_ = owner->environment()->length();
|
|
#endif
|
|
}
|
|
|
|
|
|
AstContext::~AstContext() {
|
|
owner_->set_ast_context(outer_); // Pop.
|
|
}
|
|
|
|
|
|
EffectContext::~EffectContext() {
|
|
ASSERT(owner()->HasStackOverflow() ||
|
|
owner()->current_block() == NULL ||
|
|
(owner()->environment()->length() == original_length_ &&
|
|
owner()->environment()->frame_type() == JS_FUNCTION));
|
|
}
|
|
|
|
|
|
ValueContext::~ValueContext() {
|
|
ASSERT(owner()->HasStackOverflow() ||
|
|
owner()->current_block() == NULL ||
|
|
(owner()->environment()->length() == original_length_ + 1 &&
|
|
owner()->environment()->frame_type() == JS_FUNCTION));
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnValue(HValue* value) {
|
|
// The value is simply ignored.
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnValue(HValue* value) {
|
|
// The value is tracked in the bailout environment, and communicated
|
|
// through the environment as the result of the expression.
|
|
if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
|
|
owner()->Bailout("bad value context for arguments value");
|
|
}
|
|
owner()->Push(value);
|
|
}
|
|
|
|
|
|
void TestContext::ReturnValue(HValue* value) {
|
|
BuildBranch(value);
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->IsControlInstruction());
|
|
owner()->AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) owner()->AddSimulate(ast_id);
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnControl(HControlInstruction* instr,
|
|
BailoutId ast_id) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
|
|
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
|
|
instr->SetSuccessorAt(0, empty_true);
|
|
instr->SetSuccessorAt(1, empty_false);
|
|
owner()->current_block()->Finish(instr);
|
|
HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
|
|
owner()->set_current_block(join);
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->IsControlInstruction());
|
|
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
|
|
return owner()->Bailout("bad value context for arguments object value");
|
|
}
|
|
owner()->AddInstruction(instr);
|
|
owner()->Push(instr);
|
|
if (instr->HasObservableSideEffects()) owner()->AddSimulate(ast_id);
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
|
|
return owner()->Bailout("bad value context for arguments object value");
|
|
}
|
|
HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
|
|
HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
|
|
instr->SetSuccessorAt(0, materialize_true);
|
|
instr->SetSuccessorAt(1, materialize_false);
|
|
owner()->current_block()->Finish(instr);
|
|
owner()->set_current_block(materialize_true);
|
|
owner()->Push(owner()->graph()->GetConstantTrue());
|
|
owner()->set_current_block(materialize_false);
|
|
owner()->Push(owner()->graph()->GetConstantFalse());
|
|
HBasicBlock* join =
|
|
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
|
|
owner()->set_current_block(join);
|
|
}
|
|
|
|
|
|
void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->IsControlInstruction());
|
|
HGraphBuilder* builder = owner();
|
|
builder->AddInstruction(instr);
|
|
// We expect a simulate after every expression with side effects, though
|
|
// this one isn't actually needed (and wouldn't work if it were targeted).
|
|
if (instr->HasObservableSideEffects()) {
|
|
builder->Push(instr);
|
|
builder->AddSimulate(ast_id);
|
|
builder->Pop();
|
|
}
|
|
BuildBranch(instr);
|
|
}
|
|
|
|
|
|
void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
|
|
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
|
|
instr->SetSuccessorAt(0, empty_true);
|
|
instr->SetSuccessorAt(1, empty_false);
|
|
owner()->current_block()->Finish(instr);
|
|
empty_true->Goto(if_true(), owner()->function_state());
|
|
empty_false->Goto(if_false(), owner()->function_state());
|
|
owner()->set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void TestContext::BuildBranch(HValue* value) {
|
|
// We expect the graph to be in edge-split form: there is no edge that
|
|
// connects a branch node to a join node. We conservatively ensure that
|
|
// property by always adding an empty block on the outgoing edges of this
|
|
// branch.
|
|
HGraphBuilder* builder = owner();
|
|
if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
|
|
builder->Bailout("arguments object value in a test context");
|
|
}
|
|
HBasicBlock* empty_true = builder->graph()->CreateBasicBlock();
|
|
HBasicBlock* empty_false = builder->graph()->CreateBasicBlock();
|
|
TypeFeedbackId test_id = condition()->test_id();
|
|
ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id));
|
|
HBranch* test = new(zone()) HBranch(value, empty_true, empty_false, expected);
|
|
builder->current_block()->Finish(test);
|
|
|
|
empty_true->Goto(if_true(), owner()->function_state());
|
|
empty_false->Goto(if_false(), owner()->function_state());
|
|
builder->set_current_block(NULL);
|
|
}
|
|
|
|
|
|
// HGraphBuilder infrastructure for bailing out and checking bailouts.
|
|
#define CHECK_BAILOUT(call) \
|
|
do { \
|
|
call; \
|
|
if (HasStackOverflow()) return; \
|
|
} while (false)
|
|
|
|
|
|
#define CHECK_ALIVE(call) \
|
|
do { \
|
|
call; \
|
|
if (HasStackOverflow() || current_block() == NULL) return; \
|
|
} while (false)
|
|
|
|
|
|
void HGraphBuilder::Bailout(const char* reason) {
|
|
info()->set_bailout_reason(reason);
|
|
SetStackOverflow();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitForEffect(Expression* expr) {
|
|
EffectContext for_effect(this);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitForValue(Expression* expr, ArgumentsAllowedFlag flag) {
|
|
ValueContext for_value(this, flag);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitForTypeOf(Expression* expr) {
|
|
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
|
|
for_value.set_for_typeof(true);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
|
|
void HGraphBuilder::VisitForControl(Expression* expr,
|
|
HBasicBlock* true_block,
|
|
HBasicBlock* false_block) {
|
|
TestContext for_test(this, expr, oracle(), true_block, false_block);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitArgument(Expression* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr));
|
|
Push(AddInstruction(new(zone()) HPushArgument(Pop())));
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitArgumentList(ZoneList<Expression*>* arguments) {
|
|
for (int i = 0; i < arguments->length(); i++) {
|
|
CHECK_ALIVE(VisitArgument(arguments->at(i)));
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitExpressions(ZoneList<Expression*>* exprs) {
|
|
for (int i = 0; i < exprs->length(); ++i) {
|
|
CHECK_ALIVE(VisitForValue(exprs->at(i)));
|
|
}
|
|
}
|
|
|
|
|
|
HGraph* HGraphBuilder::CreateGraph() {
|
|
graph_ = new(zone()) HGraph(info());
|
|
if (FLAG_hydrogen_stats) HStatistics::Instance()->Initialize(info());
|
|
|
|
{
|
|
HPhase phase("H_Block building");
|
|
current_block_ = graph()->entry_block();
|
|
|
|
Scope* scope = info()->scope();
|
|
if (scope->HasIllegalRedeclaration()) {
|
|
Bailout("function with illegal redeclaration");
|
|
return NULL;
|
|
}
|
|
if (scope->calls_eval()) {
|
|
Bailout("function calls eval");
|
|
return NULL;
|
|
}
|
|
SetUpScope(scope);
|
|
|
|
// Add an edge to the body entry. This is warty: the graph's start
|
|
// environment will be used by the Lithium translation as the initial
|
|
// environment on graph entry, but it has now been mutated by the
|
|
// Hydrogen translation of the instructions in the start block. This
|
|
// environment uses values which have not been defined yet. These
|
|
// Hydrogen instructions will then be replayed by the Lithium
|
|
// translation, so they cannot have an environment effect. The edge to
|
|
// the body's entry block (along with some special logic for the start
|
|
// block in HInstruction::InsertAfter) seals the start block from
|
|
// getting unwanted instructions inserted.
|
|
//
|
|
// TODO(kmillikin): Fix this. Stop mutating the initial environment.
|
|
// Make the Hydrogen instructions in the initial block into Hydrogen
|
|
// values (but not instructions), present in the initial environment and
|
|
// not replayed by the Lithium translation.
|
|
HEnvironment* initial_env = environment()->CopyWithoutHistory();
|
|
HBasicBlock* body_entry = CreateBasicBlock(initial_env);
|
|
current_block()->Goto(body_entry);
|
|
body_entry->SetJoinId(BailoutId::FunctionEntry());
|
|
set_current_block(body_entry);
|
|
|
|
// Handle implicit declaration of the function name in named function
|
|
// expressions before other declarations.
|
|
if (scope->is_function_scope() && scope->function() != NULL) {
|
|
VisitVariableDeclaration(scope->function());
|
|
}
|
|
VisitDeclarations(scope->declarations());
|
|
AddSimulate(BailoutId::Declarations());
|
|
|
|
HValue* context = environment()->LookupContext();
|
|
AddInstruction(
|
|
new(zone()) HStackCheck(context, HStackCheck::kFunctionEntry));
|
|
|
|
VisitStatements(info()->function()->body());
|
|
if (HasStackOverflow()) return NULL;
|
|
|
|
if (current_block() != NULL) {
|
|
HReturn* instr = new(zone()) HReturn(graph()->GetConstantUndefined());
|
|
current_block()->FinishExit(instr);
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
// If the checksum of the number of type info changes is the same as the
|
|
// last time this function was compiled, then this recompile is likely not
|
|
// due to missing/inadequate type feedback, but rather too aggressive
|
|
// optimization. Disable optimistic LICM in that case.
|
|
Handle<Code> unoptimized_code(info()->shared_info()->code());
|
|
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
|
|
Handle<Object> maybe_type_info(unoptimized_code->type_feedback_info());
|
|
Handle<TypeFeedbackInfo> type_info(
|
|
Handle<TypeFeedbackInfo>::cast(maybe_type_info));
|
|
int checksum = type_info->own_type_change_checksum();
|
|
int composite_checksum = graph()->update_type_change_checksum(checksum);
|
|
graph()->set_use_optimistic_licm(
|
|
!type_info->matches_inlined_type_change_checksum(composite_checksum));
|
|
type_info->set_inlined_type_change_checksum(composite_checksum);
|
|
}
|
|
|
|
return graph();
|
|
}
|
|
|
|
bool HGraph::Optimize(SmartArrayPointer<char>* bailout_reason) {
|
|
*bailout_reason = SmartArrayPointer<char>();
|
|
OrderBlocks();
|
|
AssignDominators();
|
|
|
|
#ifdef DEBUG
|
|
// Do a full verify after building the graph and computing dominators.
|
|
Verify(true);
|
|
#endif
|
|
|
|
PropagateDeoptimizingMark();
|
|
if (!CheckConstPhiUses()) {
|
|
*bailout_reason = SmartArrayPointer<char>(StrDup(
|
|
"Unsupported phi use of const variable"));
|
|
return false;
|
|
}
|
|
EliminateRedundantPhis();
|
|
if (!CheckArgumentsPhiUses()) {
|
|
*bailout_reason = SmartArrayPointer<char>(StrDup(
|
|
"Unsupported phi use of arguments"));
|
|
return false;
|
|
}
|
|
if (FLAG_eliminate_dead_phis) EliminateUnreachablePhis();
|
|
CollectPhis();
|
|
|
|
if (has_osr_loop_entry()) {
|
|
const ZoneList<HPhi*>* phis = osr_loop_entry()->phis();
|
|
for (int j = 0; j < phis->length(); j++) {
|
|
HPhi* phi = phis->at(j);
|
|
osr_values()->at(phi->merged_index())->set_incoming_value(phi);
|
|
}
|
|
}
|
|
|
|
HInferRepresentation rep(this);
|
|
rep.Analyze();
|
|
|
|
MarkDeoptimizeOnUndefined();
|
|
InsertRepresentationChanges();
|
|
|
|
InitializeInferredTypes();
|
|
|
|
// Must be performed before canonicalization to ensure that Canonicalize
|
|
// will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
|
|
// zero.
|
|
ComputeSafeUint32Operations();
|
|
|
|
Canonicalize();
|
|
|
|
// Perform common subexpression elimination and loop-invariant code motion.
|
|
if (FLAG_use_gvn) {
|
|
HPhase phase("H_Global value numbering", this);
|
|
HGlobalValueNumberer gvn(this, info());
|
|
bool removed_side_effects = gvn.Analyze();
|
|
// Trigger a second analysis pass to further eliminate duplicate values that
|
|
// could only be discovered by removing side-effect-generating instructions
|
|
// during the first pass.
|
|
if (FLAG_smi_only_arrays && removed_side_effects) {
|
|
removed_side_effects = gvn.Analyze();
|
|
ASSERT(!removed_side_effects);
|
|
}
|
|
}
|
|
|
|
if (FLAG_use_range) {
|
|
HRangeAnalysis rangeAnalysis(this);
|
|
rangeAnalysis.Analyze();
|
|
}
|
|
ComputeMinusZeroChecks();
|
|
|
|
// Eliminate redundant stack checks on backwards branches.
|
|
HStackCheckEliminator sce(this);
|
|
sce.Process();
|
|
|
|
EliminateRedundantBoundsChecks();
|
|
DehoistSimpleArrayIndexComputations();
|
|
if (FLAG_dead_code_elimination) DeadCodeElimination();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// We try to "factor up" HBoundsCheck instructions towards the root of the
|
|
// dominator tree.
|
|
// For now we handle checks where the index is like "exp + int32value".
|
|
// If in the dominator tree we check "exp + v1" and later (dominated)
|
|
// "exp + v2", if v2 <= v1 we can safely remove the second check, and if
|
|
// v2 > v1 we can use v2 in the 1st check and again remove the second.
|
|
// To do so we keep a dictionary of all checks where the key if the pair
|
|
// "exp, length".
|
|
// The class BoundsCheckKey represents this key.
|
|
class BoundsCheckKey : public ZoneObject {
|
|
public:
|
|
HValue* IndexBase() const { return index_base_; }
|
|
HValue* Length() const { return length_; }
|
|
|
|
uint32_t Hash() {
|
|
return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
|
|
}
|
|
|
|
static BoundsCheckKey* Create(Zone* zone,
|
|
HBoundsCheck* check,
|
|
int32_t* offset) {
|
|
if (!check->index()->representation().IsInteger32()) return NULL;
|
|
|
|
HValue* index_base = NULL;
|
|
HConstant* constant = NULL;
|
|
bool is_sub = false;
|
|
|
|
if (check->index()->IsAdd()) {
|
|
HAdd* index = HAdd::cast(check->index());
|
|
if (index->left()->IsConstant()) {
|
|
constant = HConstant::cast(index->left());
|
|
index_base = index->right();
|
|
} else if (index->right()->IsConstant()) {
|
|
constant = HConstant::cast(index->right());
|
|
index_base = index->left();
|
|
}
|
|
} else if (check->index()->IsSub()) {
|
|
HSub* index = HSub::cast(check->index());
|
|
is_sub = true;
|
|
if (index->left()->IsConstant()) {
|
|
constant = HConstant::cast(index->left());
|
|
index_base = index->right();
|
|
} else if (index->right()->IsConstant()) {
|
|
constant = HConstant::cast(index->right());
|
|
index_base = index->left();
|
|
}
|
|
}
|
|
|
|
if (constant != NULL && constant->HasInteger32Value()) {
|
|
*offset = is_sub ? - constant->Integer32Value()
|
|
: constant->Integer32Value();
|
|
} else {
|
|
*offset = 0;
|
|
index_base = check->index();
|
|
}
|
|
|
|
return new(zone) BoundsCheckKey(index_base, check->length());
|
|
}
|
|
|
|
private:
|
|
BoundsCheckKey(HValue* index_base, HValue* length)
|
|
: index_base_(index_base),
|
|
length_(length) { }
|
|
|
|
HValue* index_base_;
|
|
HValue* length_;
|
|
};
|
|
|
|
|
|
// Data about each HBoundsCheck that can be eliminated or moved.
|
|
// It is the "value" in the dictionary indexed by "base-index, length"
|
|
// (the key is BoundsCheckKey).
|
|
// We scan the code with a dominator tree traversal.
|
|
// Traversing the dominator tree we keep a stack (implemented as a singly
|
|
// linked list) of "data" for each basic block that contains a relevant check
|
|
// with the same key (the dictionary holds the head of the list).
|
|
// We also keep all the "data" created for a given basic block in a list, and
|
|
// use it to "clean up" the dictionary when backtracking in the dominator tree
|
|
// traversal.
|
|
// Doing this each dictionary entry always directly points to the check that
|
|
// is dominating the code being examined now.
|
|
// We also track the current "offset" of the index expression and use it to
|
|
// decide if any check is already "covered" (so it can be removed) or not.
|
|
class BoundsCheckBbData: public ZoneObject {
|
|
public:
|
|
BoundsCheckKey* Key() const { return key_; }
|
|
int32_t LowerOffset() const { return lower_offset_; }
|
|
int32_t UpperOffset() const { return upper_offset_; }
|
|
HBasicBlock* BasicBlock() const { return basic_block_; }
|
|
HBoundsCheck* LowerCheck() const { return lower_check_; }
|
|
HBoundsCheck* UpperCheck() const { return upper_check_; }
|
|
BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
|
|
BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
|
|
|
|
bool OffsetIsCovered(int32_t offset) const {
|
|
return offset >= LowerOffset() && offset <= UpperOffset();
|
|
}
|
|
|
|
bool HasSingleCheck() { return lower_check_ == upper_check_; }
|
|
|
|
// The goal of this method is to modify either upper_offset_ or
|
|
// lower_offset_ so that also new_offset is covered (the covered
|
|
// range grows).
|
|
//
|
|
// The precondition is that new_check follows UpperCheck() and
|
|
// LowerCheck() in the same basic block, and that new_offset is not
|
|
// covered (otherwise we could simply remove new_check).
|
|
//
|
|
// If HasSingleCheck() is true then new_check is added as "second check"
|
|
// (either upper or lower; note that HasSingleCheck() becomes false).
|
|
// Otherwise one of the current checks is modified so that it also covers
|
|
// new_offset, and new_check is removed.
|
|
void CoverCheck(HBoundsCheck* new_check,
|
|
int32_t new_offset) {
|
|
ASSERT(new_check->index()->representation().IsInteger32());
|
|
bool keep_new_check = false;
|
|
|
|
if (new_offset > upper_offset_) {
|
|
upper_offset_ = new_offset;
|
|
if (HasSingleCheck()) {
|
|
keep_new_check = true;
|
|
upper_check_ = new_check;
|
|
} else {
|
|
BuildOffsetAdd(upper_check_,
|
|
&added_upper_index_,
|
|
&added_upper_offset_,
|
|
Key()->IndexBase(),
|
|
new_check->index()->representation(),
|
|
new_offset);
|
|
upper_check_->SetOperandAt(0, added_upper_index_);
|
|
}
|
|
} else if (new_offset < lower_offset_) {
|
|
lower_offset_ = new_offset;
|
|
if (HasSingleCheck()) {
|
|
keep_new_check = true;
|
|
lower_check_ = new_check;
|
|
} else {
|
|
BuildOffsetAdd(lower_check_,
|
|
&added_lower_index_,
|
|
&added_lower_offset_,
|
|
Key()->IndexBase(),
|
|
new_check->index()->representation(),
|
|
new_offset);
|
|
lower_check_->SetOperandAt(0, added_lower_index_);
|
|
}
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
|
|
if (!keep_new_check) {
|
|
new_check->DeleteAndReplaceWith(NULL);
|
|
}
|
|
}
|
|
|
|
void RemoveZeroOperations() {
|
|
RemoveZeroAdd(&added_lower_index_, &added_lower_offset_);
|
|
RemoveZeroAdd(&added_upper_index_, &added_upper_offset_);
|
|
}
|
|
|
|
BoundsCheckBbData(BoundsCheckKey* key,
|
|
int32_t lower_offset,
|
|
int32_t upper_offset,
|
|
HBasicBlock* bb,
|
|
HBoundsCheck* lower_check,
|
|
HBoundsCheck* upper_check,
|
|
BoundsCheckBbData* next_in_bb,
|
|
BoundsCheckBbData* father_in_dt)
|
|
: key_(key),
|
|
lower_offset_(lower_offset),
|
|
upper_offset_(upper_offset),
|
|
basic_block_(bb),
|
|
lower_check_(lower_check),
|
|
upper_check_(upper_check),
|
|
added_lower_index_(NULL),
|
|
added_lower_offset_(NULL),
|
|
added_upper_index_(NULL),
|
|
added_upper_offset_(NULL),
|
|
next_in_bb_(next_in_bb),
|
|
father_in_dt_(father_in_dt) { }
|
|
|
|
private:
|
|
BoundsCheckKey* key_;
|
|
int32_t lower_offset_;
|
|
int32_t upper_offset_;
|
|
HBasicBlock* basic_block_;
|
|
HBoundsCheck* lower_check_;
|
|
HBoundsCheck* upper_check_;
|
|
HAdd* added_lower_index_;
|
|
HConstant* added_lower_offset_;
|
|
HAdd* added_upper_index_;
|
|
HConstant* added_upper_offset_;
|
|
BoundsCheckBbData* next_in_bb_;
|
|
BoundsCheckBbData* father_in_dt_;
|
|
|
|
void BuildOffsetAdd(HBoundsCheck* check,
|
|
HAdd** add,
|
|
HConstant** constant,
|
|
HValue* original_value,
|
|
Representation representation,
|
|
int32_t new_offset) {
|
|
HConstant* new_constant = new(BasicBlock()->zone())
|
|
HConstant(new_offset, Representation::Integer32());
|
|
if (*add == NULL) {
|
|
new_constant->InsertBefore(check);
|
|
// Because of the bounds checks elimination algorithm, the index is always
|
|
// an HAdd or an HSub here, so we can safely cast to an HBinaryOperation.
|
|
HValue* context = HBinaryOperation::cast(check->index())->context();
|
|
*add = new(BasicBlock()->zone()) HAdd(context,
|
|
original_value,
|
|
new_constant);
|
|
(*add)->AssumeRepresentation(representation);
|
|
(*add)->InsertBefore(check);
|
|
} else {
|
|
new_constant->InsertBefore(*add);
|
|
(*constant)->DeleteAndReplaceWith(new_constant);
|
|
}
|
|
*constant = new_constant;
|
|
}
|
|
|
|
void RemoveZeroAdd(HAdd** add, HConstant** constant) {
|
|
if (*add != NULL && (*constant)->Integer32Value() == 0) {
|
|
(*add)->DeleteAndReplaceWith((*add)->left());
|
|
(*constant)->DeleteAndReplaceWith(NULL);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
static bool BoundsCheckKeyMatch(void* key1, void* key2) {
|
|
BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
|
|
BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
|
|
return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
|
|
}
|
|
|
|
|
|
class BoundsCheckTable : private ZoneHashMap {
|
|
public:
|
|
BoundsCheckBbData** LookupOrInsert(BoundsCheckKey* key, Zone* zone) {
|
|
return reinterpret_cast<BoundsCheckBbData**>(
|
|
&(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value));
|
|
}
|
|
|
|
void Insert(BoundsCheckKey* key, BoundsCheckBbData* data, Zone* zone) {
|
|
Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data;
|
|
}
|
|
|
|
void Delete(BoundsCheckKey* key) {
|
|
Remove(key, key->Hash());
|
|
}
|
|
|
|
explicit BoundsCheckTable(Zone* zone)
|
|
: ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity,
|
|
ZoneAllocationPolicy(zone)) { }
|
|
};
|
|
|
|
|
|
// Eliminates checks in bb and recursively in the dominated blocks.
|
|
// Also replace the results of check instructions with the original value, if
|
|
// the result is used. This is safe now, since we don't do code motion after
|
|
// this point. It enables better register allocation since the value produced
|
|
// by check instructions is really a copy of the original value.
|
|
void HGraph::EliminateRedundantBoundsChecks(HBasicBlock* bb,
|
|
BoundsCheckTable* table) {
|
|
BoundsCheckBbData* bb_data_list = NULL;
|
|
|
|
for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
|
|
if (!i->IsBoundsCheck()) continue;
|
|
|
|
HBoundsCheck* check = HBoundsCheck::cast(i);
|
|
check->ReplaceAllUsesWith(check->index());
|
|
|
|
if (!FLAG_array_bounds_checks_elimination) continue;
|
|
|
|
int32_t offset;
|
|
BoundsCheckKey* key =
|
|
BoundsCheckKey::Create(zone(), check, &offset);
|
|
if (key == NULL) continue;
|
|
BoundsCheckBbData** data_p = table->LookupOrInsert(key, zone());
|
|
BoundsCheckBbData* data = *data_p;
|
|
if (data == NULL) {
|
|
bb_data_list = new(zone()) BoundsCheckBbData(key,
|
|
offset,
|
|
offset,
|
|
bb,
|
|
check,
|
|
check,
|
|
bb_data_list,
|
|
NULL);
|
|
*data_p = bb_data_list;
|
|
} else if (data->OffsetIsCovered(offset)) {
|
|
check->DeleteAndReplaceWith(NULL);
|
|
} else if (data->BasicBlock() == bb) {
|
|
data->CoverCheck(check, offset);
|
|
} else {
|
|
int32_t new_lower_offset = offset < data->LowerOffset()
|
|
? offset
|
|
: data->LowerOffset();
|
|
int32_t new_upper_offset = offset > data->UpperOffset()
|
|
? offset
|
|
: data->UpperOffset();
|
|
bb_data_list = new(zone()) BoundsCheckBbData(key,
|
|
new_lower_offset,
|
|
new_upper_offset,
|
|
bb,
|
|
data->LowerCheck(),
|
|
data->UpperCheck(),
|
|
bb_data_list,
|
|
data);
|
|
table->Insert(key, bb_data_list, zone());
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < bb->dominated_blocks()->length(); ++i) {
|
|
EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i), table);
|
|
}
|
|
|
|
for (BoundsCheckBbData* data = bb_data_list;
|
|
data != NULL;
|
|
data = data->NextInBasicBlock()) {
|
|
data->RemoveZeroOperations();
|
|
if (data->FatherInDominatorTree()) {
|
|
table->Insert(data->Key(), data->FatherInDominatorTree(), zone());
|
|
} else {
|
|
table->Delete(data->Key());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::EliminateRedundantBoundsChecks() {
|
|
HPhase phase("H_Eliminate bounds checks", this);
|
|
BoundsCheckTable checks_table(zone());
|
|
EliminateRedundantBoundsChecks(entry_block(), &checks_table);
|
|
}
|
|
|
|
|
|
static void DehoistArrayIndex(ArrayInstructionInterface* array_operation) {
|
|
HValue* index = array_operation->GetKey();
|
|
if (!index->representation().IsInteger32()) return;
|
|
|
|
HConstant* constant;
|
|
HValue* subexpression;
|
|
int32_t sign;
|
|
if (index->IsAdd()) {
|
|
sign = 1;
|
|
HAdd* add = HAdd::cast(index);
|
|
if (add->left()->IsConstant()) {
|
|
subexpression = add->right();
|
|
constant = HConstant::cast(add->left());
|
|
} else if (add->right()->IsConstant()) {
|
|
subexpression = add->left();
|
|
constant = HConstant::cast(add->right());
|
|
} else {
|
|
return;
|
|
}
|
|
} else if (index->IsSub()) {
|
|
sign = -1;
|
|
HSub* sub = HSub::cast(index);
|
|
if (sub->left()->IsConstant()) {
|
|
subexpression = sub->right();
|
|
constant = HConstant::cast(sub->left());
|
|
} else if (sub->right()->IsConstant()) {
|
|
subexpression = sub->left();
|
|
constant = HConstant::cast(sub->right());
|
|
} return;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
if (!constant->HasInteger32Value()) return;
|
|
int32_t value = constant->Integer32Value() * sign;
|
|
// We limit offset values to 30 bits because we want to avoid the risk of
|
|
// overflows when the offset is added to the object header size.
|
|
if (value >= 1 << 30 || value < 0) return;
|
|
array_operation->SetKey(subexpression);
|
|
if (index->HasNoUses()) {
|
|
index->DeleteAndReplaceWith(NULL);
|
|
}
|
|
ASSERT(value >= 0);
|
|
array_operation->SetIndexOffset(static_cast<uint32_t>(value));
|
|
array_operation->SetDehoisted(true);
|
|
}
|
|
|
|
|
|
void HGraph::DehoistSimpleArrayIndexComputations() {
|
|
if (!FLAG_array_index_dehoisting) return;
|
|
|
|
HPhase phase("H_Dehoist index computations", this);
|
|
for (int i = 0; i < blocks()->length(); ++i) {
|
|
for (HInstruction* instr = blocks()->at(i)->first();
|
|
instr != NULL;
|
|
instr = instr->next()) {
|
|
ArrayInstructionInterface* array_instruction = NULL;
|
|
if (instr->IsLoadKeyedFastElement()) {
|
|
HLoadKeyedFastElement* op = HLoadKeyedFastElement::cast(instr);
|
|
array_instruction = static_cast<ArrayInstructionInterface*>(op);
|
|
} else if (instr->IsLoadKeyedFastDoubleElement()) {
|
|
HLoadKeyedFastDoubleElement* op =
|
|
HLoadKeyedFastDoubleElement::cast(instr);
|
|
array_instruction = static_cast<ArrayInstructionInterface*>(op);
|
|
} else if (instr->IsLoadKeyedSpecializedArrayElement()) {
|
|
HLoadKeyedSpecializedArrayElement* op =
|
|
HLoadKeyedSpecializedArrayElement::cast(instr);
|
|
array_instruction = static_cast<ArrayInstructionInterface*>(op);
|
|
} else if (instr->IsStoreKeyedFastElement()) {
|
|
HStoreKeyedFastElement* op = HStoreKeyedFastElement::cast(instr);
|
|
array_instruction = static_cast<ArrayInstructionInterface*>(op);
|
|
} else if (instr->IsStoreKeyedFastDoubleElement()) {
|
|
HStoreKeyedFastDoubleElement* op =
|
|
HStoreKeyedFastDoubleElement::cast(instr);
|
|
array_instruction = static_cast<ArrayInstructionInterface*>(op);
|
|
} else if (instr->IsStoreKeyedSpecializedArrayElement()) {
|
|
HStoreKeyedSpecializedArrayElement* op =
|
|
HStoreKeyedSpecializedArrayElement::cast(instr);
|
|
array_instruction = static_cast<ArrayInstructionInterface*>(op);
|
|
} else {
|
|
continue;
|
|
}
|
|
DehoistArrayIndex(array_instruction);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::DeadCodeElimination() {
|
|
HPhase phase("H_Dead code elimination", this);
|
|
ZoneList<HInstruction*> worklist(blocks_.length(), zone());
|
|
for (int i = 0; i < blocks()->length(); ++i) {
|
|
for (HInstruction* instr = blocks()->at(i)->first();
|
|
instr != NULL;
|
|
instr = instr->next()) {
|
|
if (instr->IsDead()) worklist.Add(instr, zone());
|
|
}
|
|
}
|
|
|
|
while (!worklist.is_empty()) {
|
|
HInstruction* instr = worklist.RemoveLast();
|
|
if (FLAG_trace_dead_code_elimination) {
|
|
HeapStringAllocator allocator;
|
|
StringStream stream(&allocator);
|
|
instr->PrintNameTo(&stream);
|
|
stream.Add(" = ");
|
|
instr->PrintTo(&stream);
|
|
PrintF("[removing dead instruction %s]\n", *stream.ToCString());
|
|
}
|
|
instr->DeleteAndReplaceWith(NULL);
|
|
for (int i = 0; i < instr->OperandCount(); ++i) {
|
|
HValue* operand = instr->OperandAt(i);
|
|
if (operand->IsDead()) worklist.Add(HInstruction::cast(operand), zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
|
|
ASSERT(current_block() != NULL);
|
|
current_block()->AddInstruction(instr);
|
|
return instr;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::AddSimulate(BailoutId ast_id) {
|
|
ASSERT(current_block() != NULL);
|
|
current_block()->AddSimulate(ast_id);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::AddPhi(HPhi* instr) {
|
|
ASSERT(current_block() != NULL);
|
|
current_block()->AddPhi(instr);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::PushAndAdd(HInstruction* instr) {
|
|
Push(instr);
|
|
AddInstruction(instr);
|
|
}
|
|
|
|
|
|
template <class Instruction>
|
|
HInstruction* HGraphBuilder::PreProcessCall(Instruction* call) {
|
|
int count = call->argument_count();
|
|
ZoneList<HValue*> arguments(count, zone());
|
|
for (int i = 0; i < count; ++i) {
|
|
arguments.Add(Pop(), zone());
|
|
}
|
|
|
|
while (!arguments.is_empty()) {
|
|
AddInstruction(new(zone()) HPushArgument(arguments.RemoveLast()));
|
|
}
|
|
return call;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::SetUpScope(Scope* scope) {
|
|
HConstant* undefined_constant = new(zone()) HConstant(
|
|
isolate()->factory()->undefined_value(), Representation::Tagged());
|
|
AddInstruction(undefined_constant);
|
|
graph_->set_undefined_constant(undefined_constant);
|
|
|
|
HArgumentsObject* object = new(zone()) HArgumentsObject;
|
|
AddInstruction(object);
|
|
graph()->SetArgumentsObject(object);
|
|
|
|
// Set the initial values of parameters including "this". "This" has
|
|
// parameter index 0.
|
|
ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
|
|
|
|
for (int i = 0; i < environment()->parameter_count(); ++i) {
|
|
HInstruction* parameter = AddInstruction(new(zone()) HParameter(i));
|
|
environment()->Bind(i, parameter);
|
|
}
|
|
|
|
// First special is HContext.
|
|
HInstruction* context = AddInstruction(new(zone()) HContext);
|
|
environment()->BindContext(context);
|
|
|
|
// Initialize specials and locals to undefined.
|
|
for (int i = environment()->parameter_count() + 1;
|
|
i < environment()->length();
|
|
++i) {
|
|
environment()->Bind(i, undefined_constant);
|
|
}
|
|
|
|
// Handle the arguments and arguments shadow variables specially (they do
|
|
// not have declarations).
|
|
if (scope->arguments() != NULL) {
|
|
if (!scope->arguments()->IsStackAllocated()) {
|
|
return Bailout("context-allocated arguments");
|
|
}
|
|
|
|
environment()->Bind(scope->arguments(),
|
|
graph()->GetArgumentsObject());
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
|
|
for (int i = 0; i < statements->length(); i++) {
|
|
CHECK_ALIVE(Visit(statements->at(i)));
|
|
}
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
|
|
HBasicBlock* b = graph()->CreateBasicBlock();
|
|
b->SetInitialEnvironment(env);
|
|
return b;
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
|
|
HBasicBlock* header = graph()->CreateBasicBlock();
|
|
HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
|
|
header->SetInitialEnvironment(entry_env);
|
|
header->AttachLoopInformation();
|
|
return header;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitBlock(Block* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (stmt->scope() != NULL) {
|
|
return Bailout("ScopedBlock");
|
|
}
|
|
BreakAndContinueInfo break_info(stmt);
|
|
{ BreakAndContinueScope push(&break_info, this);
|
|
CHECK_BAILOUT(VisitStatements(stmt->statements()));
|
|
}
|
|
HBasicBlock* break_block = break_info.break_block();
|
|
if (break_block != NULL) {
|
|
if (current_block() != NULL) current_block()->Goto(break_block);
|
|
break_block->SetJoinId(stmt->ExitId());
|
|
set_current_block(break_block);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
VisitForEffect(stmt->expression());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitIfStatement(IfStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (stmt->condition()->ToBooleanIsTrue()) {
|
|
AddSimulate(stmt->ThenId());
|
|
Visit(stmt->then_statement());
|
|
} else if (stmt->condition()->ToBooleanIsFalse()) {
|
|
AddSimulate(stmt->ElseId());
|
|
Visit(stmt->else_statement());
|
|
} else {
|
|
HBasicBlock* cond_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* cond_false = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
|
|
|
|
if (cond_true->HasPredecessor()) {
|
|
cond_true->SetJoinId(stmt->ThenId());
|
|
set_current_block(cond_true);
|
|
CHECK_BAILOUT(Visit(stmt->then_statement()));
|
|
cond_true = current_block();
|
|
} else {
|
|
cond_true = NULL;
|
|
}
|
|
|
|
if (cond_false->HasPredecessor()) {
|
|
cond_false->SetJoinId(stmt->ElseId());
|
|
set_current_block(cond_false);
|
|
CHECK_BAILOUT(Visit(stmt->else_statement()));
|
|
cond_false = current_block();
|
|
} else {
|
|
cond_false = NULL;
|
|
}
|
|
|
|
HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
|
|
set_current_block(join);
|
|
}
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::BreakAndContinueScope::Get(
|
|
BreakableStatement* stmt,
|
|
BreakType type,
|
|
int* drop_extra) {
|
|
*drop_extra = 0;
|
|
BreakAndContinueScope* current = this;
|
|
while (current != NULL && current->info()->target() != stmt) {
|
|
*drop_extra += current->info()->drop_extra();
|
|
current = current->next();
|
|
}
|
|
ASSERT(current != NULL); // Always found (unless stack is malformed).
|
|
|
|
if (type == BREAK) {
|
|
*drop_extra += current->info()->drop_extra();
|
|
}
|
|
|
|
HBasicBlock* block = NULL;
|
|
switch (type) {
|
|
case BREAK:
|
|
block = current->info()->break_block();
|
|
if (block == NULL) {
|
|
block = current->owner()->graph()->CreateBasicBlock();
|
|
current->info()->set_break_block(block);
|
|
}
|
|
break;
|
|
|
|
case CONTINUE:
|
|
block = current->info()->continue_block();
|
|
if (block == NULL) {
|
|
block = current->owner()->graph()->CreateBasicBlock();
|
|
current->info()->set_continue_block(block);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
int drop_extra = 0;
|
|
HBasicBlock* continue_block = break_scope()->Get(stmt->target(),
|
|
CONTINUE,
|
|
&drop_extra);
|
|
Drop(drop_extra);
|
|
current_block()->Goto(continue_block);
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
int drop_extra = 0;
|
|
HBasicBlock* break_block = break_scope()->Get(stmt->target(),
|
|
BREAK,
|
|
&drop_extra);
|
|
Drop(drop_extra);
|
|
current_block()->Goto(break_block);
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
FunctionState* state = function_state();
|
|
AstContext* context = call_context();
|
|
if (context == NULL) {
|
|
// Not an inlined return, so an actual one.
|
|
CHECK_ALIVE(VisitForValue(stmt->expression()));
|
|
HValue* result = environment()->Pop();
|
|
current_block()->FinishExit(new(zone()) HReturn(result));
|
|
} else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
|
|
// Return from an inlined construct call. In a test context the return value
|
|
// will always evaluate to true, in a value context the return value needs
|
|
// to be a JSObject.
|
|
if (context->IsTest()) {
|
|
TestContext* test = TestContext::cast(context);
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
current_block()->Goto(test->if_true(), state);
|
|
} else if (context->IsEffect()) {
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
current_block()->Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(context->IsValue());
|
|
CHECK_ALIVE(VisitForValue(stmt->expression()));
|
|
HValue* return_value = Pop();
|
|
HValue* receiver = environment()->arguments_environment()->Lookup(0);
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
new(zone()) HHasInstanceTypeAndBranch(return_value,
|
|
FIRST_SPEC_OBJECT_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE);
|
|
HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
|
|
HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
|
|
typecheck->SetSuccessorAt(0, if_spec_object);
|
|
typecheck->SetSuccessorAt(1, not_spec_object);
|
|
current_block()->Finish(typecheck);
|
|
if_spec_object->AddLeaveInlined(return_value, state);
|
|
not_spec_object->AddLeaveInlined(receiver, state);
|
|
}
|
|
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
|
|
// Return from an inlined setter call. The returned value is never used, the
|
|
// value of an assignment is always the value of the RHS of the assignment.
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
if (context->IsTest()) {
|
|
HValue* rhs = environment()->arguments_environment()->Lookup(1);
|
|
context->ReturnValue(rhs);
|
|
} else if (context->IsEffect()) {
|
|
current_block()->Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(context->IsValue());
|
|
HValue* rhs = environment()->arguments_environment()->Lookup(1);
|
|
current_block()->AddLeaveInlined(rhs, state);
|
|
}
|
|
} else {
|
|
// Return from a normal inlined function. Visit the subexpression in the
|
|
// expression context of the call.
|
|
if (context->IsTest()) {
|
|
TestContext* test = TestContext::cast(context);
|
|
VisitForControl(stmt->expression(), test->if_true(), test->if_false());
|
|
} else if (context->IsEffect()) {
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
current_block()->Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(context->IsValue());
|
|
CHECK_ALIVE(VisitForValue(stmt->expression()));
|
|
current_block()->AddLeaveInlined(Pop(), state);
|
|
}
|
|
}
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitWithStatement(WithStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout("WithStatement");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
// We only optimize switch statements with smi-literal smi comparisons,
|
|
// with a bounded number of clauses.
|
|
const int kCaseClauseLimit = 128;
|
|
ZoneList<CaseClause*>* clauses = stmt->cases();
|
|
int clause_count = clauses->length();
|
|
if (clause_count > kCaseClauseLimit) {
|
|
return Bailout("SwitchStatement: too many clauses");
|
|
}
|
|
|
|
HValue* context = environment()->LookupContext();
|
|
|
|
CHECK_ALIVE(VisitForValue(stmt->tag()));
|
|
AddSimulate(stmt->EntryId());
|
|
HValue* tag_value = Pop();
|
|
HBasicBlock* first_test_block = current_block();
|
|
|
|
SwitchType switch_type = UNKNOWN_SWITCH;
|
|
|
|
// 1. Extract clause type
|
|
for (int i = 0; i < clause_count; ++i) {
|
|
CaseClause* clause = clauses->at(i);
|
|
if (clause->is_default()) continue;
|
|
|
|
if (switch_type == UNKNOWN_SWITCH) {
|
|
if (clause->label()->IsSmiLiteral()) {
|
|
switch_type = SMI_SWITCH;
|
|
} else if (clause->label()->IsStringLiteral()) {
|
|
switch_type = STRING_SWITCH;
|
|
} else {
|
|
return Bailout("SwitchStatement: non-literal switch label");
|
|
}
|
|
} else if ((switch_type == STRING_SWITCH &&
|
|
!clause->label()->IsStringLiteral()) ||
|
|
(switch_type == SMI_SWITCH &&
|
|
!clause->label()->IsSmiLiteral())) {
|
|
return Bailout("SwitchStatemnt: mixed label types are not supported");
|
|
}
|
|
}
|
|
|
|
HUnaryControlInstruction* string_check = NULL;
|
|
HBasicBlock* not_string_block = NULL;
|
|
|
|
// Test switch's tag value if all clauses are string literals
|
|
if (switch_type == STRING_SWITCH) {
|
|
string_check = new(zone()) HIsStringAndBranch(tag_value);
|
|
first_test_block = graph()->CreateBasicBlock();
|
|
not_string_block = graph()->CreateBasicBlock();
|
|
|
|
string_check->SetSuccessorAt(0, first_test_block);
|
|
string_check->SetSuccessorAt(1, not_string_block);
|
|
current_block()->Finish(string_check);
|
|
|
|
set_current_block(first_test_block);
|
|
}
|
|
|
|
// 2. Build all the tests, with dangling true branches
|
|
BailoutId default_id = BailoutId::None();
|
|
for (int i = 0; i < clause_count; ++i) {
|
|
CaseClause* clause = clauses->at(i);
|
|
if (clause->is_default()) {
|
|
default_id = clause->EntryId();
|
|
continue;
|
|
}
|
|
if (switch_type == SMI_SWITCH) {
|
|
clause->RecordTypeFeedback(oracle());
|
|
}
|
|
|
|
// Generate a compare and branch.
|
|
CHECK_ALIVE(VisitForValue(clause->label()));
|
|
HValue* label_value = Pop();
|
|
|
|
HBasicBlock* next_test_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* body_block = graph()->CreateBasicBlock();
|
|
|
|
HControlInstruction* compare;
|
|
|
|
if (switch_type == SMI_SWITCH) {
|
|
if (!clause->IsSmiCompare()) {
|
|
// Finish with deoptimize and add uses of enviroment values to
|
|
// account for invisible uses.
|
|
current_block()->FinishExitWithDeoptimization(HDeoptimize::kUseAll);
|
|
set_current_block(NULL);
|
|
break;
|
|
}
|
|
|
|
HCompareIDAndBranch* compare_ =
|
|
new(zone()) HCompareIDAndBranch(tag_value,
|
|
label_value,
|
|
Token::EQ_STRICT);
|
|
compare_->SetInputRepresentation(Representation::Integer32());
|
|
compare = compare_;
|
|
} else {
|
|
compare = new(zone()) HStringCompareAndBranch(context, tag_value,
|
|
label_value,
|
|
Token::EQ_STRICT);
|
|
}
|
|
|
|
compare->SetSuccessorAt(0, body_block);
|
|
compare->SetSuccessorAt(1, next_test_block);
|
|
current_block()->Finish(compare);
|
|
|
|
set_current_block(next_test_block);
|
|
}
|
|
|
|
// Save the current block to use for the default or to join with the
|
|
// exit. This block is NULL if we deoptimized.
|
|
HBasicBlock* last_block = current_block();
|
|
|
|
if (not_string_block != NULL) {
|
|
BailoutId join_id = !default_id.IsNone() ? default_id : stmt->ExitId();
|
|
last_block = CreateJoin(last_block, not_string_block, join_id);
|
|
}
|
|
|
|
// 3. Loop over the clauses and the linked list of tests in lockstep,
|
|
// translating the clause bodies.
|
|
HBasicBlock* curr_test_block = first_test_block;
|
|
HBasicBlock* fall_through_block = NULL;
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
{ BreakAndContinueScope push(&break_info, this);
|
|
for (int i = 0; i < clause_count; ++i) {
|
|
CaseClause* clause = clauses->at(i);
|
|
|
|
// Identify the block where normal (non-fall-through) control flow
|
|
// goes to.
|
|
HBasicBlock* normal_block = NULL;
|
|
if (clause->is_default()) {
|
|
if (last_block != NULL) {
|
|
normal_block = last_block;
|
|
last_block = NULL; // Cleared to indicate we've handled it.
|
|
}
|
|
} else if (!curr_test_block->end()->IsDeoptimize()) {
|
|
normal_block = curr_test_block->end()->FirstSuccessor();
|
|
curr_test_block = curr_test_block->end()->SecondSuccessor();
|
|
}
|
|
|
|
// Identify a block to emit the body into.
|
|
if (normal_block == NULL) {
|
|
if (fall_through_block == NULL) {
|
|
// (a) Unreachable.
|
|
if (clause->is_default()) {
|
|
continue; // Might still be reachable clause bodies.
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
// (b) Reachable only as fall through.
|
|
set_current_block(fall_through_block);
|
|
}
|
|
} else if (fall_through_block == NULL) {
|
|
// (c) Reachable only normally.
|
|
set_current_block(normal_block);
|
|
} else {
|
|
// (d) Reachable both ways.
|
|
HBasicBlock* join = CreateJoin(fall_through_block,
|
|
normal_block,
|
|
clause->EntryId());
|
|
set_current_block(join);
|
|
}
|
|
|
|
CHECK_BAILOUT(VisitStatements(clause->statements()));
|
|
fall_through_block = current_block();
|
|
}
|
|
}
|
|
|
|
// Create an up-to-3-way join. Use the break block if it exists since
|
|
// it's already a join block.
|
|
HBasicBlock* break_block = break_info.break_block();
|
|
if (break_block == NULL) {
|
|
set_current_block(CreateJoin(fall_through_block,
|
|
last_block,
|
|
stmt->ExitId()));
|
|
} else {
|
|
if (fall_through_block != NULL) fall_through_block->Goto(break_block);
|
|
if (last_block != NULL) last_block->Goto(break_block);
|
|
break_block->SetJoinId(stmt->ExitId());
|
|
set_current_block(break_block);
|
|
}
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::HasOsrEntryAt(IterationStatement* statement) {
|
|
return statement->OsrEntryId() == info()->osr_ast_id();
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::PreProcessOsrEntry(IterationStatement* statement) {
|
|
if (!HasOsrEntryAt(statement)) return false;
|
|
|
|
HBasicBlock* non_osr_entry = graph()->CreateBasicBlock();
|
|
HBasicBlock* osr_entry = graph()->CreateBasicBlock();
|
|
HValue* true_value = graph()->GetConstantTrue();
|
|
HBranch* test = new(zone()) HBranch(true_value, non_osr_entry, osr_entry);
|
|
current_block()->Finish(test);
|
|
|
|
HBasicBlock* loop_predecessor = graph()->CreateBasicBlock();
|
|
non_osr_entry->Goto(loop_predecessor);
|
|
|
|
set_current_block(osr_entry);
|
|
BailoutId osr_entry_id = statement->OsrEntryId();
|
|
int first_expression_index = environment()->first_expression_index();
|
|
int length = environment()->length();
|
|
ZoneList<HUnknownOSRValue*>* osr_values =
|
|
new(zone()) ZoneList<HUnknownOSRValue*>(length, zone());
|
|
|
|
for (int i = 0; i < first_expression_index; ++i) {
|
|
HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue;
|
|
AddInstruction(osr_value);
|
|
environment()->Bind(i, osr_value);
|
|
osr_values->Add(osr_value, zone());
|
|
}
|
|
|
|
if (first_expression_index != length) {
|
|
environment()->Drop(length - first_expression_index);
|
|
for (int i = first_expression_index; i < length; ++i) {
|
|
HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue;
|
|
AddInstruction(osr_value);
|
|
environment()->Push(osr_value);
|
|
osr_values->Add(osr_value, zone());
|
|
}
|
|
}
|
|
|
|
graph()->set_osr_values(osr_values);
|
|
|
|
AddSimulate(osr_entry_id);
|
|
AddInstruction(new(zone()) HOsrEntry(osr_entry_id));
|
|
HContext* context = new(zone()) HContext;
|
|
AddInstruction(context);
|
|
environment()->BindContext(context);
|
|
current_block()->Goto(loop_predecessor);
|
|
loop_predecessor->SetJoinId(statement->EntryId());
|
|
set_current_block(loop_predecessor);
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitLoopBody(IterationStatement* stmt,
|
|
HBasicBlock* loop_entry,
|
|
BreakAndContinueInfo* break_info) {
|
|
BreakAndContinueScope push(break_info, this);
|
|
AddSimulate(stmt->StackCheckId());
|
|
HValue* context = environment()->LookupContext();
|
|
HStackCheck* stack_check =
|
|
new(zone()) HStackCheck(context, HStackCheck::kBackwardsBranch);
|
|
AddInstruction(stack_check);
|
|
ASSERT(loop_entry->IsLoopHeader());
|
|
loop_entry->loop_information()->set_stack_check(stack_check);
|
|
CHECK_BAILOUT(Visit(stmt->body()));
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
ASSERT(current_block() != NULL);
|
|
bool osr_entry = PreProcessOsrEntry(stmt);
|
|
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
|
|
current_block()->Goto(loop_entry);
|
|
set_current_block(loop_entry);
|
|
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
HBasicBlock* loop_successor = NULL;
|
|
if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
|
|
set_current_block(body_exit);
|
|
// The block for a true condition, the actual predecessor block of the
|
|
// back edge.
|
|
body_exit = graph()->CreateBasicBlock();
|
|
loop_successor = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
|
|
if (body_exit->HasPredecessor()) {
|
|
body_exit->SetJoinId(stmt->BackEdgeId());
|
|
} else {
|
|
body_exit = NULL;
|
|
}
|
|
if (loop_successor->HasPredecessor()) {
|
|
loop_successor->SetJoinId(stmt->ExitId());
|
|
} else {
|
|
loop_successor = NULL;
|
|
}
|
|
}
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
ASSERT(current_block() != NULL);
|
|
bool osr_entry = PreProcessOsrEntry(stmt);
|
|
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
|
|
current_block()->Goto(loop_entry);
|
|
set_current_block(loop_entry);
|
|
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
|
|
|
|
|
|
// If the condition is constant true, do not generate a branch.
|
|
HBasicBlock* loop_successor = NULL;
|
|
if (!stmt->cond()->ToBooleanIsTrue()) {
|
|
HBasicBlock* body_entry = graph()->CreateBasicBlock();
|
|
loop_successor = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
|
|
if (body_entry->HasPredecessor()) {
|
|
body_entry->SetJoinId(stmt->BodyId());
|
|
set_current_block(body_entry);
|
|
}
|
|
if (loop_successor->HasPredecessor()) {
|
|
loop_successor->SetJoinId(stmt->ExitId());
|
|
} else {
|
|
loop_successor = NULL;
|
|
}
|
|
}
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
if (current_block() != NULL) {
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
}
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitForStatement(ForStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (stmt->init() != NULL) {
|
|
CHECK_ALIVE(Visit(stmt->init()));
|
|
}
|
|
ASSERT(current_block() != NULL);
|
|
bool osr_entry = PreProcessOsrEntry(stmt);
|
|
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
|
|
current_block()->Goto(loop_entry);
|
|
set_current_block(loop_entry);
|
|
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
|
|
|
|
HBasicBlock* loop_successor = NULL;
|
|
if (stmt->cond() != NULL) {
|
|
HBasicBlock* body_entry = graph()->CreateBasicBlock();
|
|
loop_successor = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
|
|
if (body_entry->HasPredecessor()) {
|
|
body_entry->SetJoinId(stmt->BodyId());
|
|
set_current_block(body_entry);
|
|
}
|
|
if (loop_successor->HasPredecessor()) {
|
|
loop_successor->SetJoinId(stmt->ExitId());
|
|
} else {
|
|
loop_successor = NULL;
|
|
}
|
|
}
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
if (current_block() != NULL) {
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
}
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
|
|
if (stmt->next() != NULL && body_exit != NULL) {
|
|
set_current_block(body_exit);
|
|
CHECK_BAILOUT(Visit(stmt->next()));
|
|
body_exit = current_block();
|
|
}
|
|
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
|
|
if (!FLAG_optimize_for_in) {
|
|
return Bailout("ForInStatement optimization is disabled");
|
|
}
|
|
|
|
if (!oracle()->IsForInFastCase(stmt)) {
|
|
return Bailout("ForInStatement is not fast case");
|
|
}
|
|
|
|
if (!stmt->each()->IsVariableProxy() ||
|
|
!stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
|
|
return Bailout("ForInStatement with non-local each variable");
|
|
}
|
|
|
|
Variable* each_var = stmt->each()->AsVariableProxy()->var();
|
|
|
|
CHECK_ALIVE(VisitForValue(stmt->enumerable()));
|
|
HValue* enumerable = Top(); // Leave enumerable at the top.
|
|
|
|
HInstruction* map = AddInstruction(new(zone()) HForInPrepareMap(
|
|
environment()->LookupContext(), enumerable));
|
|
AddSimulate(stmt->PrepareId());
|
|
|
|
HInstruction* array = AddInstruction(
|
|
new(zone()) HForInCacheArray(
|
|
enumerable,
|
|
map,
|
|
DescriptorArray::kEnumCacheBridgeCacheIndex));
|
|
|
|
HInstruction* enum_length = AddInstruction(new(zone()) HMapEnumLength(map));
|
|
|
|
HInstruction* start_index = AddInstruction(new(zone()) HConstant(
|
|
Handle<Object>(Smi::FromInt(0)), Representation::Integer32()));
|
|
|
|
Push(map);
|
|
Push(array);
|
|
Push(enum_length);
|
|
Push(start_index);
|
|
|
|
HInstruction* index_cache = AddInstruction(
|
|
new(zone()) HForInCacheArray(
|
|
enumerable,
|
|
map,
|
|
DescriptorArray::kEnumCacheBridgeIndicesCacheIndex));
|
|
HForInCacheArray::cast(array)->set_index_cache(
|
|
HForInCacheArray::cast(index_cache));
|
|
|
|
bool osr_entry = PreProcessOsrEntry(stmt);
|
|
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
|
|
current_block()->Goto(loop_entry);
|
|
set_current_block(loop_entry);
|
|
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
|
|
|
|
HValue* index = environment()->ExpressionStackAt(0);
|
|
HValue* limit = environment()->ExpressionStackAt(1);
|
|
|
|
// Check that we still have more keys.
|
|
HCompareIDAndBranch* compare_index =
|
|
new(zone()) HCompareIDAndBranch(index, limit, Token::LT);
|
|
compare_index->SetInputRepresentation(Representation::Integer32());
|
|
|
|
HBasicBlock* loop_body = graph()->CreateBasicBlock();
|
|
HBasicBlock* loop_successor = graph()->CreateBasicBlock();
|
|
|
|
compare_index->SetSuccessorAt(0, loop_body);
|
|
compare_index->SetSuccessorAt(1, loop_successor);
|
|
current_block()->Finish(compare_index);
|
|
|
|
set_current_block(loop_successor);
|
|
Drop(5);
|
|
|
|
set_current_block(loop_body);
|
|
|
|
HValue* key = AddInstruction(
|
|
new(zone()) HLoadKeyedFastElement(
|
|
environment()->ExpressionStackAt(2), // Enum cache.
|
|
environment()->ExpressionStackAt(0), // Iteration index.
|
|
environment()->ExpressionStackAt(0)));
|
|
|
|
// Check if the expected map still matches that of the enumerable.
|
|
// If not just deoptimize.
|
|
AddInstruction(new(zone()) HCheckMapValue(
|
|
environment()->ExpressionStackAt(4),
|
|
environment()->ExpressionStackAt(3)));
|
|
|
|
Bind(each_var, key);
|
|
|
|
BreakAndContinueInfo break_info(stmt, 5);
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
|
|
if (body_exit != NULL) {
|
|
set_current_block(body_exit);
|
|
|
|
HValue* current_index = Pop();
|
|
HInstruction* new_index = new(zone()) HAdd(environment()->LookupContext(),
|
|
current_index,
|
|
graph()->GetConstant1());
|
|
new_index->AssumeRepresentation(Representation::Integer32());
|
|
PushAndAdd(new_index);
|
|
body_exit = current_block();
|
|
}
|
|
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout("TryCatchStatement");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout("TryFinallyStatement");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout("DebuggerStatement");
|
|
}
|
|
|
|
|
|
static Handle<SharedFunctionInfo> SearchSharedFunctionInfo(
|
|
Code* unoptimized_code, FunctionLiteral* expr) {
|
|
int start_position = expr->start_position();
|
|
RelocIterator it(unoptimized_code);
|
|
for (;!it.done(); it.next()) {
|
|
RelocInfo* rinfo = it.rinfo();
|
|
if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
|
|
Object* obj = rinfo->target_object();
|
|
if (obj->IsSharedFunctionInfo()) {
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
|
|
if (shared->start_position() == start_position) {
|
|
return Handle<SharedFunctionInfo>(shared);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Handle<SharedFunctionInfo>();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Handle<SharedFunctionInfo> shared_info =
|
|
SearchSharedFunctionInfo(info()->shared_info()->code(),
|
|
expr);
|
|
if (shared_info.is_null()) {
|
|
shared_info = Compiler::BuildFunctionInfo(expr, info()->script());
|
|
}
|
|
// We also have a stack overflow if the recursive compilation did.
|
|
if (HasStackOverflow()) return;
|
|
HValue* context = environment()->LookupContext();
|
|
HFunctionLiteral* instr =
|
|
new(zone()) HFunctionLiteral(context, shared_info, expr->pretenure());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitSharedFunctionInfoLiteral(
|
|
SharedFunctionInfoLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout("SharedFunctionInfoLiteral");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitConditional(Conditional* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
HBasicBlock* cond_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* cond_false = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
|
|
|
|
// Visit the true and false subexpressions in the same AST context as the
|
|
// whole expression.
|
|
if (cond_true->HasPredecessor()) {
|
|
cond_true->SetJoinId(expr->ThenId());
|
|
set_current_block(cond_true);
|
|
CHECK_BAILOUT(Visit(expr->then_expression()));
|
|
cond_true = current_block();
|
|
} else {
|
|
cond_true = NULL;
|
|
}
|
|
|
|
if (cond_false->HasPredecessor()) {
|
|
cond_false->SetJoinId(expr->ElseId());
|
|
set_current_block(cond_false);
|
|
CHECK_BAILOUT(Visit(expr->else_expression()));
|
|
cond_false = current_block();
|
|
} else {
|
|
cond_false = NULL;
|
|
}
|
|
|
|
if (!ast_context()->IsTest()) {
|
|
HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
|
|
set_current_block(join);
|
|
if (join != NULL && !ast_context()->IsEffect()) {
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
HGraphBuilder::GlobalPropertyAccess HGraphBuilder::LookupGlobalProperty(
|
|
Variable* var, LookupResult* lookup, bool is_store) {
|
|
if (var->is_this() || !info()->has_global_object()) {
|
|
return kUseGeneric;
|
|
}
|
|
Handle<GlobalObject> global(info()->global_object());
|
|
global->Lookup(*var->name(), lookup);
|
|
if (!lookup->IsNormal() ||
|
|
(is_store && lookup->IsReadOnly()) ||
|
|
lookup->holder() != *global) {
|
|
return kUseGeneric;
|
|
}
|
|
|
|
return kUseCell;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildContextChainWalk(Variable* var) {
|
|
ASSERT(var->IsContextSlot());
|
|
HValue* context = environment()->LookupContext();
|
|
int length = info()->scope()->ContextChainLength(var->scope());
|
|
while (length-- > 0) {
|
|
HInstruction* context_instruction = new(zone()) HOuterContext(context);
|
|
AddInstruction(context_instruction);
|
|
context = context_instruction;
|
|
}
|
|
return context;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Variable* variable = expr->var();
|
|
switch (variable->location()) {
|
|
case Variable::UNALLOCATED: {
|
|
if (IsLexicalVariableMode(variable->mode())) {
|
|
// TODO(rossberg): should this be an ASSERT?
|
|
return Bailout("reference to global lexical variable");
|
|
}
|
|
// Handle known global constants like 'undefined' specially to avoid a
|
|
// load from a global cell for them.
|
|
Handle<Object> constant_value =
|
|
isolate()->factory()->GlobalConstantFor(variable->name());
|
|
if (!constant_value.is_null()) {
|
|
HConstant* instr =
|
|
new(zone()) HConstant(constant_value, Representation::Tagged());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
LookupResult lookup(isolate());
|
|
GlobalPropertyAccess type =
|
|
LookupGlobalProperty(variable, &lookup, false);
|
|
|
|
if (type == kUseCell &&
|
|
info()->global_object()->IsAccessCheckNeeded()) {
|
|
type = kUseGeneric;
|
|
}
|
|
|
|
if (type == kUseCell) {
|
|
Handle<GlobalObject> global(info()->global_object());
|
|
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
|
|
HLoadGlobalCell* instr =
|
|
new(zone()) HLoadGlobalCell(cell, lookup.GetPropertyDetails());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
} else {
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
|
|
AddInstruction(global_object);
|
|
HLoadGlobalGeneric* instr =
|
|
new(zone()) HLoadGlobalGeneric(context,
|
|
global_object,
|
|
variable->name(),
|
|
ast_context()->is_for_typeof());
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
}
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL: {
|
|
HValue* value = environment()->Lookup(variable);
|
|
if (value == graph()->GetConstantHole()) {
|
|
ASSERT(IsDeclaredVariableMode(variable->mode()) &&
|
|
variable->mode() != VAR);
|
|
return Bailout("reference to uninitialized variable");
|
|
}
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
case Variable::CONTEXT: {
|
|
HValue* context = BuildContextChainWalk(variable);
|
|
HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout("reference to a variable which requires dynamic lookup");
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitLiteral(Literal* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
HConstant* instr =
|
|
new(zone()) HConstant(expr->handle(), Representation::Tagged());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
|
|
Handle<FixedArray> literals(closure->literals());
|
|
HValue* context = environment()->LookupContext();
|
|
|
|
HRegExpLiteral* instr = new(zone()) HRegExpLiteral(context,
|
|
literals,
|
|
expr->pattern(),
|
|
expr->flags(),
|
|
expr->literal_index());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
static void LookupInPrototypes(Handle<Map> map,
|
|
Handle<String> name,
|
|
LookupResult* lookup) {
|
|
while (map->prototype()->IsJSObject()) {
|
|
Handle<JSObject> holder(JSObject::cast(map->prototype()));
|
|
if (!holder->HasFastProperties()) break;
|
|
map = Handle<Map>(holder->map());
|
|
map->LookupDescriptor(*holder, *name, lookup);
|
|
if (lookup->IsFound()) return;
|
|
}
|
|
lookup->NotFound();
|
|
}
|
|
|
|
|
|
// Tries to find a JavaScript accessor of the given name in the prototype chain
|
|
// starting at the given map. Return true iff there is one, including the
|
|
// corresponding AccessorPair plus its holder (which could be null when the
|
|
// accessor is found directly in the given map).
|
|
static bool LookupAccessorPair(Handle<Map> map,
|
|
Handle<String> name,
|
|
Handle<AccessorPair>* accessors,
|
|
Handle<JSObject>* holder) {
|
|
LookupResult lookup(map->GetIsolate());
|
|
|
|
// Check for a JavaScript accessor directly in the map.
|
|
map->LookupDescriptor(NULL, *name, &lookup);
|
|
if (lookup.IsPropertyCallbacks()) {
|
|
Handle<Object> callback(lookup.GetValueFromMap(*map));
|
|
if (!callback->IsAccessorPair()) return false;
|
|
*accessors = Handle<AccessorPair>::cast(callback);
|
|
*holder = Handle<JSObject>();
|
|
return true;
|
|
}
|
|
|
|
// Everything else, e.g. a field, can't be an accessor call.
|
|
if (lookup.IsFound()) return false;
|
|
|
|
// Check for a JavaScript accessor somewhere in the proto chain.
|
|
LookupInPrototypes(map, name, &lookup);
|
|
if (lookup.IsPropertyCallbacks()) {
|
|
Handle<Object> callback(lookup.GetValue());
|
|
if (!callback->IsAccessorPair()) return false;
|
|
*accessors = Handle<AccessorPair>::cast(callback);
|
|
*holder = Handle<JSObject>(lookup.holder());
|
|
return true;
|
|
}
|
|
|
|
// We haven't found a JavaScript accessor anywhere.
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool LookupGetter(Handle<Map> map,
|
|
Handle<String> name,
|
|
Handle<JSFunction>* getter,
|
|
Handle<JSObject>* holder) {
|
|
Handle<AccessorPair> accessors;
|
|
if (LookupAccessorPair(map, name, &accessors, holder) &&
|
|
accessors->getter()->IsJSFunction()) {
|
|
*getter = Handle<JSFunction>(JSFunction::cast(accessors->getter()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool LookupSetter(Handle<Map> map,
|
|
Handle<String> name,
|
|
Handle<JSFunction>* setter,
|
|
Handle<JSObject>* holder) {
|
|
Handle<AccessorPair> accessors;
|
|
if (LookupAccessorPair(map, name, &accessors, holder) &&
|
|
accessors->setter()->IsJSFunction()) {
|
|
*setter = Handle<JSFunction>(JSFunction::cast(accessors->setter()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Determines whether the given array or object literal boilerplate satisfies
|
|
// all limits to be considered for fast deep-copying and computes the total
|
|
// size of all objects that are part of the graph.
|
|
static bool IsFastLiteral(Handle<JSObject> boilerplate,
|
|
int max_depth,
|
|
int* max_properties,
|
|
int* total_size) {
|
|
ASSERT(max_depth >= 0 && *max_properties >= 0);
|
|
if (max_depth == 0) return false;
|
|
|
|
Handle<FixedArrayBase> elements(boilerplate->elements());
|
|
if (elements->length() > 0 &&
|
|
elements->map() != boilerplate->GetHeap()->fixed_cow_array_map()) {
|
|
if (boilerplate->HasFastDoubleElements()) {
|
|
*total_size += FixedDoubleArray::SizeFor(elements->length());
|
|
} else if (boilerplate->HasFastObjectElements()) {
|
|
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
|
|
int length = elements->length();
|
|
for (int i = 0; i < length; i++) {
|
|
if ((*max_properties)-- == 0) return false;
|
|
Handle<Object> value(fast_elements->get(i));
|
|
if (value->IsJSObject()) {
|
|
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
|
|
if (!IsFastLiteral(value_object,
|
|
max_depth - 1,
|
|
max_properties,
|
|
total_size)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
*total_size += FixedArray::SizeFor(length);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Handle<FixedArray> properties(boilerplate->properties());
|
|
if (properties->length() > 0) {
|
|
return false;
|
|
} else {
|
|
int nof = boilerplate->map()->inobject_properties();
|
|
for (int i = 0; i < nof; i++) {
|
|
if ((*max_properties)-- == 0) return false;
|
|
Handle<Object> value(boilerplate->InObjectPropertyAt(i));
|
|
if (value->IsJSObject()) {
|
|
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
|
|
if (!IsFastLiteral(value_object,
|
|
max_depth - 1,
|
|
max_properties,
|
|
total_size)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*total_size += boilerplate->map()->instance_size();
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* literal;
|
|
|
|
// Check whether to use fast or slow deep-copying for boilerplate.
|
|
int total_size = 0;
|
|
int max_properties = HFastLiteral::kMaxLiteralProperties;
|
|
Handle<Object> boilerplate(closure->literals()->get(expr->literal_index()));
|
|
if (boilerplate->IsJSObject() &&
|
|
IsFastLiteral(Handle<JSObject>::cast(boilerplate),
|
|
HFastLiteral::kMaxLiteralDepth,
|
|
&max_properties,
|
|
&total_size)) {
|
|
Handle<JSObject> boilerplate_object = Handle<JSObject>::cast(boilerplate);
|
|
literal = new(zone()) HFastLiteral(context,
|
|
boilerplate_object,
|
|
total_size,
|
|
expr->literal_index(),
|
|
expr->depth());
|
|
} else {
|
|
literal = new(zone()) HObjectLiteral(context,
|
|
expr->constant_properties(),
|
|
expr->fast_elements(),
|
|
expr->literal_index(),
|
|
expr->depth(),
|
|
expr->has_function());
|
|
}
|
|
|
|
// The object is expected in the bailout environment during computation
|
|
// of the property values and is the value of the entire expression.
|
|
PushAndAdd(literal);
|
|
|
|
expr->CalculateEmitStore(zone());
|
|
|
|
for (int i = 0; i < expr->properties()->length(); i++) {
|
|
ObjectLiteral::Property* property = expr->properties()->at(i);
|
|
if (property->IsCompileTimeValue()) continue;
|
|
|
|
Literal* key = property->key();
|
|
Expression* value = property->value();
|
|
|
|
switch (property->kind()) {
|
|
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
|
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
|
|
// Fall through.
|
|
case ObjectLiteral::Property::COMPUTED:
|
|
if (key->handle()->IsSymbol()) {
|
|
if (property->emit_store()) {
|
|
property->RecordTypeFeedback(oracle());
|
|
CHECK_ALIVE(VisitForValue(value));
|
|
HValue* value = Pop();
|
|
Handle<Map> map = property->GetReceiverType();
|
|
Handle<String> name = property->key()->AsPropertyName();
|
|
HInstruction* store;
|
|
if (map.is_null()) {
|
|
// If we don't know the monomorphic type, do a generic store.
|
|
CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value));
|
|
} else {
|
|
#if DEBUG
|
|
Handle<JSFunction> setter;
|
|
Handle<JSObject> holder;
|
|
ASSERT(!LookupSetter(map, name, &setter, &holder));
|
|
#endif
|
|
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal,
|
|
name,
|
|
value,
|
|
map));
|
|
}
|
|
AddInstruction(store);
|
|
if (store->HasObservableSideEffects()) AddSimulate(key->id());
|
|
} else {
|
|
CHECK_ALIVE(VisitForEffect(value));
|
|
}
|
|
break;
|
|
}
|
|
// Fall through.
|
|
case ObjectLiteral::Property::PROTOTYPE:
|
|
case ObjectLiteral::Property::SETTER:
|
|
case ObjectLiteral::Property::GETTER:
|
|
return Bailout("Object literal with complex property");
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
if (expr->has_function()) {
|
|
// Return the result of the transformation to fast properties
|
|
// instead of the original since this operation changes the map
|
|
// of the object. This makes sure that the original object won't
|
|
// be used by other optimized code before it is transformed
|
|
// (e.g. because of code motion).
|
|
HToFastProperties* result = new(zone()) HToFastProperties(Pop());
|
|
AddInstruction(result);
|
|
return ast_context()->ReturnValue(result);
|
|
} else {
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
ZoneList<Expression*>* subexprs = expr->values();
|
|
int length = subexprs->length();
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* literal;
|
|
|
|
Handle<FixedArray> literals(environment()->closure()->literals());
|
|
Handle<Object> raw_boilerplate(literals->get(expr->literal_index()));
|
|
|
|
if (raw_boilerplate->IsUndefined()) {
|
|
raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate(
|
|
isolate(), literals, expr->constant_elements());
|
|
if (raw_boilerplate.is_null()) {
|
|
return Bailout("array boilerplate creation failed");
|
|
}
|
|
literals->set(expr->literal_index(), *raw_boilerplate);
|
|
if (JSObject::cast(*raw_boilerplate)->elements()->map() ==
|
|
isolate()->heap()->fixed_cow_array_map()) {
|
|
isolate()->counters()->cow_arrays_created_runtime()->Increment();
|
|
}
|
|
}
|
|
|
|
Handle<JSObject> boilerplate = Handle<JSObject>::cast(raw_boilerplate);
|
|
ElementsKind boilerplate_elements_kind =
|
|
Handle<JSObject>::cast(boilerplate)->GetElementsKind();
|
|
|
|
// Check whether to use fast or slow deep-copying for boilerplate.
|
|
int total_size = 0;
|
|
int max_properties = HFastLiteral::kMaxLiteralProperties;
|
|
if (IsFastLiteral(boilerplate,
|
|
HFastLiteral::kMaxLiteralDepth,
|
|
&max_properties,
|
|
&total_size)) {
|
|
literal = new(zone()) HFastLiteral(context,
|
|
boilerplate,
|
|
total_size,
|
|
expr->literal_index(),
|
|
expr->depth());
|
|
} else {
|
|
literal = new(zone()) HArrayLiteral(context,
|
|
boilerplate,
|
|
length,
|
|
expr->literal_index(),
|
|
expr->depth());
|
|
}
|
|
|
|
// The array is expected in the bailout environment during computation
|
|
// of the property values and is the value of the entire expression.
|
|
PushAndAdd(literal);
|
|
|
|
HLoadElements* elements = NULL;
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
Expression* subexpr = subexprs->at(i);
|
|
// If the subexpression is a literal or a simple materialized literal it
|
|
// is already set in the cloned array.
|
|
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
|
|
|
|
CHECK_ALIVE(VisitForValue(subexpr));
|
|
HValue* value = Pop();
|
|
if (!Smi::IsValid(i)) return Bailout("Non-smi key in array literal");
|
|
|
|
// Pass in literal as dummy depedency, since the receiver always has
|
|
// elements.
|
|
elements = new(zone()) HLoadElements(literal, literal);
|
|
AddInstruction(elements);
|
|
|
|
HValue* key = AddInstruction(
|
|
new(zone()) HConstant(Handle<Object>(Smi::FromInt(i)),
|
|
Representation::Integer32()));
|
|
|
|
switch (boilerplate_elements_kind) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
// Smi-only arrays need a smi check.
|
|
AddInstruction(new(zone()) HCheckSmi(value));
|
|
// Fall through.
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
AddInstruction(new(zone()) HStoreKeyedFastElement(
|
|
elements,
|
|
key,
|
|
value,
|
|
boilerplate_elements_kind));
|
|
break;
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
AddInstruction(new(zone()) HStoreKeyedFastDoubleElement(elements,
|
|
key,
|
|
value));
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
AddSimulate(expr->GetIdForElement(i));
|
|
}
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
// Sets the lookup result and returns true if the load/store can be inlined.
|
|
static bool ComputeLoadStoreField(Handle<Map> type,
|
|
Handle<String> name,
|
|
LookupResult* lookup,
|
|
bool is_store) {
|
|
// If we directly find a field, the access can be inlined.
|
|
type->LookupDescriptor(NULL, *name, lookup);
|
|
if (lookup->IsField()) return true;
|
|
|
|
// For a load, we are out of luck if there is no such field.
|
|
if (!is_store) return false;
|
|
|
|
// 2nd chance: A store into a non-existent field can still be inlined if we
|
|
// have a matching transition and some room left in the object.
|
|
type->LookupTransition(NULL, *name, lookup);
|
|
return lookup->IsTransitionToField(*type) &&
|
|
(type->unused_property_fields() > 0);
|
|
}
|
|
|
|
|
|
static int ComputeLoadStoreFieldIndex(Handle<Map> type,
|
|
Handle<String> name,
|
|
LookupResult* lookup) {
|
|
ASSERT(lookup->IsField() || lookup->IsTransitionToField(*type));
|
|
if (lookup->IsField()) {
|
|
return lookup->GetLocalFieldIndexFromMap(*type);
|
|
} else {
|
|
Map* transition = lookup->GetTransitionMapFromMap(*type);
|
|
return transition->PropertyIndexFor(*name) - type->inobject_properties();
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildStoreNamedField(HValue* object,
|
|
Handle<String> name,
|
|
HValue* value,
|
|
Handle<Map> map,
|
|
LookupResult* lookup,
|
|
bool smi_and_map_check) {
|
|
ASSERT(lookup->IsFound());
|
|
if (smi_and_map_check) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(object));
|
|
AddInstruction(HCheckMaps::NewWithTransitions(object, map, zone()));
|
|
}
|
|
|
|
// If the property does not exist yet, we have to check that it wasn't made
|
|
// readonly or turned into a setter by some meanwhile modifications on the
|
|
// prototype chain.
|
|
if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) {
|
|
Object* proto = map->prototype();
|
|
// First check that the prototype chain isn't affected already.
|
|
LookupResult proto_result(isolate());
|
|
proto->Lookup(*name, &proto_result);
|
|
if (proto_result.IsProperty()) {
|
|
// If the inherited property could induce readonly-ness, bail out.
|
|
if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) {
|
|
Bailout("improper object on prototype chain for store");
|
|
return NULL;
|
|
}
|
|
// We only need to check up to the preexisting property.
|
|
proto = proto_result.holder();
|
|
} else {
|
|
// Otherwise, find the top prototype.
|
|
while (proto->GetPrototype()->IsJSObject()) proto = proto->GetPrototype();
|
|
ASSERT(proto->GetPrototype()->IsNull());
|
|
}
|
|
ASSERT(proto->IsJSObject());
|
|
AddInstruction(new(zone()) HCheckPrototypeMaps(
|
|
Handle<JSObject>(JSObject::cast(map->prototype())),
|
|
Handle<JSObject>(JSObject::cast(proto))));
|
|
}
|
|
|
|
int index = ComputeLoadStoreFieldIndex(map, name, lookup);
|
|
bool is_in_object = index < 0;
|
|
int offset = index * kPointerSize;
|
|
if (index < 0) {
|
|
// Negative property indices are in-object properties, indexed
|
|
// from the end of the fixed part of the object.
|
|
offset += map->instance_size();
|
|
} else {
|
|
offset += FixedArray::kHeaderSize;
|
|
}
|
|
HStoreNamedField* instr =
|
|
new(zone()) HStoreNamedField(object, name, value, is_in_object, offset);
|
|
if (lookup->IsTransitionToField(*map)) {
|
|
Handle<Map> transition(lookup->GetTransitionMapFromMap(*map));
|
|
instr->set_transition(transition);
|
|
// TODO(fschneider): Record the new map type of the object in the IR to
|
|
// enable elimination of redundant checks after the transition store.
|
|
instr->SetGVNFlag(kChangesMaps);
|
|
}
|
|
return instr;
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildStoreNamedGeneric(HValue* object,
|
|
Handle<String> name,
|
|
HValue* value) {
|
|
HValue* context = environment()->LookupContext();
|
|
return new(zone()) HStoreNamedGeneric(
|
|
context,
|
|
object,
|
|
name,
|
|
value,
|
|
function_strict_mode_flag());
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildCallSetter(HValue* object,
|
|
HValue* value,
|
|
Handle<Map> map,
|
|
Handle<JSFunction> setter,
|
|
Handle<JSObject> holder) {
|
|
AddCheckConstantFunction(holder, object, map, true);
|
|
AddInstruction(new(zone()) HPushArgument(object));
|
|
AddInstruction(new(zone()) HPushArgument(value));
|
|
return new(zone()) HCallConstantFunction(setter, 2);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildStoreNamedMonomorphic(HValue* object,
|
|
Handle<String> name,
|
|
HValue* value,
|
|
Handle<Map> map) {
|
|
// Handle a store to a known field.
|
|
LookupResult lookup(isolate());
|
|
if (ComputeLoadStoreField(map, name, &lookup, true)) {
|
|
// true = needs smi and map check.
|
|
return BuildStoreNamedField(object, name, value, map, &lookup, true);
|
|
}
|
|
|
|
// No luck, do a generic store.
|
|
return BuildStoreNamedGeneric(object, name, value);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandlePolymorphicLoadNamedField(Property* expr,
|
|
HValue* object,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
int count = 0;
|
|
int previous_field_offset = 0;
|
|
bool previous_field_is_in_object = false;
|
|
bool is_monomorphic_field = true;
|
|
Handle<Map> map;
|
|
LookupResult lookup(isolate());
|
|
for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
|
|
map = types->at(i);
|
|
if (ComputeLoadStoreField(map, name, &lookup, false)) {
|
|
int index = ComputeLoadStoreFieldIndex(map, name, &lookup);
|
|
bool is_in_object = index < 0;
|
|
int offset = index * kPointerSize;
|
|
if (index < 0) {
|
|
// Negative property indices are in-object properties, indexed
|
|
// from the end of the fixed part of the object.
|
|
offset += map->instance_size();
|
|
} else {
|
|
offset += FixedArray::kHeaderSize;
|
|
}
|
|
if (count == 0) {
|
|
previous_field_offset = offset;
|
|
previous_field_is_in_object = is_in_object;
|
|
} else if (is_monomorphic_field) {
|
|
is_monomorphic_field = (offset == previous_field_offset) &&
|
|
(is_in_object == previous_field_is_in_object);
|
|
}
|
|
++count;
|
|
}
|
|
}
|
|
|
|
// Use monomorphic load if property lookup results in the same field index
|
|
// for all maps. Requires special map check on the set of all handled maps.
|
|
AddInstruction(new(zone()) HCheckNonSmi(object));
|
|
HInstruction* instr;
|
|
if (count == types->length() && is_monomorphic_field) {
|
|
AddInstruction(new(zone()) HCheckMaps(object, types, zone()));
|
|
instr = BuildLoadNamedField(object, map, &lookup, false);
|
|
} else {
|
|
HValue* context = environment()->LookupContext();
|
|
instr = new(zone()) HLoadNamedFieldPolymorphic(context,
|
|
object,
|
|
types,
|
|
name,
|
|
zone());
|
|
}
|
|
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandlePolymorphicStoreNamedField(Assignment* expr,
|
|
HValue* object,
|
|
HValue* value,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
// TODO(ager): We should recognize when the prototype chains for different
|
|
// maps are identical. In that case we can avoid repeatedly generating the
|
|
// same prototype map checks.
|
|
int count = 0;
|
|
HBasicBlock* join = NULL;
|
|
for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) {
|
|
Handle<Map> map = types->at(i);
|
|
LookupResult lookup(isolate());
|
|
if (ComputeLoadStoreField(map, name, &lookup, true)) {
|
|
if (count == 0) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(object)); // Only needed once.
|
|
join = graph()->CreateBasicBlock();
|
|
}
|
|
++count;
|
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
|
HCompareMap* compare =
|
|
new(zone()) HCompareMap(object, map, if_true, if_false);
|
|
current_block()->Finish(compare);
|
|
|
|
set_current_block(if_true);
|
|
HInstruction* instr;
|
|
CHECK_ALIVE(instr =
|
|
BuildStoreNamedField(object, name, value, map, &lookup, false));
|
|
instr->set_position(expr->position());
|
|
// Goto will add the HSimulate for the store.
|
|
AddInstruction(instr);
|
|
if (!ast_context()->IsEffect()) Push(value);
|
|
current_block()->Goto(join);
|
|
|
|
set_current_block(if_false);
|
|
}
|
|
}
|
|
|
|
// Finish up. Unconditionally deoptimize if we've handled all the maps we
|
|
// know about and do not want to handle ones we've never seen. Otherwise
|
|
// use a generic IC.
|
|
if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
|
|
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
|
|
} else {
|
|
HInstruction* instr = BuildStoreNamedGeneric(object, name, value);
|
|
instr->set_position(expr->position());
|
|
AddInstruction(instr);
|
|
|
|
if (join != NULL) {
|
|
if (!ast_context()->IsEffect()) Push(value);
|
|
current_block()->Goto(join);
|
|
} else {
|
|
// The HSimulate for the store should not see the stored value in
|
|
// effect contexts (it is not materialized at expr->id() in the
|
|
// unoptimized code).
|
|
if (instr->HasObservableSideEffects()) {
|
|
if (ast_context()->IsEffect()) {
|
|
AddSimulate(expr->id());
|
|
} else {
|
|
Push(value);
|
|
AddSimulate(expr->id());
|
|
Drop(1);
|
|
}
|
|
}
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
}
|
|
|
|
ASSERT(join != NULL);
|
|
join->SetJoinId(expr->id());
|
|
set_current_block(join);
|
|
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
|
|
Property* prop = expr->target()->AsProperty();
|
|
ASSERT(prop != NULL);
|
|
expr->RecordTypeFeedback(oracle(), zone());
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
|
|
if (prop->key()->IsPropertyName()) {
|
|
// Named store.
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HValue* value = environment()->ExpressionStackAt(0);
|
|
HValue* object = environment()->ExpressionStackAt(1);
|
|
|
|
Literal* key = prop->key()->AsLiteral();
|
|
Handle<String> name = Handle<String>::cast(key->handle());
|
|
ASSERT(!name.is_null());
|
|
|
|
HInstruction* instr = NULL;
|
|
SmallMapList* types = expr->GetReceiverTypes();
|
|
bool monomorphic = expr->IsMonomorphic();
|
|
Handle<Map> map;
|
|
if (monomorphic) {
|
|
map = types->first();
|
|
if (map->is_dictionary_map()) monomorphic = false;
|
|
}
|
|
if (monomorphic) {
|
|
Handle<JSFunction> setter;
|
|
Handle<JSObject> holder;
|
|
if (LookupSetter(map, name, &setter, &holder)) {
|
|
AddCheckConstantFunction(holder, object, map, true);
|
|
if (FLAG_inline_accessors && TryInlineSetter(setter, expr, value)) {
|
|
return;
|
|
}
|
|
Drop(2);
|
|
AddInstruction(new(zone()) HPushArgument(object));
|
|
AddInstruction(new(zone()) HPushArgument(value));
|
|
instr = new(zone()) HCallConstantFunction(setter, 2);
|
|
} else {
|
|
Drop(2);
|
|
CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object,
|
|
name,
|
|
value,
|
|
map));
|
|
}
|
|
|
|
} else if (types != NULL && types->length() > 1) {
|
|
Drop(2);
|
|
return HandlePolymorphicStoreNamedField(expr, object, value, types, name);
|
|
} else {
|
|
Drop(2);
|
|
instr = BuildStoreNamedGeneric(object, name, value);
|
|
}
|
|
|
|
Push(value);
|
|
instr->set_position(expr->position());
|
|
AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) AddSimulate(expr->AssignmentId());
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
} else {
|
|
// Keyed store.
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HValue* value = Pop();
|
|
HValue* key = Pop();
|
|
HValue* object = Pop();
|
|
bool has_side_effects = false;
|
|
HandleKeyedElementAccess(object, key, value, expr, expr->AssignmentId(),
|
|
expr->position(),
|
|
true, // is_store
|
|
&has_side_effects);
|
|
Push(value);
|
|
ASSERT(has_side_effects); // Stores always have side effects.
|
|
AddSimulate(expr->AssignmentId());
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
}
|
|
|
|
|
|
// Because not every expression has a position and there is not common
|
|
// superclass of Assignment and CountOperation, we cannot just pass the
|
|
// owning expression instead of position and ast_id separately.
|
|
void HGraphBuilder::HandleGlobalVariableAssignment(Variable* var,
|
|
HValue* value,
|
|
int position,
|
|
BailoutId ast_id) {
|
|
LookupResult lookup(isolate());
|
|
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true);
|
|
if (type == kUseCell) {
|
|
Handle<GlobalObject> global(info()->global_object());
|
|
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
|
|
HInstruction* instr =
|
|
new(zone()) HStoreGlobalCell(value, cell, lookup.GetPropertyDetails());
|
|
instr->set_position(position);
|
|
AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) AddSimulate(ast_id);
|
|
} else {
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
|
|
AddInstruction(global_object);
|
|
HStoreGlobalGeneric* instr =
|
|
new(zone()) HStoreGlobalGeneric(context,
|
|
global_object,
|
|
var->name(),
|
|
value,
|
|
function_strict_mode_flag());
|
|
instr->set_position(position);
|
|
AddInstruction(instr);
|
|
ASSERT(instr->HasObservableSideEffects());
|
|
if (instr->HasObservableSideEffects()) AddSimulate(ast_id);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
|
|
Expression* target = expr->target();
|
|
VariableProxy* proxy = target->AsVariableProxy();
|
|
Property* prop = target->AsProperty();
|
|
ASSERT(proxy == NULL || prop == NULL);
|
|
|
|
// We have a second position recorded in the FullCodeGenerator to have
|
|
// type feedback for the binary operation.
|
|
BinaryOperation* operation = expr->binary_operation();
|
|
|
|
if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->mode() == LET) {
|
|
return Bailout("unsupported let compound assignment");
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(operation));
|
|
|
|
switch (var->location()) {
|
|
case Variable::UNALLOCATED:
|
|
HandleGlobalVariableAssignment(var,
|
|
Top(),
|
|
expr->position(),
|
|
expr->AssignmentId());
|
|
break;
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL:
|
|
if (var->mode() == CONST) {
|
|
return Bailout("unsupported const compound assignment");
|
|
}
|
|
Bind(var, Top());
|
|
break;
|
|
|
|
case Variable::CONTEXT: {
|
|
// Bail out if we try to mutate a parameter value in a function
|
|
// using the arguments object. We do not (yet) correctly handle the
|
|
// arguments property of the function.
|
|
if (info()->scope()->arguments() != NULL) {
|
|
// Parameters will be allocated to context slots. We have no
|
|
// direct way to detect that the variable is a parameter so we do
|
|
// a linear search of the parameter variables.
|
|
int count = info()->scope()->num_parameters();
|
|
for (int i = 0; i < count; ++i) {
|
|
if (var == info()->scope()->parameter(i)) {
|
|
Bailout(
|
|
"assignment to parameter, function uses arguments object");
|
|
}
|
|
}
|
|
}
|
|
|
|
HStoreContextSlot::Mode mode;
|
|
|
|
switch (var->mode()) {
|
|
case LET:
|
|
mode = HStoreContextSlot::kCheckDeoptimize;
|
|
break;
|
|
case CONST:
|
|
return ast_context()->ReturnValue(Pop());
|
|
case CONST_HARMONY:
|
|
// This case is checked statically so no need to
|
|
// perform checks here
|
|
UNREACHABLE();
|
|
default:
|
|
mode = HStoreContextSlot::kNoCheck;
|
|
}
|
|
|
|
HValue* context = BuildContextChainWalk(var);
|
|
HStoreContextSlot* instr =
|
|
new(zone()) HStoreContextSlot(context, var->index(), mode, Top());
|
|
AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) {
|
|
AddSimulate(expr->AssignmentId());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout("compound assignment to lookup slot");
|
|
}
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
} else if (prop != NULL) {
|
|
prop->RecordTypeFeedback(oracle(), zone());
|
|
|
|
if (prop->key()->IsPropertyName()) {
|
|
// Named property.
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
HValue* object = Top();
|
|
|
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
|
Handle<Map> map;
|
|
HInstruction* load;
|
|
bool monomorphic = prop->IsMonomorphic();
|
|
if (monomorphic) {
|
|
map = prop->GetReceiverTypes()->first();
|
|
// We can't generate code for a monomorphic dict mode load so
|
|
// just pretend it is not monomorphic.
|
|
if (map->is_dictionary_map()) monomorphic = false;
|
|
}
|
|
if (monomorphic) {
|
|
Handle<JSFunction> getter;
|
|
Handle<JSObject> holder;
|
|
if (LookupGetter(map, name, &getter, &holder)) {
|
|
load = BuildCallGetter(object, map, getter, holder);
|
|
} else {
|
|
load = BuildLoadNamedMonomorphic(object, name, prop, map);
|
|
}
|
|
} else {
|
|
load = BuildLoadNamedGeneric(object, name, prop);
|
|
}
|
|
PushAndAdd(load);
|
|
if (load->HasObservableSideEffects()) AddSimulate(prop->LoadId());
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
|
|
HInstruction* instr = BuildBinaryOperation(operation, left, right);
|
|
PushAndAdd(instr);
|
|
if (instr->HasObservableSideEffects()) AddSimulate(operation->id());
|
|
|
|
HInstruction* store;
|
|
if (!monomorphic) {
|
|
// If we don't know the monomorphic type, do a generic store.
|
|
CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, instr));
|
|
} else {
|
|
Handle<JSFunction> setter;
|
|
Handle<JSObject> holder;
|
|
if (LookupSetter(map, name, &setter, &holder)) {
|
|
store = BuildCallSetter(object, instr, map, setter, holder);
|
|
} else {
|
|
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object,
|
|
name,
|
|
instr,
|
|
map));
|
|
}
|
|
}
|
|
AddInstruction(store);
|
|
// Drop the simulated receiver and value. Return the value.
|
|
Drop(2);
|
|
Push(instr);
|
|
if (store->HasObservableSideEffects()) AddSimulate(expr->AssignmentId());
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
} else {
|
|
// Keyed property.
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
HValue* obj = environment()->ExpressionStackAt(1);
|
|
HValue* key = environment()->ExpressionStackAt(0);
|
|
|
|
bool has_side_effects = false;
|
|
HValue* load = HandleKeyedElementAccess(
|
|
obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition,
|
|
false, // is_store
|
|
&has_side_effects);
|
|
Push(load);
|
|
if (has_side_effects) AddSimulate(prop->LoadId());
|
|
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
|
|
HInstruction* instr = BuildBinaryOperation(operation, left, right);
|
|
PushAndAdd(instr);
|
|
if (instr->HasObservableSideEffects()) AddSimulate(operation->id());
|
|
|
|
expr->RecordTypeFeedback(oracle(), zone());
|
|
HandleKeyedElementAccess(obj, key, instr, expr, expr->AssignmentId(),
|
|
RelocInfo::kNoPosition,
|
|
true, // is_store
|
|
&has_side_effects);
|
|
|
|
// Drop the simulated receiver, key, and value. Return the value.
|
|
Drop(3);
|
|
Push(instr);
|
|
ASSERT(has_side_effects); // Stores always have side effects.
|
|
AddSimulate(expr->AssignmentId());
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
} else {
|
|
return Bailout("invalid lhs in compound assignment");
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitAssignment(Assignment* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
VariableProxy* proxy = expr->target()->AsVariableProxy();
|
|
Property* prop = expr->target()->AsProperty();
|
|
ASSERT(proxy == NULL || prop == NULL);
|
|
|
|
if (expr->is_compound()) {
|
|
HandleCompoundAssignment(expr);
|
|
return;
|
|
}
|
|
|
|
if (prop != NULL) {
|
|
HandlePropertyAssignment(expr);
|
|
} else if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
|
|
if (var->mode() == CONST) {
|
|
if (expr->op() != Token::INIT_CONST) {
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
if (var->IsStackAllocated()) {
|
|
// We insert a use of the old value to detect unsupported uses of const
|
|
// variables (e.g. initialization inside a loop).
|
|
HValue* old_value = environment()->Lookup(var);
|
|
AddInstruction(new(zone()) HUseConst(old_value));
|
|
}
|
|
} else if (var->mode() == CONST_HARMONY) {
|
|
if (expr->op() != Token::INIT_CONST_HARMONY) {
|
|
return Bailout("non-initializer assignment to const");
|
|
}
|
|
}
|
|
|
|
if (proxy->IsArguments()) return Bailout("assignment to arguments");
|
|
|
|
// Handle the assignment.
|
|
switch (var->location()) {
|
|
case Variable::UNALLOCATED:
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HandleGlobalVariableAssignment(var,
|
|
Top(),
|
|
expr->position(),
|
|
expr->AssignmentId());
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL: {
|
|
// Perform an initialization check for let declared variables
|
|
// or parameters.
|
|
if (var->mode() == LET && expr->op() == Token::ASSIGN) {
|
|
HValue* env_value = environment()->Lookup(var);
|
|
if (env_value == graph()->GetConstantHole()) {
|
|
return Bailout("assignment to let variable before initialization");
|
|
}
|
|
}
|
|
// We do not allow the arguments object to occur in a context where it
|
|
// may escape, but assignments to stack-allocated locals are
|
|
// permitted.
|
|
CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
|
|
HValue* value = Pop();
|
|
Bind(var, value);
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
case Variable::CONTEXT: {
|
|
// Bail out if we try to mutate a parameter value in a function using
|
|
// the arguments object. We do not (yet) correctly handle the
|
|
// arguments property of the function.
|
|
if (info()->scope()->arguments() != NULL) {
|
|
// Parameters will rewrite to context slots. We have no direct way
|
|
// to detect that the variable is a parameter.
|
|
int count = info()->scope()->num_parameters();
|
|
for (int i = 0; i < count; ++i) {
|
|
if (var == info()->scope()->parameter(i)) {
|
|
return Bailout("assignment to parameter in arguments object");
|
|
}
|
|
}
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HStoreContextSlot::Mode mode;
|
|
if (expr->op() == Token::ASSIGN) {
|
|
switch (var->mode()) {
|
|
case LET:
|
|
mode = HStoreContextSlot::kCheckDeoptimize;
|
|
break;
|
|
case CONST:
|
|
return ast_context()->ReturnValue(Pop());
|
|
case CONST_HARMONY:
|
|
// This case is checked statically so no need to
|
|
// perform checks here
|
|
UNREACHABLE();
|
|
default:
|
|
mode = HStoreContextSlot::kNoCheck;
|
|
}
|
|
} else if (expr->op() == Token::INIT_VAR ||
|
|
expr->op() == Token::INIT_LET ||
|
|
expr->op() == Token::INIT_CONST_HARMONY) {
|
|
mode = HStoreContextSlot::kNoCheck;
|
|
} else {
|
|
ASSERT(expr->op() == Token::INIT_CONST);
|
|
|
|
mode = HStoreContextSlot::kCheckIgnoreAssignment;
|
|
}
|
|
|
|
HValue* context = BuildContextChainWalk(var);
|
|
HStoreContextSlot* instr = new(zone()) HStoreContextSlot(
|
|
context, var->index(), mode, Top());
|
|
AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) {
|
|
AddSimulate(expr->AssignmentId());
|
|
}
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout("assignment to LOOKUP variable");
|
|
}
|
|
} else {
|
|
return Bailout("invalid left-hand side in assignment");
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitThrow(Throw* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
// We don't optimize functions with invalid left-hand sides in
|
|
// assignments, count operations, or for-in. Consequently throw can
|
|
// currently only occur in an effect context.
|
|
ASSERT(ast_context()->IsEffect());
|
|
CHECK_ALIVE(VisitForValue(expr->exception()));
|
|
|
|
HValue* context = environment()->LookupContext();
|
|
HValue* value = environment()->Pop();
|
|
HThrow* instr = new(zone()) HThrow(context, value);
|
|
instr->set_position(expr->position());
|
|
AddInstruction(instr);
|
|
AddSimulate(expr->id());
|
|
current_block()->FinishExit(new(zone()) HAbnormalExit);
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object,
|
|
Handle<Map> map,
|
|
LookupResult* lookup,
|
|
bool smi_and_map_check) {
|
|
if (smi_and_map_check) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(object));
|
|
AddInstruction(HCheckMaps::NewWithTransitions(object, map, zone()));
|
|
}
|
|
|
|
int index = lookup->GetLocalFieldIndexFromMap(*map);
|
|
if (index < 0) {
|
|
// Negative property indices are in-object properties, indexed
|
|
// from the end of the fixed part of the object.
|
|
int offset = (index * kPointerSize) + map->instance_size();
|
|
return new(zone()) HLoadNamedField(object, true, offset);
|
|
} else {
|
|
// Non-negative property indices are in the properties array.
|
|
int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
|
|
return new(zone()) HLoadNamedField(object, false, offset);
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildLoadNamedGeneric(HValue* object,
|
|
Handle<String> name,
|
|
Property* expr) {
|
|
if (expr->IsUninitialized() && !FLAG_always_opt) {
|
|
AddInstruction(new(zone()) HSoftDeoptimize);
|
|
current_block()->MarkAsDeoptimizing();
|
|
}
|
|
HValue* context = environment()->LookupContext();
|
|
return new(zone()) HLoadNamedGeneric(context, object, name);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildCallGetter(HValue* object,
|
|
Handle<Map> map,
|
|
Handle<JSFunction> getter,
|
|
Handle<JSObject> holder) {
|
|
AddCheckConstantFunction(holder, object, map, true);
|
|
AddInstruction(new(zone()) HPushArgument(object));
|
|
return new(zone()) HCallConstantFunction(getter, 1);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildLoadNamedMonomorphic(HValue* object,
|
|
Handle<String> name,
|
|
Property* expr,
|
|
Handle<Map> map) {
|
|
// Handle a load from a known field.
|
|
ASSERT(!map->is_dictionary_map());
|
|
LookupResult lookup(isolate());
|
|
map->LookupDescriptor(NULL, *name, &lookup);
|
|
if (lookup.IsField()) {
|
|
return BuildLoadNamedField(object, map, &lookup, true);
|
|
}
|
|
|
|
// Handle a load of a constant known function.
|
|
if (lookup.IsConstantFunction()) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(object));
|
|
AddInstruction(HCheckMaps::NewWithTransitions(object, map, zone()));
|
|
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*map));
|
|
return new(zone()) HConstant(function, Representation::Tagged());
|
|
}
|
|
|
|
// No luck, do a generic load.
|
|
return BuildLoadNamedGeneric(object, name, expr);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
|
|
HValue* key) {
|
|
HValue* context = environment()->LookupContext();
|
|
return new(zone()) HLoadKeyedGeneric(context, object, key);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildExternalArrayElementAccess(
|
|
HValue* external_elements,
|
|
HValue* checked_key,
|
|
HValue* val,
|
|
HValue* dependency,
|
|
ElementsKind elements_kind,
|
|
bool is_store) {
|
|
if (is_store) {
|
|
ASSERT(val != NULL);
|
|
switch (elements_kind) {
|
|
case EXTERNAL_PIXEL_ELEMENTS: {
|
|
val = AddInstruction(new(zone()) HClampToUint8(val));
|
|
break;
|
|
}
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
|
|
if (!val->representation().IsInteger32()) {
|
|
val = AddInstruction(new(zone()) HChange(
|
|
val,
|
|
Representation::Integer32(),
|
|
true, // Truncate to int32.
|
|
false)); // Don't deoptimize undefined (irrelevant here).
|
|
}
|
|
break;
|
|
}
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
break;
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
case DICTIONARY_ELEMENTS:
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return new(zone()) HStoreKeyedSpecializedArrayElement(
|
|
external_elements, checked_key, val, elements_kind);
|
|
} else {
|
|
ASSERT(val == NULL);
|
|
HLoadKeyedSpecializedArrayElement* load =
|
|
new(zone()) HLoadKeyedSpecializedArrayElement(
|
|
external_elements, checked_key, dependency, elements_kind);
|
|
if (FLAG_opt_safe_uint32_operations &&
|
|
elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
|
|
graph()->RecordUint32Instruction(load);
|
|
}
|
|
return load;
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildFastElementAccess(HValue* elements,
|
|
HValue* checked_key,
|
|
HValue* val,
|
|
HValue* load_dependency,
|
|
ElementsKind elements_kind,
|
|
bool is_store) {
|
|
if (is_store) {
|
|
ASSERT(val != NULL);
|
|
switch (elements_kind) {
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
return new(zone()) HStoreKeyedFastDoubleElement(
|
|
elements, checked_key, val);
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
// Smi-only arrays need a smi check.
|
|
AddInstruction(new(zone()) HCheckSmi(val));
|
|
// Fall through.
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
return new(zone()) HStoreKeyedFastElement(
|
|
elements, checked_key, val, elements_kind);
|
|
default:
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
}
|
|
// It's an element load (!is_store).
|
|
HoleCheckMode mode = IsFastPackedElementsKind(elements_kind) ?
|
|
OMIT_HOLE_CHECK :
|
|
PERFORM_HOLE_CHECK;
|
|
if (IsFastDoubleElementsKind(elements_kind)) {
|
|
return new(zone()) HLoadKeyedFastDoubleElement(elements, checked_key,
|
|
load_dependency, mode);
|
|
} else { // Smi or Object elements.
|
|
return new(zone()) HLoadKeyedFastElement(elements, checked_key,
|
|
load_dependency, elements_kind);
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildMonomorphicElementAccess(HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
HValue* dependency,
|
|
Handle<Map> map,
|
|
bool is_store) {
|
|
HCheckMaps* mapcheck = new(zone()) HCheckMaps(object, map,
|
|
zone(), dependency);
|
|
AddInstruction(mapcheck);
|
|
if (dependency) {
|
|
mapcheck->ClearGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
return BuildUncheckedMonomorphicElementAccess(object, key, val,
|
|
mapcheck, map, is_store);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
HCheckMaps* mapcheck,
|
|
Handle<Map> map,
|
|
bool is_store) {
|
|
// No GVNFlag is necessary for ElementsKind if there is an explicit dependency
|
|
// on a HElementsTransition instruction. The flag can also be removed if the
|
|
// map to check has FAST_HOLEY_ELEMENTS, since there can be no further
|
|
// ElementsKind transitions. Finally, the dependency can be removed for stores
|
|
// for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
|
|
// generated store code.
|
|
if ((map->elements_kind() == FAST_HOLEY_ELEMENTS) ||
|
|
(map->elements_kind() == FAST_ELEMENTS && is_store)) {
|
|
mapcheck->ClearGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
bool fast_smi_only_elements = map->has_fast_smi_elements();
|
|
bool fast_elements = map->has_fast_object_elements();
|
|
HInstruction* elements =
|
|
AddInstruction(new(zone()) HLoadElements(object, mapcheck));
|
|
if (is_store && (fast_elements || fast_smi_only_elements)) {
|
|
HCheckMaps* check_cow_map = new(zone()) HCheckMaps(
|
|
elements, isolate()->factory()->fixed_array_map(), zone());
|
|
check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
|
|
AddInstruction(check_cow_map);
|
|
}
|
|
HInstruction* length = NULL;
|
|
HInstruction* checked_key = NULL;
|
|
if (map->has_external_array_elements()) {
|
|
length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
|
|
checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length,
|
|
ALLOW_SMI_KEY));
|
|
HLoadExternalArrayPointer* external_elements =
|
|
new(zone()) HLoadExternalArrayPointer(elements);
|
|
AddInstruction(external_elements);
|
|
return BuildExternalArrayElementAccess(
|
|
external_elements, checked_key, val, mapcheck,
|
|
map->elements_kind(), is_store);
|
|
}
|
|
ASSERT(fast_smi_only_elements ||
|
|
fast_elements ||
|
|
map->has_fast_double_elements());
|
|
if (map->instance_type() == JS_ARRAY_TYPE) {
|
|
length = AddInstruction(new(zone()) HJSArrayLength(object, mapcheck,
|
|
HType::Smi()));
|
|
} else {
|
|
length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
|
|
}
|
|
checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length,
|
|
ALLOW_SMI_KEY));
|
|
return BuildFastElementAccess(elements, checked_key, val, mapcheck,
|
|
map->elements_kind(), is_store);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::TryBuildConsolidatedElementLoad(
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
SmallMapList* maps) {
|
|
// For polymorphic loads of similar elements kinds (i.e. all tagged or all
|
|
// double), always use the "worst case" code without a transition. This is
|
|
// much faster than transitioning the elements to the worst case, trading a
|
|
// HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
|
|
bool has_double_maps = false;
|
|
bool has_smi_or_object_maps = false;
|
|
bool has_js_array_access = false;
|
|
bool has_non_js_array_access = false;
|
|
Handle<Map> most_general_consolidated_map;
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
// Don't allow mixing of JSArrays with JSObjects.
|
|
if (map->instance_type() == JS_ARRAY_TYPE) {
|
|
if (has_non_js_array_access) return NULL;
|
|
has_js_array_access = true;
|
|
} else if (has_js_array_access) {
|
|
return NULL;
|
|
} else {
|
|
has_non_js_array_access = true;
|
|
}
|
|
// Don't allow mixed, incompatible elements kinds.
|
|
if (map->has_fast_double_elements()) {
|
|
if (has_smi_or_object_maps) return NULL;
|
|
has_double_maps = true;
|
|
} else if (map->has_fast_smi_or_object_elements()) {
|
|
if (has_double_maps) return NULL;
|
|
has_smi_or_object_maps = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
// Remember the most general elements kind, the code for its load will
|
|
// properly handle all of the more specific cases.
|
|
if ((i == 0) || IsMoreGeneralElementsKindTransition(
|
|
most_general_consolidated_map->elements_kind(),
|
|
map->elements_kind())) {
|
|
most_general_consolidated_map = map;
|
|
}
|
|
}
|
|
if (!has_double_maps && !has_smi_or_object_maps) return NULL;
|
|
|
|
HCheckMaps* check_maps = new(zone()) HCheckMaps(object, maps, zone());
|
|
AddInstruction(check_maps);
|
|
HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
|
|
object, key, val, check_maps, most_general_consolidated_map, false);
|
|
return instr;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::HandlePolymorphicElementAccess(HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
Expression* prop,
|
|
BailoutId ast_id,
|
|
int position,
|
|
bool is_store,
|
|
bool* has_side_effects) {
|
|
*has_side_effects = false;
|
|
AddInstruction(new(zone()) HCheckNonSmi(object));
|
|
SmallMapList* maps = prop->GetReceiverTypes();
|
|
bool todo_external_array = false;
|
|
|
|
if (!is_store) {
|
|
HInstruction* consolidated_load =
|
|
TryBuildConsolidatedElementLoad(object, key, val, maps);
|
|
if (consolidated_load != NULL) {
|
|
AddInstruction(consolidated_load);
|
|
*has_side_effects |= consolidated_load->HasObservableSideEffects();
|
|
if (position != RelocInfo::kNoPosition) {
|
|
consolidated_load->set_position(position);
|
|
}
|
|
return consolidated_load;
|
|
}
|
|
}
|
|
|
|
static const int kNumElementTypes = kElementsKindCount;
|
|
bool type_todo[kNumElementTypes];
|
|
for (int i = 0; i < kNumElementTypes; ++i) {
|
|
type_todo[i] = false;
|
|
}
|
|
|
|
// Elements_kind transition support.
|
|
MapHandleList transition_target(maps->length());
|
|
// Collect possible transition targets.
|
|
MapHandleList possible_transitioned_maps(maps->length());
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
ElementsKind elements_kind = map->elements_kind();
|
|
if (IsFastElementsKind(elements_kind) &&
|
|
elements_kind != GetInitialFastElementsKind()) {
|
|
possible_transitioned_maps.Add(map);
|
|
}
|
|
}
|
|
// Get transition target for each map (NULL == no transition).
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
Handle<Map> transitioned_map =
|
|
map->FindTransitionedMap(&possible_transitioned_maps);
|
|
transition_target.Add(transitioned_map);
|
|
}
|
|
|
|
int num_untransitionable_maps = 0;
|
|
Handle<Map> untransitionable_map;
|
|
HTransitionElementsKind* transition = NULL;
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
ASSERT(map->IsMap());
|
|
if (!transition_target.at(i).is_null()) {
|
|
ASSERT(Map::IsValidElementsTransition(
|
|
map->elements_kind(),
|
|
transition_target.at(i)->elements_kind()));
|
|
transition = new(zone()) HTransitionElementsKind(
|
|
object, map, transition_target.at(i));
|
|
AddInstruction(transition);
|
|
} else {
|
|
type_todo[map->elements_kind()] = true;
|
|
if (IsExternalArrayElementsKind(map->elements_kind())) {
|
|
todo_external_array = true;
|
|
}
|
|
num_untransitionable_maps++;
|
|
untransitionable_map = map;
|
|
}
|
|
}
|
|
|
|
// If only one map is left after transitioning, handle this case
|
|
// monomorphically.
|
|
if (num_untransitionable_maps == 1) {
|
|
HInstruction* instr = NULL;
|
|
if (untransitionable_map->has_slow_elements_kind()) {
|
|
instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val)
|
|
: BuildLoadKeyedGeneric(object, key));
|
|
} else {
|
|
instr = AddInstruction(BuildMonomorphicElementAccess(
|
|
object, key, val, transition, untransitionable_map, is_store));
|
|
}
|
|
*has_side_effects |= instr->HasObservableSideEffects();
|
|
if (position != RelocInfo::kNoPosition) instr->set_position(position);
|
|
return is_store ? NULL : instr;
|
|
}
|
|
|
|
HInstruction* checkspec =
|
|
AddInstruction(HCheckInstanceType::NewIsSpecObject(object, zone()));
|
|
HBasicBlock* join = graph()->CreateBasicBlock();
|
|
|
|
HInstruction* elements_kind_instr =
|
|
AddInstruction(new(zone()) HElementsKind(object));
|
|
HCompareConstantEqAndBranch* elements_kind_branch = NULL;
|
|
HInstruction* elements =
|
|
AddInstruction(new(zone()) HLoadElements(object, checkspec));
|
|
HLoadExternalArrayPointer* external_elements = NULL;
|
|
HInstruction* checked_key = NULL;
|
|
|
|
// Generated code assumes that FAST_* and DICTIONARY_ELEMENTS ElementsKinds
|
|
// are handled before external arrays.
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
|
|
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
|
|
STATIC_ASSERT(DICTIONARY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
|
|
|
|
for (ElementsKind elements_kind = FIRST_ELEMENTS_KIND;
|
|
elements_kind <= LAST_ELEMENTS_KIND;
|
|
elements_kind = ElementsKind(elements_kind + 1)) {
|
|
// After having handled FAST_* and DICTIONARY_ELEMENTS, we need to add some
|
|
// code that's executed for all external array cases.
|
|
STATIC_ASSERT(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND ==
|
|
LAST_ELEMENTS_KIND);
|
|
if (elements_kind == FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND
|
|
&& todo_external_array) {
|
|
HInstruction* length =
|
|
AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
|
|
checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length));
|
|
external_elements = new(zone()) HLoadExternalArrayPointer(elements);
|
|
AddInstruction(external_elements);
|
|
}
|
|
if (type_todo[elements_kind]) {
|
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
|
elements_kind_branch = new(zone()) HCompareConstantEqAndBranch(
|
|
elements_kind_instr, elements_kind, Token::EQ_STRICT);
|
|
elements_kind_branch->SetSuccessorAt(0, if_true);
|
|
elements_kind_branch->SetSuccessorAt(1, if_false);
|
|
current_block()->Finish(elements_kind_branch);
|
|
|
|
set_current_block(if_true);
|
|
HInstruction* access;
|
|
if (IsFastElementsKind(elements_kind)) {
|
|
if (is_store && !IsFastDoubleElementsKind(elements_kind)) {
|
|
AddInstruction(new(zone()) HCheckMaps(
|
|
elements, isolate()->factory()->fixed_array_map(),
|
|
zone(), elements_kind_branch));
|
|
}
|
|
// TODO(jkummerow): The need for these two blocks could be avoided
|
|
// in one of two ways:
|
|
// (1) Introduce ElementsKinds for JSArrays that are distinct from
|
|
// those for fast objects.
|
|
// (2) Put the common instructions into a third "join" block. This
|
|
// requires additional AST IDs that we can deopt to from inside
|
|
// that join block. They must be added to the Property class (when
|
|
// it's a keyed property) and registered in the full codegen.
|
|
HBasicBlock* if_jsarray = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_fastobject = graph()->CreateBasicBlock();
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
new(zone()) HHasInstanceTypeAndBranch(object, JS_ARRAY_TYPE);
|
|
typecheck->SetSuccessorAt(0, if_jsarray);
|
|
typecheck->SetSuccessorAt(1, if_fastobject);
|
|
current_block()->Finish(typecheck);
|
|
|
|
set_current_block(if_jsarray);
|
|
HInstruction* length;
|
|
length = AddInstruction(new(zone()) HJSArrayLength(object, typecheck,
|
|
HType::Smi()));
|
|
checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length,
|
|
ALLOW_SMI_KEY));
|
|
access = AddInstruction(BuildFastElementAccess(
|
|
elements, checked_key, val, elements_kind_branch,
|
|
elements_kind, is_store));
|
|
if (!is_store) {
|
|
Push(access);
|
|
}
|
|
|
|
*has_side_effects |= access->HasObservableSideEffects();
|
|
if (position != -1) {
|
|
access->set_position(position);
|
|
}
|
|
if_jsarray->Goto(join);
|
|
|
|
set_current_block(if_fastobject);
|
|
length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
|
|
checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length,
|
|
ALLOW_SMI_KEY));
|
|
access = AddInstruction(BuildFastElementAccess(
|
|
elements, checked_key, val, elements_kind_branch,
|
|
elements_kind, is_store));
|
|
} else if (elements_kind == DICTIONARY_ELEMENTS) {
|
|
if (is_store) {
|
|
access = AddInstruction(BuildStoreKeyedGeneric(object, key, val));
|
|
} else {
|
|
access = AddInstruction(BuildLoadKeyedGeneric(object, key));
|
|
}
|
|
} else { // External array elements.
|
|
access = AddInstruction(BuildExternalArrayElementAccess(
|
|
external_elements, checked_key, val, elements_kind_branch,
|
|
elements_kind, is_store));
|
|
}
|
|
*has_side_effects |= access->HasObservableSideEffects();
|
|
if (position != RelocInfo::kNoPosition) access->set_position(position);
|
|
if (!is_store) {
|
|
Push(access);
|
|
}
|
|
current_block()->Goto(join);
|
|
set_current_block(if_false);
|
|
}
|
|
}
|
|
|
|
// Deopt if none of the cases matched.
|
|
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
|
|
join->SetJoinId(ast_id);
|
|
set_current_block(join);
|
|
return is_store ? NULL : Pop();
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::HandleKeyedElementAccess(HValue* obj,
|
|
HValue* key,
|
|
HValue* val,
|
|
Expression* expr,
|
|
BailoutId ast_id,
|
|
int position,
|
|
bool is_store,
|
|
bool* has_side_effects) {
|
|
ASSERT(!expr->IsPropertyName());
|
|
HInstruction* instr = NULL;
|
|
if (expr->IsMonomorphic()) {
|
|
Handle<Map> map = expr->GetMonomorphicReceiverType();
|
|
if (map->has_slow_elements_kind()) {
|
|
instr = is_store ? BuildStoreKeyedGeneric(obj, key, val)
|
|
: BuildLoadKeyedGeneric(obj, key);
|
|
} else {
|
|
AddInstruction(new(zone()) HCheckNonSmi(obj));
|
|
instr = BuildMonomorphicElementAccess(obj, key, val, NULL, map, is_store);
|
|
}
|
|
} else if (expr->GetReceiverTypes() != NULL &&
|
|
!expr->GetReceiverTypes()->is_empty()) {
|
|
return HandlePolymorphicElementAccess(
|
|
obj, key, val, expr, ast_id, position, is_store, has_side_effects);
|
|
} else {
|
|
if (is_store) {
|
|
instr = BuildStoreKeyedGeneric(obj, key, val);
|
|
} else {
|
|
instr = BuildLoadKeyedGeneric(obj, key);
|
|
}
|
|
}
|
|
if (position != RelocInfo::kNoPosition) instr->set_position(position);
|
|
AddInstruction(instr);
|
|
*has_side_effects = instr->HasObservableSideEffects();
|
|
return instr;
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildStoreKeyedGeneric(HValue* object,
|
|
HValue* key,
|
|
HValue* value) {
|
|
HValue* context = environment()->LookupContext();
|
|
return new(zone()) HStoreKeyedGeneric(
|
|
context,
|
|
object,
|
|
key,
|
|
value,
|
|
function_strict_mode_flag());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::EnsureArgumentsArePushedForAccess() {
|
|
// Outermost function already has arguments on the stack.
|
|
if (function_state()->outer() == NULL) return;
|
|
|
|
if (function_state()->arguments_pushed()) return;
|
|
|
|
// Push arguments when entering inlined function.
|
|
HEnterInlined* entry = function_state()->entry();
|
|
entry->set_arguments_pushed();
|
|
|
|
ZoneList<HValue*>* arguments_values = entry->arguments_values();
|
|
|
|
HInstruction* insert_after = entry;
|
|
for (int i = 0; i < arguments_values->length(); i++) {
|
|
HValue* argument = arguments_values->at(i);
|
|
HInstruction* push_argument = new(zone()) HPushArgument(argument);
|
|
push_argument->InsertAfter(insert_after);
|
|
insert_after = push_argument;
|
|
}
|
|
|
|
HArgumentsElements* arguments_elements =
|
|
new(zone()) HArgumentsElements(true);
|
|
arguments_elements->ClearFlag(HValue::kUseGVN);
|
|
arguments_elements->InsertAfter(insert_after);
|
|
function_state()->set_arguments_elements(arguments_elements);
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryArgumentsAccess(Property* expr) {
|
|
VariableProxy* proxy = expr->obj()->AsVariableProxy();
|
|
if (proxy == NULL) return false;
|
|
if (!proxy->var()->IsStackAllocated()) return false;
|
|
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
|
|
return false;
|
|
}
|
|
|
|
HInstruction* result = NULL;
|
|
if (expr->key()->IsPropertyName()) {
|
|
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
|
|
if (!name->IsEqualTo(CStrVector("length"))) return false;
|
|
|
|
if (function_state()->outer() == NULL) {
|
|
HInstruction* elements = AddInstruction(
|
|
new(zone()) HArgumentsElements(false));
|
|
result = new(zone()) HArgumentsLength(elements);
|
|
} else {
|
|
// Number of arguments without receiver.
|
|
int argument_count = environment()->
|
|
arguments_environment()->parameter_count() - 1;
|
|
result = new(zone()) HConstant(
|
|
Handle<Object>(Smi::FromInt(argument_count)),
|
|
Representation::Integer32());
|
|
}
|
|
} else {
|
|
Push(graph()->GetArgumentsObject());
|
|
VisitForValue(expr->key());
|
|
if (HasStackOverflow() || current_block() == NULL) return true;
|
|
HValue* key = Pop();
|
|
Drop(1); // Arguments object.
|
|
if (function_state()->outer() == NULL) {
|
|
HInstruction* elements = AddInstruction(
|
|
new(zone()) HArgumentsElements(false));
|
|
HInstruction* length = AddInstruction(
|
|
new(zone()) HArgumentsLength(elements));
|
|
HInstruction* checked_key =
|
|
AddInstruction(new(zone()) HBoundsCheck(key, length));
|
|
result = new(zone()) HAccessArgumentsAt(elements, length, checked_key);
|
|
} else {
|
|
EnsureArgumentsArePushedForAccess();
|
|
|
|
// Number of arguments without receiver.
|
|
HInstruction* elements = function_state()->arguments_elements();
|
|
int argument_count = environment()->
|
|
arguments_environment()->parameter_count() - 1;
|
|
HInstruction* length = AddInstruction(new(zone()) HConstant(
|
|
Handle<Object>(Smi::FromInt(argument_count)),
|
|
Representation::Integer32()));
|
|
HInstruction* checked_key =
|
|
AddInstruction(new(zone()) HBoundsCheck(key, length));
|
|
result = new(zone()) HAccessArgumentsAt(elements, length, checked_key);
|
|
}
|
|
}
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitProperty(Property* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
expr->RecordTypeFeedback(oracle(), zone());
|
|
|
|
if (TryArgumentsAccess(expr)) return;
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->obj()));
|
|
|
|
HInstruction* instr = NULL;
|
|
if (expr->AsProperty()->IsArrayLength()) {
|
|
HValue* array = Pop();
|
|
AddInstruction(new(zone()) HCheckNonSmi(array));
|
|
HInstruction* mapcheck =
|
|
AddInstruction(HCheckInstanceType::NewIsJSArray(array, zone()));
|
|
instr = new(zone()) HJSArrayLength(array, mapcheck);
|
|
} else if (expr->IsStringLength()) {
|
|
HValue* string = Pop();
|
|
AddInstruction(new(zone()) HCheckNonSmi(string));
|
|
AddInstruction(HCheckInstanceType::NewIsString(string, zone()));
|
|
instr = new(zone()) HStringLength(string);
|
|
} else if (expr->IsStringAccess()) {
|
|
CHECK_ALIVE(VisitForValue(expr->key()));
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HStringCharCodeAt* char_code =
|
|
BuildStringCharCodeAt(context, string, index);
|
|
AddInstruction(char_code);
|
|
instr = new(zone()) HStringCharFromCode(context, char_code);
|
|
|
|
} else if (expr->IsFunctionPrototype()) {
|
|
HValue* function = Pop();
|
|
AddInstruction(new(zone()) HCheckNonSmi(function));
|
|
instr = new(zone()) HLoadFunctionPrototype(function);
|
|
|
|
} else if (expr->key()->IsPropertyName()) {
|
|
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
|
|
SmallMapList* types = expr->GetReceiverTypes();
|
|
|
|
bool monomorphic = expr->IsMonomorphic();
|
|
Handle<Map> map;
|
|
if (expr->IsMonomorphic()) {
|
|
map = types->first();
|
|
if (map->is_dictionary_map()) monomorphic = false;
|
|
}
|
|
if (monomorphic) {
|
|
Handle<JSFunction> getter;
|
|
Handle<JSObject> holder;
|
|
if (LookupGetter(map, name, &getter, &holder)) {
|
|
AddCheckConstantFunction(holder, Top(), map, true);
|
|
if (FLAG_inline_accessors && TryInlineGetter(getter, expr)) return;
|
|
AddInstruction(new(zone()) HPushArgument(Pop()));
|
|
instr = new(zone()) HCallConstantFunction(getter, 1);
|
|
} else {
|
|
instr = BuildLoadNamedMonomorphic(Pop(), name, expr, map);
|
|
}
|
|
} else if (types != NULL && types->length() > 1) {
|
|
return HandlePolymorphicLoadNamedField(expr, Pop(), types, name);
|
|
} else {
|
|
instr = BuildLoadNamedGeneric(Pop(), name, expr);
|
|
}
|
|
|
|
} else {
|
|
CHECK_ALIVE(VisitForValue(expr->key()));
|
|
|
|
HValue* key = Pop();
|
|
HValue* obj = Pop();
|
|
|
|
bool has_side_effects = false;
|
|
HValue* load = HandleKeyedElementAccess(
|
|
obj, key, NULL, expr, expr->id(), expr->position(),
|
|
false, // is_store
|
|
&has_side_effects);
|
|
if (has_side_effects) {
|
|
if (ast_context()->IsEffect()) {
|
|
AddSimulate(expr->id());
|
|
} else {
|
|
Push(load);
|
|
AddSimulate(expr->id());
|
|
Drop(1);
|
|
}
|
|
}
|
|
return ast_context()->ReturnValue(load);
|
|
}
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::AddCheckConstantFunction(Handle<JSObject> holder,
|
|
HValue* receiver,
|
|
Handle<Map> receiver_map,
|
|
bool smi_and_map_check) {
|
|
// Constant functions have the nice property that the map will change if they
|
|
// are overwritten. Therefore it is enough to check the map of the holder and
|
|
// its prototypes.
|
|
if (smi_and_map_check) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(receiver));
|
|
AddInstruction(HCheckMaps::NewWithTransitions(receiver, receiver_map,
|
|
zone()));
|
|
}
|
|
if (!holder.is_null()) {
|
|
AddInstruction(new(zone()) HCheckPrototypeMaps(
|
|
Handle<JSObject>(JSObject::cast(receiver_map->prototype())), holder));
|
|
}
|
|
}
|
|
|
|
|
|
class FunctionSorter {
|
|
public:
|
|
FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { }
|
|
FunctionSorter(int index, int ticks, int ast_length, int src_length)
|
|
: index_(index),
|
|
ticks_(ticks),
|
|
ast_length_(ast_length),
|
|
src_length_(src_length) { }
|
|
|
|
int index() const { return index_; }
|
|
int ticks() const { return ticks_; }
|
|
int ast_length() const { return ast_length_; }
|
|
int src_length() const { return src_length_; }
|
|
|
|
private:
|
|
int index_;
|
|
int ticks_;
|
|
int ast_length_;
|
|
int src_length_;
|
|
};
|
|
|
|
|
|
static int CompareHotness(void const* a, void const* b) {
|
|
FunctionSorter const* function1 = reinterpret_cast<FunctionSorter const*>(a);
|
|
FunctionSorter const* function2 = reinterpret_cast<FunctionSorter const*>(b);
|
|
int diff = function1->ticks() - function2->ticks();
|
|
if (diff != 0) return -diff;
|
|
diff = function1->ast_length() - function2->ast_length();
|
|
if (diff != 0) return diff;
|
|
return function1->src_length() - function2->src_length();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
|
|
HValue* receiver,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
// TODO(ager): We should recognize when the prototype chains for different
|
|
// maps are identical. In that case we can avoid repeatedly generating the
|
|
// same prototype map checks.
|
|
int argument_count = expr->arguments()->length() + 1; // Includes receiver.
|
|
HBasicBlock* join = NULL;
|
|
FunctionSorter order[kMaxCallPolymorphism];
|
|
int ordered_functions = 0;
|
|
for (int i = 0;
|
|
i < types->length() && ordered_functions < kMaxCallPolymorphism;
|
|
++i) {
|
|
Handle<Map> map = types->at(i);
|
|
if (expr->ComputeTarget(map, name)) {
|
|
order[ordered_functions++] =
|
|
FunctionSorter(i,
|
|
expr->target()->shared()->profiler_ticks(),
|
|
InliningAstSize(expr->target()),
|
|
expr->target()->shared()->SourceSize());
|
|
}
|
|
}
|
|
|
|
qsort(reinterpret_cast<void*>(&order[0]),
|
|
ordered_functions,
|
|
sizeof(order[0]),
|
|
&CompareHotness);
|
|
|
|
for (int fn = 0; fn < ordered_functions; ++fn) {
|
|
int i = order[fn].index();
|
|
Handle<Map> map = types->at(i);
|
|
if (fn == 0) {
|
|
// Only needed once.
|
|
AddInstruction(new(zone()) HCheckNonSmi(receiver));
|
|
join = graph()->CreateBasicBlock();
|
|
}
|
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
|
HCompareMap* compare =
|
|
new(zone()) HCompareMap(receiver, map, if_true, if_false);
|
|
current_block()->Finish(compare);
|
|
|
|
set_current_block(if_true);
|
|
expr->ComputeTarget(map, name);
|
|
AddCheckConstantFunction(expr->holder(), receiver, map, false);
|
|
if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
|
|
Handle<JSFunction> caller = info()->closure();
|
|
SmartArrayPointer<char> caller_name =
|
|
caller->shared()->DebugName()->ToCString();
|
|
PrintF("Trying to inline the polymorphic call to %s from %s\n",
|
|
*name->ToCString(),
|
|
*caller_name);
|
|
}
|
|
if (FLAG_polymorphic_inlining && TryInlineCall(expr)) {
|
|
// Trying to inline will signal that we should bailout from the
|
|
// entire compilation by setting stack overflow on the visitor.
|
|
if (HasStackOverflow()) return;
|
|
} else {
|
|
HCallConstantFunction* call =
|
|
new(zone()) HCallConstantFunction(expr->target(), argument_count);
|
|
call->set_position(expr->position());
|
|
PreProcessCall(call);
|
|
AddInstruction(call);
|
|
if (!ast_context()->IsEffect()) Push(call);
|
|
}
|
|
|
|
if (current_block() != NULL) current_block()->Goto(join);
|
|
set_current_block(if_false);
|
|
}
|
|
|
|
// Finish up. Unconditionally deoptimize if we've handled all the maps we
|
|
// know about and do not want to handle ones we've never seen. Otherwise
|
|
// use a generic IC.
|
|
if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
|
|
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
|
|
} else {
|
|
HValue* context = environment()->LookupContext();
|
|
HCallNamed* call = new(zone()) HCallNamed(context, name, argument_count);
|
|
call->set_position(expr->position());
|
|
PreProcessCall(call);
|
|
|
|
if (join != NULL) {
|
|
AddInstruction(call);
|
|
if (!ast_context()->IsEffect()) Push(call);
|
|
current_block()->Goto(join);
|
|
} else {
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
}
|
|
|
|
// We assume that control flow is always live after an expression. So
|
|
// even without predecessors to the join block, we set it as the exit
|
|
// block and continue by adding instructions there.
|
|
ASSERT(join != NULL);
|
|
if (join->HasPredecessor()) {
|
|
set_current_block(join);
|
|
join->SetJoinId(expr->id());
|
|
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
|
|
} else {
|
|
set_current_block(NULL);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::TraceInline(Handle<JSFunction> target,
|
|
Handle<JSFunction> caller,
|
|
const char* reason) {
|
|
if (FLAG_trace_inlining) {
|
|
SmartArrayPointer<char> target_name =
|
|
target->shared()->DebugName()->ToCString();
|
|
SmartArrayPointer<char> caller_name =
|
|
caller->shared()->DebugName()->ToCString();
|
|
if (reason == NULL) {
|
|
PrintF("Inlined %s called from %s.\n", *target_name, *caller_name);
|
|
} else {
|
|
PrintF("Did not inline %s called from %s (%s).\n",
|
|
*target_name, *caller_name, reason);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static const int kNotInlinable = 1000000000;
|
|
|
|
|
|
int HGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
|
|
if (!FLAG_use_inlining) return kNotInlinable;
|
|
|
|
// Precondition: call is monomorphic and we have found a target with the
|
|
// appropriate arity.
|
|
Handle<JSFunction> caller = info()->closure();
|
|
Handle<SharedFunctionInfo> target_shared(target->shared());
|
|
|
|
// Do a quick check on source code length to avoid parsing large
|
|
// inlining candidates.
|
|
if (target_shared->SourceSize() >
|
|
Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
|
|
TraceInline(target, caller, "target text too big");
|
|
return kNotInlinable;
|
|
}
|
|
|
|
// Target must be inlineable.
|
|
if (!target->IsInlineable()) {
|
|
TraceInline(target, caller, "target not inlineable");
|
|
return kNotInlinable;
|
|
}
|
|
if (target_shared->dont_inline() || target_shared->dont_optimize()) {
|
|
TraceInline(target, caller, "target contains unsupported syntax [early]");
|
|
return kNotInlinable;
|
|
}
|
|
|
|
int nodes_added = target_shared->ast_node_count();
|
|
return nodes_added;
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInline(CallKind call_kind,
|
|
Handle<JSFunction> target,
|
|
int arguments_count,
|
|
HValue* implicit_return_value,
|
|
BailoutId ast_id,
|
|
BailoutId return_id,
|
|
InliningKind inlining_kind) {
|
|
int nodes_added = InliningAstSize(target);
|
|
if (nodes_added == kNotInlinable) return false;
|
|
|
|
Handle<JSFunction> caller = info()->closure();
|
|
|
|
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
|
|
TraceInline(target, caller, "target AST is too large [early]");
|
|
return false;
|
|
}
|
|
|
|
Handle<SharedFunctionInfo> target_shared(target->shared());
|
|
|
|
#if !defined(V8_TARGET_ARCH_IA32)
|
|
// Target must be able to use caller's context.
|
|
CompilationInfo* outer_info = info();
|
|
if (target->context() != outer_info->closure()->context() ||
|
|
outer_info->scope()->contains_with() ||
|
|
outer_info->scope()->num_heap_slots() > 0) {
|
|
TraceInline(target, caller, "target requires context change");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Don't inline deeper than kMaxInliningLevels calls.
|
|
HEnvironment* env = environment();
|
|
int current_level = 1;
|
|
while (env->outer() != NULL) {
|
|
if (current_level == Compiler::kMaxInliningLevels) {
|
|
TraceInline(target, caller, "inline depth limit reached");
|
|
return false;
|
|
}
|
|
if (env->outer()->frame_type() == JS_FUNCTION) {
|
|
current_level++;
|
|
}
|
|
env = env->outer();
|
|
}
|
|
|
|
// Don't inline recursive functions.
|
|
for (FunctionState* state = function_state();
|
|
state != NULL;
|
|
state = state->outer()) {
|
|
if (state->compilation_info()->closure()->shared() == *target_shared) {
|
|
TraceInline(target, caller, "target is recursive");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We don't want to add more than a certain number of nodes from inlining.
|
|
if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
|
|
kUnlimitedMaxInlinedNodesCumulative)) {
|
|
TraceInline(target, caller, "cumulative AST node limit reached");
|
|
return false;
|
|
}
|
|
|
|
// Parse and allocate variables.
|
|
CompilationInfo target_info(target, zone());
|
|
if (!ParserApi::Parse(&target_info, kNoParsingFlags) ||
|
|
!Scope::Analyze(&target_info)) {
|
|
if (target_info.isolate()->has_pending_exception()) {
|
|
// Parse or scope error, never optimize this function.
|
|
SetStackOverflow();
|
|
target_shared->DisableOptimization("parse/scope error");
|
|
}
|
|
TraceInline(target, caller, "parse failure");
|
|
return false;
|
|
}
|
|
|
|
if (target_info.scope()->num_heap_slots() > 0) {
|
|
TraceInline(target, caller, "target has context-allocated variables");
|
|
return false;
|
|
}
|
|
FunctionLiteral* function = target_info.function();
|
|
|
|
// The following conditions must be checked again after re-parsing, because
|
|
// earlier the information might not have been complete due to lazy parsing.
|
|
nodes_added = function->ast_node_count();
|
|
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
|
|
TraceInline(target, caller, "target AST is too large [late]");
|
|
return false;
|
|
}
|
|
AstProperties::Flags* flags(function->flags());
|
|
if (flags->Contains(kDontInline) || flags->Contains(kDontOptimize)) {
|
|
TraceInline(target, caller, "target contains unsupported syntax [late]");
|
|
return false;
|
|
}
|
|
|
|
// If the function uses the arguments object check that inlining of functions
|
|
// with arguments object is enabled and the arguments-variable is
|
|
// stack allocated.
|
|
if (function->scope()->arguments() != NULL) {
|
|
if (!FLAG_inline_arguments) {
|
|
TraceInline(target, caller, "target uses arguments object");
|
|
return false;
|
|
}
|
|
|
|
if (!function->scope()->arguments()->IsStackAllocated()) {
|
|
TraceInline(target,
|
|
caller,
|
|
"target uses non-stackallocated arguments object");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// All declarations must be inlineable.
|
|
ZoneList<Declaration*>* decls = target_info.scope()->declarations();
|
|
int decl_count = decls->length();
|
|
for (int i = 0; i < decl_count; ++i) {
|
|
if (!decls->at(i)->IsInlineable()) {
|
|
TraceInline(target, caller, "target has non-trivial declaration");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Generate the deoptimization data for the unoptimized version of
|
|
// the target function if we don't already have it.
|
|
if (!target_shared->has_deoptimization_support()) {
|
|
// Note that we compile here using the same AST that we will use for
|
|
// generating the optimized inline code.
|
|
target_info.EnableDeoptimizationSupport();
|
|
if (!FullCodeGenerator::MakeCode(&target_info)) {
|
|
TraceInline(target, caller, "could not generate deoptimization info");
|
|
return false;
|
|
}
|
|
if (target_shared->scope_info() == ScopeInfo::Empty()) {
|
|
// The scope info might not have been set if a lazily compiled
|
|
// function is inlined before being called for the first time.
|
|
Handle<ScopeInfo> target_scope_info =
|
|
ScopeInfo::Create(target_info.scope(), zone());
|
|
target_shared->set_scope_info(*target_scope_info);
|
|
}
|
|
target_shared->EnableDeoptimizationSupport(*target_info.code());
|
|
Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
|
|
&target_info,
|
|
target_shared);
|
|
}
|
|
|
|
// ----------------------------------------------------------------
|
|
// After this point, we've made a decision to inline this function (so
|
|
// TryInline should always return true).
|
|
|
|
// Save the pending call context and type feedback oracle. Set up new ones
|
|
// for the inlined function.
|
|
ASSERT(target_shared->has_deoptimization_support());
|
|
Handle<Code> unoptimized_code(target_shared->code());
|
|
TypeFeedbackOracle target_oracle(
|
|
unoptimized_code,
|
|
Handle<Context>(target->context()->native_context()),
|
|
isolate(),
|
|
zone());
|
|
// The function state is new-allocated because we need to delete it
|
|
// in two different places.
|
|
FunctionState* target_state = new FunctionState(
|
|
this, &target_info, &target_oracle, inlining_kind);
|
|
|
|
HConstant* undefined = graph()->GetConstantUndefined();
|
|
HEnvironment* inner_env =
|
|
environment()->CopyForInlining(target,
|
|
arguments_count,
|
|
function,
|
|
undefined,
|
|
call_kind,
|
|
function_state()->inlining_kind());
|
|
#ifdef V8_TARGET_ARCH_IA32
|
|
// IA32 only, overwrite the caller's context in the deoptimization
|
|
// environment with the correct one.
|
|
//
|
|
// TODO(kmillikin): implement the same inlining on other platforms so we
|
|
// can remove the unsightly ifdefs in this function.
|
|
HConstant* context =
|
|
new(zone()) HConstant(Handle<Context>(target->context()),
|
|
Representation::Tagged());
|
|
AddInstruction(context);
|
|
inner_env->BindContext(context);
|
|
#endif
|
|
|
|
AddSimulate(return_id);
|
|
current_block()->UpdateEnvironment(inner_env);
|
|
|
|
ZoneList<HValue*>* arguments_values = NULL;
|
|
|
|
// If the function uses arguments copy current arguments values
|
|
// to use them for materialization.
|
|
if (function->scope()->arguments() != NULL) {
|
|
HEnvironment* arguments_env = inner_env->arguments_environment();
|
|
int arguments_count = arguments_env->parameter_count();
|
|
arguments_values = new(zone()) ZoneList<HValue*>(arguments_count, zone());
|
|
for (int i = 0; i < arguments_count; i++) {
|
|
arguments_values->Add(arguments_env->Lookup(i), zone());
|
|
}
|
|
}
|
|
|
|
HEnterInlined* enter_inlined =
|
|
new(zone()) HEnterInlined(target,
|
|
arguments_count,
|
|
function,
|
|
call_kind,
|
|
function_state()->inlining_kind(),
|
|
function->scope()->arguments(),
|
|
arguments_values);
|
|
function_state()->set_entry(enter_inlined);
|
|
AddInstruction(enter_inlined);
|
|
|
|
// If the function uses arguments object create and bind one.
|
|
if (function->scope()->arguments() != NULL) {
|
|
ASSERT(function->scope()->arguments()->IsStackAllocated());
|
|
inner_env->Bind(function->scope()->arguments(),
|
|
graph()->GetArgumentsObject());
|
|
}
|
|
|
|
|
|
VisitDeclarations(target_info.scope()->declarations());
|
|
VisitStatements(function->body());
|
|
if (HasStackOverflow()) {
|
|
// Bail out if the inline function did, as we cannot residualize a call
|
|
// instead.
|
|
TraceInline(target, caller, "inline graph construction failed");
|
|
target_shared->DisableOptimization("inlining bailed out");
|
|
inline_bailout_ = true;
|
|
delete target_state;
|
|
return true;
|
|
}
|
|
|
|
// Update inlined nodes count.
|
|
inlined_count_ += nodes_added;
|
|
|
|
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
|
|
Handle<Object> maybe_type_info(unoptimized_code->type_feedback_info());
|
|
Handle<TypeFeedbackInfo> type_info(
|
|
Handle<TypeFeedbackInfo>::cast(maybe_type_info));
|
|
graph()->update_type_change_checksum(type_info->own_type_change_checksum());
|
|
|
|
TraceInline(target, caller, NULL);
|
|
|
|
if (current_block() != NULL) {
|
|
FunctionState* state = function_state();
|
|
if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
|
|
// Falling off the end of an inlined construct call. In a test context the
|
|
// return value will always evaluate to true, in a value context the
|
|
// return value is the newly allocated receiver.
|
|
if (call_context()->IsTest()) {
|
|
current_block()->Goto(inlined_test_context()->if_true(), state);
|
|
} else if (call_context()->IsEffect()) {
|
|
current_block()->Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(call_context()->IsValue());
|
|
current_block()->AddLeaveInlined(implicit_return_value, state);
|
|
}
|
|
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
|
|
// Falling off the end of an inlined setter call. The returned value is
|
|
// never used, the value of an assignment is always the value of the RHS
|
|
// of the assignment.
|
|
if (call_context()->IsTest()) {
|
|
inlined_test_context()->ReturnValue(implicit_return_value);
|
|
} else if (call_context()->IsEffect()) {
|
|
current_block()->Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(call_context()->IsValue());
|
|
current_block()->AddLeaveInlined(implicit_return_value, state);
|
|
}
|
|
} else {
|
|
// Falling off the end of a normal inlined function. This basically means
|
|
// returning undefined.
|
|
if (call_context()->IsTest()) {
|
|
current_block()->Goto(inlined_test_context()->if_false(), state);
|
|
} else if (call_context()->IsEffect()) {
|
|
current_block()->Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(call_context()->IsValue());
|
|
current_block()->AddLeaveInlined(undefined, state);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix up the function exits.
|
|
if (inlined_test_context() != NULL) {
|
|
HBasicBlock* if_true = inlined_test_context()->if_true();
|
|
HBasicBlock* if_false = inlined_test_context()->if_false();
|
|
|
|
// Pop the return test context from the expression context stack.
|
|
ASSERT(ast_context() == inlined_test_context());
|
|
ClearInlinedTestContext();
|
|
delete target_state;
|
|
|
|
// Forward to the real test context.
|
|
if (if_true->HasPredecessor()) {
|
|
if_true->SetJoinId(ast_id);
|
|
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
|
|
if_true->Goto(true_target, function_state());
|
|
}
|
|
if (if_false->HasPredecessor()) {
|
|
if_false->SetJoinId(ast_id);
|
|
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
|
|
if_false->Goto(false_target, function_state());
|
|
}
|
|
set_current_block(NULL);
|
|
return true;
|
|
|
|
} else if (function_return()->HasPredecessor()) {
|
|
function_return()->SetJoinId(ast_id);
|
|
set_current_block(function_return());
|
|
} else {
|
|
set_current_block(NULL);
|
|
}
|
|
delete target_state;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) {
|
|
// The function call we are inlining is a method call if the call
|
|
// is a property call.
|
|
CallKind call_kind = (expr->expression()->AsProperty() == NULL)
|
|
? CALL_AS_FUNCTION
|
|
: CALL_AS_METHOD;
|
|
|
|
return TryInline(call_kind,
|
|
expr->target(),
|
|
expr->arguments()->length(),
|
|
NULL,
|
|
expr->id(),
|
|
expr->ReturnId(),
|
|
drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN);
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInlineConstruct(CallNew* expr,
|
|
HValue* implicit_return_value) {
|
|
return TryInline(CALL_AS_FUNCTION,
|
|
expr->target(),
|
|
expr->arguments()->length(),
|
|
implicit_return_value,
|
|
expr->id(),
|
|
expr->ReturnId(),
|
|
CONSTRUCT_CALL_RETURN);
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
|
|
Property* prop) {
|
|
return TryInline(CALL_AS_METHOD,
|
|
getter,
|
|
0,
|
|
NULL,
|
|
prop->id(),
|
|
prop->LoadId(),
|
|
GETTER_CALL_RETURN);
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
|
|
Assignment* assignment,
|
|
HValue* implicit_return_value) {
|
|
return TryInline(CALL_AS_METHOD,
|
|
setter,
|
|
1,
|
|
implicit_return_value,
|
|
assignment->id(),
|
|
assignment->AssignmentId(),
|
|
SETTER_CALL_RETURN);
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr, bool drop_extra) {
|
|
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
|
|
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
|
|
switch (id) {
|
|
case kMathRound:
|
|
case kMathAbs:
|
|
case kMathSqrt:
|
|
case kMathLog:
|
|
case kMathSin:
|
|
case kMathCos:
|
|
case kMathTan:
|
|
if (expr->arguments()->length() == 1) {
|
|
HValue* argument = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
Drop(1); // Receiver.
|
|
HUnaryMathOperation* op =
|
|
new(zone()) HUnaryMathOperation(context, argument, id);
|
|
op->set_position(expr->position());
|
|
if (drop_extra) Drop(1); // Optionally drop the function.
|
|
ast_context()->ReturnInstruction(op, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
default:
|
|
// Not supported for inlining yet.
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryInlineBuiltinMethodCall(Call* expr,
|
|
HValue* receiver,
|
|
Handle<Map> receiver_map,
|
|
CheckType check_type) {
|
|
ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null());
|
|
// Try to inline calls like Math.* as operations in the calling function.
|
|
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
|
|
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
|
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
|
switch (id) {
|
|
case kStringCharCodeAt:
|
|
case kStringCharAt:
|
|
if (argument_count == 2 && check_type == STRING_CHECK) {
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
ASSERT(!expr->holder().is_null());
|
|
AddInstruction(new(zone()) HCheckPrototypeMaps(
|
|
oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK),
|
|
expr->holder()));
|
|
HStringCharCodeAt* char_code =
|
|
BuildStringCharCodeAt(context, string, index);
|
|
if (id == kStringCharCodeAt) {
|
|
ast_context()->ReturnInstruction(char_code, expr->id());
|
|
return true;
|
|
}
|
|
AddInstruction(char_code);
|
|
HStringCharFromCode* result =
|
|
new(zone()) HStringCharFromCode(context, char_code);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathRound:
|
|
case kMathFloor:
|
|
case kMathAbs:
|
|
case kMathSqrt:
|
|
case kMathLog:
|
|
case kMathSin:
|
|
case kMathCos:
|
|
case kMathTan:
|
|
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map, true);
|
|
HValue* argument = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
Drop(1); // Receiver.
|
|
HUnaryMathOperation* op =
|
|
new(zone()) HUnaryMathOperation(context, argument, id);
|
|
op->set_position(expr->position());
|
|
ast_context()->ReturnInstruction(op, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathPow:
|
|
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map, true);
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Pop(); // Pop receiver.
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* result = NULL;
|
|
// Use sqrt() if exponent is 0.5 or -0.5.
|
|
if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
|
|
double exponent = HConstant::cast(right)->DoubleValue();
|
|
if (exponent == 0.5) {
|
|
result =
|
|
new(zone()) HUnaryMathOperation(context, left, kMathPowHalf);
|
|
} else if (exponent == -0.5) {
|
|
HConstant* double_one =
|
|
new(zone()) HConstant(Handle<Object>(Smi::FromInt(1)),
|
|
Representation::Double());
|
|
AddInstruction(double_one);
|
|
HUnaryMathOperation* square_root =
|
|
new(zone()) HUnaryMathOperation(context, left, kMathPowHalf);
|
|
AddInstruction(square_root);
|
|
// MathPowHalf doesn't have side effects so there's no need for
|
|
// an environment simulation here.
|
|
ASSERT(!square_root->HasObservableSideEffects());
|
|
result = new(zone()) HDiv(context, double_one, square_root);
|
|
} else if (exponent == 2.0) {
|
|
result = new(zone()) HMul(context, left, left);
|
|
}
|
|
} else if (right->IsConstant() &&
|
|
HConstant::cast(right)->HasInteger32Value() &&
|
|
HConstant::cast(right)->Integer32Value() == 2) {
|
|
result = new(zone()) HMul(context, left, left);
|
|
}
|
|
|
|
if (result == NULL) {
|
|
result = new(zone()) HPower(left, right);
|
|
}
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathRandom:
|
|
if (argument_count == 1 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map, true);
|
|
Drop(1); // Receiver.
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
|
|
AddInstruction(global_object);
|
|
HRandom* result = new(zone()) HRandom(global_object);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathMax:
|
|
case kMathMin:
|
|
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map, true);
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Drop(1); // Receiver.
|
|
HValue* context = environment()->LookupContext();
|
|
HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
|
|
: HMathMinMax::kMathMax;
|
|
HMathMinMax* result = new(zone()) HMathMinMax(context, left, right, op);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
default:
|
|
// Not yet supported for inlining.
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HGraphBuilder::TryCallApply(Call* expr) {
|
|
Expression* callee = expr->expression();
|
|
Property* prop = callee->AsProperty();
|
|
ASSERT(prop != NULL);
|
|
|
|
if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
|
|
return false;
|
|
}
|
|
Handle<Map> function_map = expr->GetReceiverTypes()->first();
|
|
if (function_map->instance_type() != JS_FUNCTION_TYPE ||
|
|
!expr->target()->shared()->HasBuiltinFunctionId() ||
|
|
expr->target()->shared()->builtin_function_id() != kFunctionApply) {
|
|
return false;
|
|
}
|
|
|
|
if (info()->scope()->arguments() == NULL) return false;
|
|
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
if (args->length() != 2) return false;
|
|
|
|
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
|
|
if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
|
|
HValue* arg_two_value = environment()->Lookup(arg_two->var());
|
|
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
|
|
|
|
// Found pattern f.apply(receiver, arguments).
|
|
VisitForValue(prop->obj());
|
|
if (HasStackOverflow() || current_block() == NULL) return true;
|
|
HValue* function = Top();
|
|
AddCheckConstantFunction(expr->holder(), function, function_map, true);
|
|
Drop(1);
|
|
|
|
VisitForValue(args->at(0));
|
|
if (HasStackOverflow() || current_block() == NULL) return true;
|
|
HValue* receiver = Pop();
|
|
|
|
if (function_state()->outer() == NULL) {
|
|
HInstruction* elements = AddInstruction(
|
|
new(zone()) HArgumentsElements(false));
|
|
HInstruction* length =
|
|
AddInstruction(new(zone()) HArgumentsLength(elements));
|
|
HValue* wrapped_receiver =
|
|
AddInstruction(new(zone()) HWrapReceiver(receiver, function));
|
|
HInstruction* result =
|
|
new(zone()) HApplyArguments(function,
|
|
wrapped_receiver,
|
|
length,
|
|
elements);
|
|
result->set_position(expr->position());
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
} else {
|
|
// We are inside inlined function and we know exactly what is inside
|
|
// arguments object.
|
|
HValue* context = environment()->LookupContext();
|
|
|
|
HValue* wrapped_receiver =
|
|
AddInstruction(new(zone()) HWrapReceiver(receiver, function));
|
|
PushAndAdd(new(zone()) HPushArgument(wrapped_receiver));
|
|
|
|
HEnvironment* arguments_env = environment()->arguments_environment();
|
|
|
|
int parameter_count = arguments_env->parameter_count();
|
|
for (int i = 1; i < arguments_env->parameter_count(); i++) {
|
|
PushAndAdd(new(zone()) HPushArgument(arguments_env->Lookup(i)));
|
|
}
|
|
|
|
HInvokeFunction* call = new(zone()) HInvokeFunction(
|
|
context,
|
|
function,
|
|
parameter_count);
|
|
Drop(parameter_count);
|
|
call->set_position(expr->position());
|
|
ast_context()->ReturnInstruction(call, expr->id());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitCall(Call* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Expression* callee = expr->expression();
|
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
|
HInstruction* call = NULL;
|
|
|
|
Property* prop = callee->AsProperty();
|
|
if (prop != NULL) {
|
|
if (!prop->key()->IsPropertyName()) {
|
|
// Keyed function call.
|
|
CHECK_ALIVE(VisitArgument(prop->obj()));
|
|
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
// Push receiver and key like the non-optimized code generator expects it.
|
|
HValue* key = Pop();
|
|
HValue* receiver = Pop();
|
|
Push(key);
|
|
Push(receiver);
|
|
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
HValue* context = environment()->LookupContext();
|
|
call = new(zone()) HCallKeyed(context, key, argument_count);
|
|
call->set_position(expr->position());
|
|
Drop(argument_count + 1); // 1 is the key.
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
|
|
// Named function call.
|
|
expr->RecordTypeFeedback(oracle(), CALL_AS_METHOD);
|
|
|
|
if (TryCallApply(expr)) return;
|
|
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
|
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
|
|
|
SmallMapList* types = expr->GetReceiverTypes();
|
|
|
|
HValue* receiver =
|
|
environment()->ExpressionStackAt(expr->arguments()->length());
|
|
if (expr->IsMonomorphic()) {
|
|
Handle<Map> receiver_map = (types == NULL || types->is_empty())
|
|
? Handle<Map>::null()
|
|
: types->first();
|
|
if (TryInlineBuiltinMethodCall(expr,
|
|
receiver,
|
|
receiver_map,
|
|
expr->check_type())) {
|
|
if (FLAG_trace_inlining) {
|
|
PrintF("Inlining builtin ");
|
|
expr->target()->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (CallStubCompiler::HasCustomCallGenerator(expr->target()) ||
|
|
expr->check_type() != RECEIVER_MAP_CHECK) {
|
|
// When the target has a custom call IC generator, use the IC,
|
|
// because it is likely to generate better code. Also use the IC
|
|
// when a primitive receiver check is required.
|
|
HValue* context = environment()->LookupContext();
|
|
call = PreProcessCall(
|
|
new(zone()) HCallNamed(context, name, argument_count));
|
|
} else {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map, true);
|
|
|
|
if (TryInlineCall(expr)) return;
|
|
call = PreProcessCall(
|
|
new(zone()) HCallConstantFunction(expr->target(),
|
|
argument_count));
|
|
}
|
|
} else if (types != NULL && types->length() > 1) {
|
|
ASSERT(expr->check_type() == RECEIVER_MAP_CHECK);
|
|
HandlePolymorphicCallNamed(expr, receiver, types, name);
|
|
return;
|
|
|
|
} else {
|
|
HValue* context = environment()->LookupContext();
|
|
call = PreProcessCall(
|
|
new(zone()) HCallNamed(context, name, argument_count));
|
|
}
|
|
|
|
} else {
|
|
expr->RecordTypeFeedback(oracle(), CALL_AS_FUNCTION);
|
|
VariableProxy* proxy = expr->expression()->AsVariableProxy();
|
|
bool global_call = proxy != NULL && proxy->var()->IsUnallocated();
|
|
|
|
if (proxy != NULL && proxy->var()->is_possibly_eval()) {
|
|
return Bailout("possible direct call to eval");
|
|
}
|
|
|
|
if (global_call) {
|
|
Variable* var = proxy->var();
|
|
bool known_global_function = false;
|
|
// If there is a global property cell for the name at compile time and
|
|
// access check is not enabled we assume that the function will not change
|
|
// and generate optimized code for calling the function.
|
|
LookupResult lookup(isolate());
|
|
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false);
|
|
if (type == kUseCell &&
|
|
!info()->global_object()->IsAccessCheckNeeded()) {
|
|
Handle<GlobalObject> global(info()->global_object());
|
|
known_global_function = expr->ComputeGlobalTarget(global, &lookup);
|
|
}
|
|
if (known_global_function) {
|
|
// Push the global object instead of the global receiver because
|
|
// code generated by the full code generator expects it.
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
|
|
PushAndAdd(global_object);
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Pop();
|
|
AddInstruction(new(zone()) HCheckFunction(function, expr->target()));
|
|
|
|
// Replace the global object with the global receiver.
|
|
HGlobalReceiver* global_receiver =
|
|
new(zone()) HGlobalReceiver(global_object);
|
|
// Index of the receiver from the top of the expression stack.
|
|
const int receiver_index = argument_count - 1;
|
|
AddInstruction(global_receiver);
|
|
ASSERT(environment()->ExpressionStackAt(receiver_index)->
|
|
IsGlobalObject());
|
|
environment()->SetExpressionStackAt(receiver_index, global_receiver);
|
|
|
|
if (TryInlineBuiltinFunctionCall(expr, false)) { // Nothing to drop.
|
|
if (FLAG_trace_inlining) {
|
|
PrintF("Inlining builtin ");
|
|
expr->target()->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
return;
|
|
}
|
|
if (TryInlineCall(expr)) return;
|
|
|
|
if (expr->target().is_identical_to(info()->closure())) {
|
|
graph()->MarkRecursive();
|
|
}
|
|
|
|
call = PreProcessCall(new(zone()) HCallKnownGlobal(expr->target(),
|
|
argument_count));
|
|
} else {
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* receiver = new(zone()) HGlobalObject(context);
|
|
AddInstruction(receiver);
|
|
PushAndAdd(new(zone()) HPushArgument(receiver));
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
call = new(zone()) HCallGlobal(context, var->name(), argument_count);
|
|
Drop(argument_count);
|
|
}
|
|
|
|
} else if (expr->IsMonomorphic()) {
|
|
// The function is on the stack in the unoptimized code during
|
|
// evaluation of the arguments.
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Top();
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global = new(zone()) HGlobalObject(context);
|
|
AddInstruction(global);
|
|
HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global);
|
|
PushAndAdd(receiver);
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
AddInstruction(new(zone()) HCheckFunction(function, expr->target()));
|
|
|
|
if (TryInlineBuiltinFunctionCall(expr, true)) { // Drop the function.
|
|
if (FLAG_trace_inlining) {
|
|
PrintF("Inlining builtin ");
|
|
expr->target()->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (TryInlineCall(expr, true)) { // Drop function from environment.
|
|
return;
|
|
} else {
|
|
call = PreProcessCall(
|
|
new(zone()) HInvokeFunction(context,
|
|
function,
|
|
expr->target(),
|
|
argument_count));
|
|
Drop(1); // The function.
|
|
}
|
|
|
|
} else {
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Top();
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
|
|
AddInstruction(global_object);
|
|
HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global_object);
|
|
AddInstruction(receiver);
|
|
PushAndAdd(new(zone()) HPushArgument(receiver));
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
call = new(zone()) HCallFunction(context, function, argument_count);
|
|
Drop(argument_count + 1);
|
|
}
|
|
}
|
|
|
|
call->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
|
|
|
|
// Checks whether allocation using the given constructor can be inlined.
|
|
static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
|
|
return constructor->has_initial_map() &&
|
|
constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
|
|
constructor->initial_map()->instance_size() < HAllocateObject::kMaxSize;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitCallNew(CallNew* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
expr->RecordTypeFeedback(oracle());
|
|
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
|
|
HValue* context = environment()->LookupContext();
|
|
|
|
if (FLAG_inline_construct &&
|
|
expr->IsMonomorphic() &&
|
|
IsAllocationInlineable(expr->target())) {
|
|
// The constructor function is on the stack in the unoptimized code
|
|
// during evaluation of the arguments.
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Top();
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
Handle<JSFunction> constructor = expr->target();
|
|
HValue* check = AddInstruction(
|
|
new(zone()) HCheckFunction(function, constructor));
|
|
|
|
// Force completion of inobject slack tracking before generating
|
|
// allocation code to finalize instance size.
|
|
if (constructor->shared()->IsInobjectSlackTrackingInProgress()) {
|
|
constructor->shared()->CompleteInobjectSlackTracking();
|
|
}
|
|
|
|
// Replace the constructor function with a newly allocated receiver.
|
|
HInstruction* receiver = new(zone()) HAllocateObject(context, constructor);
|
|
// Index of the receiver from the top of the expression stack.
|
|
const int receiver_index = argument_count - 1;
|
|
AddInstruction(receiver);
|
|
ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
|
|
environment()->SetExpressionStackAt(receiver_index, receiver);
|
|
|
|
if (TryInlineConstruct(expr, receiver)) return;
|
|
|
|
// TODO(mstarzinger): For now we remove the previous HAllocateObject and
|
|
// add HPushArgument for the arguments in case inlining failed. What we
|
|
// actually should do is emit HInvokeFunction on the constructor instead
|
|
// of using HCallNew as a fallback.
|
|
receiver->DeleteAndReplaceWith(NULL);
|
|
check->DeleteAndReplaceWith(NULL);
|
|
environment()->SetExpressionStackAt(receiver_index, function);
|
|
HInstruction* call = PreProcessCall(
|
|
new(zone()) HCallNew(context, function, argument_count));
|
|
call->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
} else {
|
|
// The constructor function is both an operand to the instruction and an
|
|
// argument to the construct call.
|
|
CHECK_ALIVE(VisitArgument(expr->expression()));
|
|
HValue* constructor = HPushArgument::cast(Top())->argument();
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
HInstruction* call =
|
|
new(zone()) HCallNew(context, constructor, argument_count);
|
|
Drop(argument_count);
|
|
call->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
}
|
|
|
|
|
|
// Support for generating inlined runtime functions.
|
|
|
|
// Lookup table for generators for runtime calls that are generated inline.
|
|
// Elements of the table are member pointers to functions of HGraphBuilder.
|
|
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
|
|
&HGraphBuilder::Generate##Name,
|
|
|
|
const HGraphBuilder::InlineFunctionGenerator
|
|
HGraphBuilder::kInlineFunctionGenerators[] = {
|
|
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
|
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
|
};
|
|
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
|
|
|
|
|
|
void HGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (expr->is_jsruntime()) {
|
|
return Bailout("call to a JavaScript runtime function");
|
|
}
|
|
|
|
const Runtime::Function* function = expr->function();
|
|
ASSERT(function != NULL);
|
|
if (function->intrinsic_type == Runtime::INLINE) {
|
|
ASSERT(expr->name()->length() > 0);
|
|
ASSERT(expr->name()->Get(0) == '_');
|
|
// Call to an inline function.
|
|
int lookup_index = static_cast<int>(function->function_id) -
|
|
static_cast<int>(Runtime::kFirstInlineFunction);
|
|
ASSERT(lookup_index >= 0);
|
|
ASSERT(static_cast<size_t>(lookup_index) <
|
|
ARRAY_SIZE(kInlineFunctionGenerators));
|
|
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
|
|
|
|
// Call the inline code generator using the pointer-to-member.
|
|
(this->*generator)(expr);
|
|
} else {
|
|
ASSERT(function->intrinsic_type == Runtime::RUNTIME);
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
HValue* context = environment()->LookupContext();
|
|
Handle<String> name = expr->name();
|
|
int argument_count = expr->arguments()->length();
|
|
HCallRuntime* call =
|
|
new(zone()) HCallRuntime(context, name, function, argument_count);
|
|
Drop(argument_count);
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
switch (expr->op()) {
|
|
case Token::DELETE: return VisitDelete(expr);
|
|
case Token::VOID: return VisitVoid(expr);
|
|
case Token::TYPEOF: return VisitTypeof(expr);
|
|
case Token::ADD: return VisitAdd(expr);
|
|
case Token::SUB: return VisitSub(expr);
|
|
case Token::BIT_NOT: return VisitBitNot(expr);
|
|
case Token::NOT: return VisitNot(expr);
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void HGraphBuilder::VisitDelete(UnaryOperation* expr) {
|
|
Property* prop = expr->expression()->AsProperty();
|
|
VariableProxy* proxy = expr->expression()->AsVariableProxy();
|
|
if (prop != NULL) {
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
HValue* key = Pop();
|
|
HValue* obj = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HDeleteProperty* instr = new(zone()) HDeleteProperty(context, obj, key);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
} else if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->IsUnallocated()) {
|
|
Bailout("delete with global variable");
|
|
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
|
|
// Result of deleting non-global variables is false. 'this' is not
|
|
// really a variable, though we implement it as one. The
|
|
// subexpression does not have side effects.
|
|
HValue* value = var->is_this()
|
|
? graph()->GetConstantTrue()
|
|
: graph()->GetConstantFalse();
|
|
return ast_context()->ReturnValue(value);
|
|
} else {
|
|
Bailout("delete with non-global variable");
|
|
}
|
|
} else {
|
|
// Result of deleting non-property, non-variable reference is true.
|
|
// Evaluate the subexpression for side effects.
|
|
CHECK_ALIVE(VisitForEffect(expr->expression()));
|
|
return ast_context()->ReturnValue(graph()->GetConstantTrue());
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitVoid(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForEffect(expr->expression()));
|
|
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitTypeof(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForTypeOf(expr->expression()));
|
|
HValue* value = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* instr = new(zone()) HTypeof(context, value);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitAdd(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* value = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* instr =
|
|
new(zone()) HMul(context, value, graph_->GetConstant1());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitSub(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* value = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* instr =
|
|
new(zone()) HMul(context, value, graph_->GetConstantMinus1());
|
|
TypeInfo info = oracle()->UnaryType(expr);
|
|
if (info.IsUninitialized()) {
|
|
AddInstruction(new(zone()) HSoftDeoptimize);
|
|
current_block()->MarkAsDeoptimizing();
|
|
info = TypeInfo::Unknown();
|
|
}
|
|
Representation rep = ToRepresentation(info);
|
|
TraceRepresentation(expr->op(), info, instr, rep);
|
|
instr->AssumeRepresentation(rep);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitBitNot(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* value = Pop();
|
|
TypeInfo info = oracle()->UnaryType(expr);
|
|
if (info.IsUninitialized()) {
|
|
AddInstruction(new(zone()) HSoftDeoptimize);
|
|
current_block()->MarkAsDeoptimizing();
|
|
}
|
|
HInstruction* instr = new(zone()) HBitNot(value);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitNot(UnaryOperation* expr) {
|
|
if (ast_context()->IsTest()) {
|
|
TestContext* context = TestContext::cast(ast_context());
|
|
VisitForControl(expr->expression(),
|
|
context->if_false(),
|
|
context->if_true());
|
|
return;
|
|
}
|
|
|
|
if (ast_context()->IsEffect()) {
|
|
VisitForEffect(expr->expression());
|
|
return;
|
|
}
|
|
|
|
ASSERT(ast_context()->IsValue());
|
|
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
|
|
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(expr->expression(),
|
|
materialize_false,
|
|
materialize_true));
|
|
|
|
if (materialize_false->HasPredecessor()) {
|
|
materialize_false->SetJoinId(expr->MaterializeFalseId());
|
|
set_current_block(materialize_false);
|
|
Push(graph()->GetConstantFalse());
|
|
} else {
|
|
materialize_false = NULL;
|
|
}
|
|
|
|
if (materialize_true->HasPredecessor()) {
|
|
materialize_true->SetJoinId(expr->MaterializeTrueId());
|
|
set_current_block(materialize_true);
|
|
Push(graph()->GetConstantTrue());
|
|
} else {
|
|
materialize_true = NULL;
|
|
}
|
|
|
|
HBasicBlock* join =
|
|
CreateJoin(materialize_false, materialize_true, expr->id());
|
|
set_current_block(join);
|
|
if (join != NULL) return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildIncrement(bool returns_original_input,
|
|
CountOperation* expr) {
|
|
// The input to the count operation is on top of the expression stack.
|
|
TypeInfo info = oracle()->IncrementType(expr);
|
|
Representation rep = ToRepresentation(info);
|
|
if (rep.IsTagged()) {
|
|
rep = Representation::Integer32();
|
|
}
|
|
|
|
if (returns_original_input) {
|
|
// We need an explicit HValue representing ToNumber(input). The
|
|
// actual HChange instruction we need is (sometimes) added in a later
|
|
// phase, so it is not available now to be used as an input to HAdd and
|
|
// as the return value.
|
|
HInstruction* number_input = new(zone()) HForceRepresentation(Pop(), rep);
|
|
AddInstruction(number_input);
|
|
Push(number_input);
|
|
}
|
|
|
|
// The addition has no side effects, so we do not need
|
|
// to simulate the expression stack after this instruction.
|
|
// Any later failures deopt to the load of the input or earlier.
|
|
HConstant* delta = (expr->op() == Token::INC)
|
|
? graph_->GetConstant1()
|
|
: graph_->GetConstantMinus1();
|
|
HValue* context = environment()->LookupContext();
|
|
HInstruction* instr = new(zone()) HAdd(context, Top(), delta);
|
|
TraceRepresentation(expr->op(), info, instr, rep);
|
|
instr->AssumeRepresentation(rep);
|
|
AddInstruction(instr);
|
|
return instr;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitCountOperation(CountOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Expression* target = expr->expression();
|
|
VariableProxy* proxy = target->AsVariableProxy();
|
|
Property* prop = target->AsProperty();
|
|
if (proxy == NULL && prop == NULL) {
|
|
return Bailout("invalid lhs in count operation");
|
|
}
|
|
|
|
// Match the full code generator stack by simulating an extra stack
|
|
// element for postfix operations in a non-effect context. The return
|
|
// value is ToNumber(input).
|
|
bool returns_original_input =
|
|
expr->is_postfix() && !ast_context()->IsEffect();
|
|
HValue* input = NULL; // ToNumber(original_input).
|
|
HValue* after = NULL; // The result after incrementing or decrementing.
|
|
|
|
if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->mode() == CONST) {
|
|
return Bailout("unsupported count operation with const");
|
|
}
|
|
// Argument of the count operation is a variable, not a property.
|
|
ASSERT(prop == NULL);
|
|
CHECK_ALIVE(VisitForValue(target));
|
|
|
|
after = BuildIncrement(returns_original_input, expr);
|
|
input = returns_original_input ? Top() : Pop();
|
|
Push(after);
|
|
|
|
switch (var->location()) {
|
|
case Variable::UNALLOCATED:
|
|
HandleGlobalVariableAssignment(var,
|
|
after,
|
|
expr->position(),
|
|
expr->AssignmentId());
|
|
break;
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL:
|
|
Bind(var, after);
|
|
break;
|
|
|
|
case Variable::CONTEXT: {
|
|
// Bail out if we try to mutate a parameter value in a function
|
|
// using the arguments object. We do not (yet) correctly handle the
|
|
// arguments property of the function.
|
|
if (info()->scope()->arguments() != NULL) {
|
|
// Parameters will rewrite to context slots. We have no direct
|
|
// way to detect that the variable is a parameter so we use a
|
|
// linear search of the parameter list.
|
|
int count = info()->scope()->num_parameters();
|
|
for (int i = 0; i < count; ++i) {
|
|
if (var == info()->scope()->parameter(i)) {
|
|
return Bailout("assignment to parameter in arguments object");
|
|
}
|
|
}
|
|
}
|
|
|
|
HValue* context = BuildContextChainWalk(var);
|
|
HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
|
|
? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
|
|
HStoreContextSlot* instr =
|
|
new(zone()) HStoreContextSlot(context, var->index(), mode, after);
|
|
AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) {
|
|
AddSimulate(expr->AssignmentId());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout("lookup variable in count operation");
|
|
}
|
|
|
|
} else {
|
|
// Argument of the count operation is a property.
|
|
ASSERT(prop != NULL);
|
|
prop->RecordTypeFeedback(oracle(), zone());
|
|
|
|
if (prop->key()->IsPropertyName()) {
|
|
// Named property.
|
|
if (returns_original_input) Push(graph_->GetConstantUndefined());
|
|
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
HValue* object = Top();
|
|
|
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
|
Handle<Map> map;
|
|
HInstruction* load;
|
|
bool monomorphic = prop->IsMonomorphic();
|
|
if (monomorphic) {
|
|
map = prop->GetReceiverTypes()->first();
|
|
if (map->is_dictionary_map()) monomorphic = false;
|
|
}
|
|
if (monomorphic) {
|
|
Handle<JSFunction> getter;
|
|
Handle<JSObject> holder;
|
|
if (LookupGetter(map, name, &getter, &holder)) {
|
|
load = BuildCallGetter(object, map, getter, holder);
|
|
} else {
|
|
load = BuildLoadNamedMonomorphic(object, name, prop, map);
|
|
}
|
|
} else {
|
|
load = BuildLoadNamedGeneric(object, name, prop);
|
|
}
|
|
PushAndAdd(load);
|
|
if (load->HasObservableSideEffects()) AddSimulate(prop->LoadId());
|
|
|
|
after = BuildIncrement(returns_original_input, expr);
|
|
input = Pop();
|
|
|
|
HInstruction* store;
|
|
if (!monomorphic) {
|
|
// If we don't know the monomorphic type, do a generic store.
|
|
CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, after));
|
|
} else {
|
|
Handle<JSFunction> setter;
|
|
Handle<JSObject> holder;
|
|
if (LookupSetter(map, name, &setter, &holder)) {
|
|
store = BuildCallSetter(object, after, map, setter, holder);
|
|
} else {
|
|
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object,
|
|
name,
|
|
after,
|
|
map));
|
|
}
|
|
}
|
|
AddInstruction(store);
|
|
|
|
// Overwrite the receiver in the bailout environment with the result
|
|
// of the operation, and the placeholder with the original value if
|
|
// necessary.
|
|
environment()->SetExpressionStackAt(0, after);
|
|
if (returns_original_input) environment()->SetExpressionStackAt(1, input);
|
|
if (store->HasObservableSideEffects()) AddSimulate(expr->AssignmentId());
|
|
|
|
} else {
|
|
// Keyed property.
|
|
if (returns_original_input) Push(graph_->GetConstantUndefined());
|
|
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
HValue* obj = environment()->ExpressionStackAt(1);
|
|
HValue* key = environment()->ExpressionStackAt(0);
|
|
|
|
bool has_side_effects = false;
|
|
HValue* load = HandleKeyedElementAccess(
|
|
obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition,
|
|
false, // is_store
|
|
&has_side_effects);
|
|
Push(load);
|
|
if (has_side_effects) AddSimulate(prop->LoadId());
|
|
|
|
after = BuildIncrement(returns_original_input, expr);
|
|
input = Pop();
|
|
|
|
expr->RecordTypeFeedback(oracle(), zone());
|
|
HandleKeyedElementAccess(obj, key, after, expr, expr->AssignmentId(),
|
|
RelocInfo::kNoPosition,
|
|
true, // is_store
|
|
&has_side_effects);
|
|
|
|
// Drop the key from the bailout environment. Overwrite the receiver
|
|
// with the result of the operation, and the placeholder with the
|
|
// original value if necessary.
|
|
Drop(1);
|
|
environment()->SetExpressionStackAt(0, after);
|
|
if (returns_original_input) environment()->SetExpressionStackAt(1, input);
|
|
ASSERT(has_side_effects); // Stores always have side effects.
|
|
AddSimulate(expr->AssignmentId());
|
|
}
|
|
}
|
|
|
|
Drop(returns_original_input ? 2 : 1);
|
|
return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
|
|
}
|
|
|
|
|
|
HStringCharCodeAt* HGraphBuilder::BuildStringCharCodeAt(HValue* context,
|
|
HValue* string,
|
|
HValue* index) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(string));
|
|
AddInstruction(HCheckInstanceType::NewIsString(string, zone()));
|
|
HStringLength* length = new(zone()) HStringLength(string);
|
|
AddInstruction(length);
|
|
HInstruction* checked_index =
|
|
AddInstruction(new(zone()) HBoundsCheck(index, length));
|
|
return new(zone()) HStringCharCodeAt(context, string, checked_index);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr,
|
|
HValue* left,
|
|
HValue* right) {
|
|
HValue* context = environment()->LookupContext();
|
|
TypeInfo info = oracle()->BinaryType(expr);
|
|
if (info.IsUninitialized()) {
|
|
AddInstruction(new(zone()) HSoftDeoptimize);
|
|
current_block()->MarkAsDeoptimizing();
|
|
info = TypeInfo::Unknown();
|
|
}
|
|
HInstruction* instr = NULL;
|
|
switch (expr->op()) {
|
|
case Token::ADD:
|
|
if (info.IsString()) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(left));
|
|
AddInstruction(HCheckInstanceType::NewIsString(left, zone()));
|
|
AddInstruction(new(zone()) HCheckNonSmi(right));
|
|
AddInstruction(HCheckInstanceType::NewIsString(right, zone()));
|
|
instr = new(zone()) HStringAdd(context, left, right);
|
|
} else {
|
|
instr = HAdd::NewHAdd(zone(), context, left, right);
|
|
}
|
|
break;
|
|
case Token::SUB:
|
|
instr = HSub::NewHSub(zone(), context, left, right);
|
|
break;
|
|
case Token::MUL:
|
|
instr = HMul::NewHMul(zone(), context, left, right);
|
|
break;
|
|
case Token::MOD:
|
|
instr = HMod::NewHMod(zone(), context, left, right);
|
|
break;
|
|
case Token::DIV:
|
|
instr = HDiv::NewHDiv(zone(), context, left, right);
|
|
break;
|
|
case Token::BIT_XOR:
|
|
case Token::BIT_AND:
|
|
case Token::BIT_OR:
|
|
instr = HBitwise::NewHBitwise(zone(), expr->op(), context, left, right);
|
|
break;
|
|
case Token::SAR:
|
|
instr = HSar::NewHSar(zone(), context, left, right);
|
|
break;
|
|
case Token::SHR:
|
|
instr = HShr::NewHShr(zone(), context, left, right);
|
|
if (FLAG_opt_safe_uint32_operations && instr->IsShr()) {
|
|
bool can_be_shift_by_zero = true;
|
|
if (right->IsConstant()) {
|
|
HConstant* right_const = HConstant::cast(right);
|
|
if (right_const->HasInteger32Value() &&
|
|
(right_const->Integer32Value() & 0x1f) != 0) {
|
|
can_be_shift_by_zero = false;
|
|
}
|
|
}
|
|
|
|
if (can_be_shift_by_zero) graph()->RecordUint32Instruction(instr);
|
|
}
|
|
break;
|
|
case Token::SHL:
|
|
instr = HShl::NewHShl(zone(), context, left, right);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// If we hit an uninitialized binary op stub we will get type info
|
|
// for a smi operation. If one of the operands is a constant string
|
|
// do not generate code assuming it is a smi operation.
|
|
if (info.IsSmi() &&
|
|
((left->IsConstant() && HConstant::cast(left)->handle()->IsString()) ||
|
|
(right->IsConstant() && HConstant::cast(right)->handle()->IsString()))) {
|
|
return instr;
|
|
}
|
|
Representation rep = ToRepresentation(info);
|
|
// We only generate either int32 or generic tagged bitwise operations.
|
|
if (instr->IsBitwiseBinaryOperation()) {
|
|
HBitwiseBinaryOperation::cast(instr)->
|
|
InitializeObservedInputRepresentation(rep);
|
|
if (rep.IsDouble()) rep = Representation::Integer32();
|
|
}
|
|
TraceRepresentation(expr->op(), info, instr, rep);
|
|
instr->AssumeRepresentation(rep);
|
|
return instr;
|
|
}
|
|
|
|
|
|
// Check for the form (%_ClassOf(foo) === 'BarClass').
|
|
static bool IsClassOfTest(CompareOperation* expr) {
|
|
if (expr->op() != Token::EQ_STRICT) return false;
|
|
CallRuntime* call = expr->left()->AsCallRuntime();
|
|
if (call == NULL) return false;
|
|
Literal* literal = expr->right()->AsLiteral();
|
|
if (literal == NULL) return false;
|
|
if (!literal->handle()->IsString()) return false;
|
|
if (!call->name()->IsEqualTo(CStrVector("_ClassOf"))) return false;
|
|
ASSERT(call->arguments()->length() == 1);
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
switch (expr->op()) {
|
|
case Token::COMMA:
|
|
return VisitComma(expr);
|
|
case Token::OR:
|
|
case Token::AND:
|
|
return VisitLogicalExpression(expr);
|
|
default:
|
|
return VisitArithmeticExpression(expr);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitComma(BinaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForEffect(expr->left()));
|
|
// Visit the right subexpression in the same AST context as the entire
|
|
// expression.
|
|
Visit(expr->right());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
|
|
bool is_logical_and = expr->op() == Token::AND;
|
|
if (ast_context()->IsTest()) {
|
|
TestContext* context = TestContext::cast(ast_context());
|
|
// Translate left subexpression.
|
|
HBasicBlock* eval_right = graph()->CreateBasicBlock();
|
|
if (is_logical_and) {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(),
|
|
eval_right,
|
|
context->if_false()));
|
|
} else {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(),
|
|
context->if_true(),
|
|
eval_right));
|
|
}
|
|
|
|
// Translate right subexpression by visiting it in the same AST
|
|
// context as the entire expression.
|
|
if (eval_right->HasPredecessor()) {
|
|
eval_right->SetJoinId(expr->RightId());
|
|
set_current_block(eval_right);
|
|
Visit(expr->right());
|
|
}
|
|
|
|
} else if (ast_context()->IsValue()) {
|
|
CHECK_ALIVE(VisitForValue(expr->left()));
|
|
ASSERT(current_block() != NULL);
|
|
|
|
// We need an extra block to maintain edge-split form.
|
|
HBasicBlock* empty_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* eval_right = graph()->CreateBasicBlock();
|
|
TypeFeedbackId test_id = expr->left()->test_id();
|
|
ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id));
|
|
HBranch* test = is_logical_and
|
|
? new(zone()) HBranch(Top(), eval_right, empty_block, expected)
|
|
: new(zone()) HBranch(Top(), empty_block, eval_right, expected);
|
|
current_block()->Finish(test);
|
|
|
|
set_current_block(eval_right);
|
|
Drop(1); // Value of the left subexpression.
|
|
CHECK_BAILOUT(VisitForValue(expr->right()));
|
|
|
|
HBasicBlock* join_block =
|
|
CreateJoin(empty_block, current_block(), expr->id());
|
|
set_current_block(join_block);
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
} else {
|
|
ASSERT(ast_context()->IsEffect());
|
|
// In an effect context, we don't need the value of the left subexpression,
|
|
// only its control flow and side effects. We need an extra block to
|
|
// maintain edge-split form.
|
|
HBasicBlock* empty_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* right_block = graph()->CreateBasicBlock();
|
|
if (is_logical_and) {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
|
|
} else {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
|
|
}
|
|
|
|
// TODO(kmillikin): Find a way to fix this. It's ugly that there are
|
|
// actually two empty blocks (one here and one inserted by
|
|
// TestContext::BuildBranch, and that they both have an HSimulate though the
|
|
// second one is not a merge node, and that we really have no good AST ID to
|
|
// put on that first HSimulate.
|
|
|
|
if (empty_block->HasPredecessor()) {
|
|
empty_block->SetJoinId(expr->id());
|
|
} else {
|
|
empty_block = NULL;
|
|
}
|
|
|
|
if (right_block->HasPredecessor()) {
|
|
right_block->SetJoinId(expr->RightId());
|
|
set_current_block(right_block);
|
|
CHECK_BAILOUT(VisitForEffect(expr->right()));
|
|
right_block = current_block();
|
|
} else {
|
|
right_block = NULL;
|
|
}
|
|
|
|
HBasicBlock* join_block =
|
|
CreateJoin(empty_block, right_block, expr->id());
|
|
set_current_block(join_block);
|
|
// We did not materialize any value in the predecessor environments,
|
|
// so there is no need to handle it here.
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr->left()));
|
|
CHECK_ALIVE(VisitForValue(expr->right()));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HInstruction* instr = BuildBinaryOperation(expr, left, right);
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::TraceRepresentation(Token::Value op,
|
|
TypeInfo info,
|
|
HValue* value,
|
|
Representation rep) {
|
|
if (!FLAG_trace_representation) return;
|
|
// TODO(svenpanne) Under which circumstances are we actually not flexible?
|
|
// At first glance, this looks a bit weird...
|
|
bool flexible = value->CheckFlag(HValue::kFlexibleRepresentation);
|
|
PrintF("Operation %s has type info %s, %schange representation assumption "
|
|
"for %s (ID %d) from %s to %s\n",
|
|
Token::Name(op),
|
|
info.ToString(),
|
|
flexible ? "" : " DO NOT ",
|
|
value->Mnemonic(),
|
|
graph_->GetMaximumValueID(),
|
|
value->representation().Mnemonic(),
|
|
rep.Mnemonic());
|
|
}
|
|
|
|
|
|
Representation HGraphBuilder::ToRepresentation(TypeInfo info) {
|
|
if (info.IsSmi()) return Representation::Integer32();
|
|
if (info.IsInteger32()) return Representation::Integer32();
|
|
if (info.IsDouble()) return Representation::Double();
|
|
if (info.IsNumber()) return Representation::Double();
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
|
|
HTypeof* typeof_expr,
|
|
Handle<String> check) {
|
|
// Note: The HTypeof itself is removed during canonicalization, if possible.
|
|
HValue* value = typeof_expr->value();
|
|
HTypeofIsAndBranch* instr = new(zone()) HTypeofIsAndBranch(value, check);
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnControl(instr, expr->id());
|
|
}
|
|
|
|
|
|
static bool MatchLiteralCompareNil(HValue* left,
|
|
Token::Value op,
|
|
HValue* right,
|
|
Handle<Object> nil,
|
|
HValue** expr) {
|
|
if (left->IsConstant() &&
|
|
HConstant::cast(left)->handle().is_identical_to(nil) &&
|
|
Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool MatchLiteralCompareTypeof(HValue* left,
|
|
Token::Value op,
|
|
HValue* right,
|
|
HTypeof** typeof_expr,
|
|
Handle<String>* check) {
|
|
if (left->IsTypeof() &&
|
|
Token::IsEqualityOp(op) &&
|
|
right->IsConstant() &&
|
|
HConstant::cast(right)->handle()->IsString()) {
|
|
*typeof_expr = HTypeof::cast(left);
|
|
*check = Handle<String>::cast(HConstant::cast(right)->handle());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool IsLiteralCompareTypeof(HValue* left,
|
|
Token::Value op,
|
|
HValue* right,
|
|
HTypeof** typeof_expr,
|
|
Handle<String>* check) {
|
|
return MatchLiteralCompareTypeof(left, op, right, typeof_expr, check) ||
|
|
MatchLiteralCompareTypeof(right, op, left, typeof_expr, check);
|
|
}
|
|
|
|
|
|
static bool IsLiteralCompareNil(HValue* left,
|
|
Token::Value op,
|
|
HValue* right,
|
|
Handle<Object> nil,
|
|
HValue** expr) {
|
|
return MatchLiteralCompareNil(left, op, right, nil, expr) ||
|
|
MatchLiteralCompareNil(right, op, left, nil, expr);
|
|
}
|
|
|
|
|
|
static bool IsLiteralCompareBool(HValue* left,
|
|
Token::Value op,
|
|
HValue* right) {
|
|
return op == Token::EQ_STRICT &&
|
|
((left->IsConstant() && HConstant::cast(left)->handle()->IsBoolean()) ||
|
|
(right->IsConstant() && HConstant::cast(right)->handle()->IsBoolean()));
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (IsClassOfTest(expr)) {
|
|
CallRuntime* call = expr->left()->AsCallRuntime();
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
Literal* literal = expr->right()->AsLiteral();
|
|
Handle<String> rhs = Handle<String>::cast(literal->handle());
|
|
HClassOfTestAndBranch* instr =
|
|
new(zone()) HClassOfTestAndBranch(value, rhs);
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnControl(instr, expr->id());
|
|
}
|
|
|
|
TypeInfo type_info = oracle()->CompareType(expr);
|
|
// Check if this expression was ever executed according to type feedback.
|
|
// Note that for the special typeof/null/undefined cases we get unknown here.
|
|
if (type_info.IsUninitialized()) {
|
|
AddInstruction(new(zone()) HSoftDeoptimize);
|
|
current_block()->MarkAsDeoptimizing();
|
|
type_info = TypeInfo::Unknown();
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->left()));
|
|
CHECK_ALIVE(VisitForValue(expr->right()));
|
|
|
|
HValue* context = environment()->LookupContext();
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Token::Value op = expr->op();
|
|
|
|
HTypeof* typeof_expr = NULL;
|
|
Handle<String> check;
|
|
if (IsLiteralCompareTypeof(left, op, right, &typeof_expr, &check)) {
|
|
return HandleLiteralCompareTypeof(expr, typeof_expr, check);
|
|
}
|
|
HValue* sub_expr = NULL;
|
|
Factory* f = graph()->isolate()->factory();
|
|
if (IsLiteralCompareNil(left, op, right, f->undefined_value(), &sub_expr)) {
|
|
return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
|
|
}
|
|
if (IsLiteralCompareNil(left, op, right, f->null_value(), &sub_expr)) {
|
|
return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
|
|
}
|
|
if (IsLiteralCompareBool(left, op, right)) {
|
|
HCompareObjectEqAndBranch* result =
|
|
new(zone()) HCompareObjectEqAndBranch(left, right);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnControl(result, expr->id());
|
|
}
|
|
|
|
if (op == Token::INSTANCEOF) {
|
|
// Check to see if the rhs of the instanceof is a global function not
|
|
// residing in new space. If it is we assume that the function will stay the
|
|
// same.
|
|
Handle<JSFunction> target = Handle<JSFunction>::null();
|
|
VariableProxy* proxy = expr->right()->AsVariableProxy();
|
|
bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
|
|
if (global_function &&
|
|
info()->has_global_object() &&
|
|
!info()->global_object()->IsAccessCheckNeeded()) {
|
|
Handle<String> name = proxy->name();
|
|
Handle<GlobalObject> global(info()->global_object());
|
|
LookupResult lookup(isolate());
|
|
global->Lookup(*name, &lookup);
|
|
if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
|
|
Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
|
|
// If the function is in new space we assume it's more likely to
|
|
// change and thus prefer the general IC code.
|
|
if (!isolate()->heap()->InNewSpace(*candidate)) {
|
|
target = candidate;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the target is not null we have found a known global function that is
|
|
// assumed to stay the same for this instanceof.
|
|
if (target.is_null()) {
|
|
HInstanceOf* result = new(zone()) HInstanceOf(context, left, right);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
} else {
|
|
AddInstruction(new(zone()) HCheckFunction(right, target));
|
|
HInstanceOfKnownGlobal* result =
|
|
new(zone()) HInstanceOfKnownGlobal(context, left, target);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
}
|
|
} else if (op == Token::IN) {
|
|
HIn* result = new(zone()) HIn(context, left, right);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
} else if (type_info.IsNonPrimitive()) {
|
|
switch (op) {
|
|
case Token::EQ:
|
|
case Token::EQ_STRICT: {
|
|
// Can we get away with map check and not instance type check?
|
|
Handle<Map> map = oracle()->GetCompareMap(expr);
|
|
if (!map.is_null()) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(left));
|
|
AddInstruction(HCheckMaps::NewWithTransitions(left, map, zone()));
|
|
AddInstruction(new(zone()) HCheckNonSmi(right));
|
|
AddInstruction(HCheckMaps::NewWithTransitions(right, map, zone()));
|
|
HCompareObjectEqAndBranch* result =
|
|
new(zone()) HCompareObjectEqAndBranch(left, right);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnControl(result, expr->id());
|
|
} else {
|
|
AddInstruction(new(zone()) HCheckNonSmi(left));
|
|
AddInstruction(HCheckInstanceType::NewIsSpecObject(left, zone()));
|
|
AddInstruction(new(zone()) HCheckNonSmi(right));
|
|
AddInstruction(HCheckInstanceType::NewIsSpecObject(right, zone()));
|
|
HCompareObjectEqAndBranch* result =
|
|
new(zone()) HCompareObjectEqAndBranch(left, right);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnControl(result, expr->id());
|
|
}
|
|
}
|
|
default:
|
|
return Bailout("Unsupported non-primitive compare");
|
|
}
|
|
} else if (type_info.IsString() && oracle()->IsSymbolCompare(expr) &&
|
|
(op == Token::EQ || op == Token::EQ_STRICT)) {
|
|
AddInstruction(new(zone()) HCheckNonSmi(left));
|
|
AddInstruction(HCheckInstanceType::NewIsSymbol(left, zone()));
|
|
AddInstruction(new(zone()) HCheckNonSmi(right));
|
|
AddInstruction(HCheckInstanceType::NewIsSymbol(right, zone()));
|
|
HCompareObjectEqAndBranch* result =
|
|
new(zone()) HCompareObjectEqAndBranch(left, right);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnControl(result, expr->id());
|
|
} else {
|
|
Representation r = ToRepresentation(type_info);
|
|
if (r.IsTagged()) {
|
|
HCompareGeneric* result =
|
|
new(zone()) HCompareGeneric(context, left, right, op);
|
|
result->set_position(expr->position());
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
} else {
|
|
HCompareIDAndBranch* result =
|
|
new(zone()) HCompareIDAndBranch(left, right, op);
|
|
result->set_position(expr->position());
|
|
result->SetInputRepresentation(r);
|
|
return ast_context()->ReturnControl(result, expr->id());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
|
|
HValue* value,
|
|
NilValue nil) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
EqualityKind kind =
|
|
expr->op() == Token::EQ_STRICT ? kStrictEquality : kNonStrictEquality;
|
|
HIsNilAndBranch* instr = new(zone()) HIsNilAndBranch(value, kind, nil);
|
|
instr->set_position(expr->position());
|
|
return ast_context()->ReturnControl(instr, expr->id());
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildThisFunction() {
|
|
// If we share optimized code between different closures, the
|
|
// this-function is not a constant, except inside an inlined body.
|
|
if (function_state()->outer() != NULL) {
|
|
return new(zone()) HConstant(
|
|
function_state()->compilation_info()->closure(),
|
|
Representation::Tagged());
|
|
} else {
|
|
return new(zone()) HThisFunction;
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitThisFunction(ThisFunction* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
HInstruction* instr = BuildThisFunction();
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitDeclarations(ZoneList<Declaration*>* declarations) {
|
|
ASSERT(globals_.is_empty());
|
|
AstVisitor::VisitDeclarations(declarations);
|
|
if (!globals_.is_empty()) {
|
|
Handle<FixedArray> array =
|
|
isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
|
|
for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
|
|
int flags = DeclareGlobalsEvalFlag::encode(info()->is_eval()) |
|
|
DeclareGlobalsNativeFlag::encode(info()->is_native()) |
|
|
DeclareGlobalsLanguageMode::encode(info()->language_mode());
|
|
HInstruction* result = new(zone()) HDeclareGlobals(
|
|
environment()->LookupContext(), array, flags);
|
|
AddInstruction(result);
|
|
globals_.Clear();
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitVariableDeclaration(VariableDeclaration* declaration) {
|
|
VariableProxy* proxy = declaration->proxy();
|
|
VariableMode mode = declaration->mode();
|
|
Variable* variable = proxy->var();
|
|
bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
|
|
switch (variable->location()) {
|
|
case Variable::UNALLOCATED:
|
|
globals_.Add(variable->name(), zone());
|
|
globals_.Add(variable->binding_needs_init()
|
|
? isolate()->factory()->the_hole_value()
|
|
: isolate()->factory()->undefined_value(), zone());
|
|
return;
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL:
|
|
if (hole_init) {
|
|
HValue* value = graph()->GetConstantHole();
|
|
environment()->Bind(variable, value);
|
|
}
|
|
break;
|
|
case Variable::CONTEXT:
|
|
if (hole_init) {
|
|
HValue* value = graph()->GetConstantHole();
|
|
HValue* context = environment()->LookupContext();
|
|
HStoreContextSlot* store = new(zone()) HStoreContextSlot(
|
|
context, variable->index(), HStoreContextSlot::kNoCheck, value);
|
|
AddInstruction(store);
|
|
if (store->HasObservableSideEffects()) AddSimulate(proxy->id());
|
|
}
|
|
break;
|
|
case Variable::LOOKUP:
|
|
return Bailout("unsupported lookup slot in declaration");
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitFunctionDeclaration(FunctionDeclaration* declaration) {
|
|
VariableProxy* proxy = declaration->proxy();
|
|
Variable* variable = proxy->var();
|
|
switch (variable->location()) {
|
|
case Variable::UNALLOCATED: {
|
|
globals_.Add(variable->name(), zone());
|
|
Handle<SharedFunctionInfo> function =
|
|
Compiler::BuildFunctionInfo(declaration->fun(), info()->script());
|
|
// Check for stack-overflow exception.
|
|
if (function.is_null()) return SetStackOverflow();
|
|
globals_.Add(function, zone());
|
|
return;
|
|
}
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL: {
|
|
CHECK_ALIVE(VisitForValue(declaration->fun()));
|
|
HValue* value = Pop();
|
|
environment()->Bind(variable, value);
|
|
break;
|
|
}
|
|
case Variable::CONTEXT: {
|
|
CHECK_ALIVE(VisitForValue(declaration->fun()));
|
|
HValue* value = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HStoreContextSlot* store = new(zone()) HStoreContextSlot(
|
|
context, variable->index(), HStoreContextSlot::kNoCheck, value);
|
|
AddInstruction(store);
|
|
if (store->HasObservableSideEffects()) AddSimulate(proxy->id());
|
|
break;
|
|
}
|
|
case Variable::LOOKUP:
|
|
return Bailout("unsupported lookup slot in declaration");
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitModuleDeclaration(ModuleDeclaration* declaration) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitImportDeclaration(ImportDeclaration* declaration) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitExportDeclaration(ExportDeclaration* declaration) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitModulePath(ModulePath* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
// Generators for inline runtime functions.
|
|
// Support for types.
|
|
void HGraphBuilder::GenerateIsSmi(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HIsSmiAndBranch* result = new(zone()) HIsSmiAndBranch(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
new(zone()) HHasInstanceTypeAndBranch(value,
|
|
FIRST_SPEC_OBJECT_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsFunction(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
new(zone()) HHasInstanceTypeAndBranch(value, JS_FUNCTION_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasCachedArrayIndexAndBranch* result =
|
|
new(zone()) HHasCachedArrayIndexAndBranch(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsArray(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
new(zone()) HHasInstanceTypeAndBranch(value, JS_ARRAY_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
new(zone()) HHasInstanceTypeAndBranch(value, JS_REGEXP_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsObject(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HIsObjectAndBranch* result = new(zone()) HIsObjectAndBranch(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
|
|
return Bailout("inlined runtime function: IsNonNegativeSmi");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HIsUndetectableAndBranch* result =
|
|
new(zone()) HIsUndetectableAndBranch(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
|
|
CallRuntime* call) {
|
|
return Bailout(
|
|
"inlined runtime function: IsStringWrapperSafeForDefaultValueOf");
|
|
}
|
|
|
|
|
|
// Support for construct call checks.
|
|
void HGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 0);
|
|
if (function_state()->outer() != NULL) {
|
|
// We are generating graph for inlined function.
|
|
HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
|
|
? graph()->GetConstantTrue()
|
|
: graph()->GetConstantFalse();
|
|
return ast_context()->ReturnValue(value);
|
|
} else {
|
|
return ast_context()->ReturnControl(new(zone()) HIsConstructCallAndBranch,
|
|
call->id());
|
|
}
|
|
}
|
|
|
|
|
|
// Support for arguments.length and arguments[?].
|
|
void HGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
|
|
// Our implementation of arguments (based on this stack frame or an
|
|
// adapter below it) does not work for inlined functions. This runtime
|
|
// function is blacklisted by AstNode::IsInlineable.
|
|
ASSERT(function_state()->outer() == NULL);
|
|
ASSERT(call->arguments()->length() == 0);
|
|
HInstruction* elements = AddInstruction(
|
|
new(zone()) HArgumentsElements(false));
|
|
HArgumentsLength* result = new(zone()) HArgumentsLength(elements);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateArguments(CallRuntime* call) {
|
|
// Our implementation of arguments (based on this stack frame or an
|
|
// adapter below it) does not work for inlined functions. This runtime
|
|
// function is blacklisted by AstNode::IsInlineable.
|
|
ASSERT(function_state()->outer() == NULL);
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* index = Pop();
|
|
HInstruction* elements = AddInstruction(
|
|
new(zone()) HArgumentsElements(false));
|
|
HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements));
|
|
HInstruction* checked_index =
|
|
AddInstruction(new(zone()) HBoundsCheck(index, length));
|
|
HAccessArgumentsAt* result =
|
|
new(zone()) HAccessArgumentsAt(elements, length, checked_index);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Support for accessing the class and value fields of an object.
|
|
void HGraphBuilder::GenerateClassOf(CallRuntime* call) {
|
|
// The special form detected by IsClassOfTest is detected before we get here
|
|
// and does not cause a bailout.
|
|
return Bailout("inlined runtime function: ClassOf");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateValueOf(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HValueOf* result = new(zone()) HValueOf(value);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateDateField(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
|
|
Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->handle()));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* date = Pop();
|
|
HDateField* result = new(zone()) HDateField(date, index);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* value = Pop();
|
|
HValue* object = Pop();
|
|
// Check if object is a not a smi.
|
|
HIsSmiAndBranch* smicheck = new(zone()) HIsSmiAndBranch(object);
|
|
HBasicBlock* if_smi = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_heap_object = graph()->CreateBasicBlock();
|
|
HBasicBlock* join = graph()->CreateBasicBlock();
|
|
smicheck->SetSuccessorAt(0, if_smi);
|
|
smicheck->SetSuccessorAt(1, if_heap_object);
|
|
current_block()->Finish(smicheck);
|
|
if_smi->Goto(join);
|
|
|
|
// Check if object is a JSValue.
|
|
set_current_block(if_heap_object);
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
new(zone()) HHasInstanceTypeAndBranch(object, JS_VALUE_TYPE);
|
|
HBasicBlock* if_js_value = graph()->CreateBasicBlock();
|
|
HBasicBlock* not_js_value = graph()->CreateBasicBlock();
|
|
typecheck->SetSuccessorAt(0, if_js_value);
|
|
typecheck->SetSuccessorAt(1, not_js_value);
|
|
current_block()->Finish(typecheck);
|
|
not_js_value->Goto(join);
|
|
|
|
// Create in-object property store to kValueOffset.
|
|
set_current_block(if_js_value);
|
|
Handle<String> name = isolate()->factory()->undefined_symbol();
|
|
AddInstruction(new(zone()) HStoreNamedField(object,
|
|
name,
|
|
value,
|
|
true, // in-object store.
|
|
JSValue::kValueOffset));
|
|
if_js_value->Goto(join);
|
|
join->SetJoinId(call->id());
|
|
set_current_block(join);
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
|
|
// Fast support for charCodeAt(n).
|
|
void HGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HStringCharCodeAt* result = BuildStringCharCodeAt(context, string, index);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for string.charAt(n) and string[n].
|
|
void HGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* char_code = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HStringCharFromCode* result =
|
|
new(zone()) HStringCharFromCode(context, char_code);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for string.charAt(n) and string[n].
|
|
void HGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
HStringCharCodeAt* char_code = BuildStringCharCodeAt(context, string, index);
|
|
AddInstruction(char_code);
|
|
HStringCharFromCode* result =
|
|
new(zone()) HStringCharFromCode(context, char_code);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for object equality testing.
|
|
void HGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HCompareObjectEqAndBranch* result =
|
|
new(zone()) HCompareObjectEqAndBranch(left, right);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateLog(CallRuntime* call) {
|
|
// %_Log is ignored in optimized code.
|
|
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
|
|
}
|
|
|
|
|
|
// Fast support for Math.random().
|
|
void HGraphBuilder::GenerateRandomHeapNumber(CallRuntime* call) {
|
|
HValue* context = environment()->LookupContext();
|
|
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
|
|
AddInstruction(global_object);
|
|
HRandom* result = new(zone()) HRandom(global_object);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for StringAdd.
|
|
void HGraphBuilder::GenerateStringAdd(CallRuntime* call) {
|
|
ASSERT_EQ(2, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringAdd, 2);
|
|
Drop(2);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for SubString.
|
|
void HGraphBuilder::GenerateSubString(CallRuntime* call) {
|
|
ASSERT_EQ(3, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result = new(zone()) HCallStub(context, CodeStub::SubString, 3);
|
|
Drop(3);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for StringCompare.
|
|
void HGraphBuilder::GenerateStringCompare(CallRuntime* call) {
|
|
ASSERT_EQ(2, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::StringCompare, 2);
|
|
Drop(2);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Support for direct calls from JavaScript to native RegExp code.
|
|
void HGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
|
|
ASSERT_EQ(4, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpExec, 4);
|
|
Drop(4);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Construct a RegExp exec result with two in-object properties.
|
|
void HGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
|
|
ASSERT_EQ(3, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::RegExpConstructResult, 3);
|
|
Drop(3);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Support for fast native caches.
|
|
void HGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
|
|
return Bailout("inlined runtime function: GetFromCache");
|
|
}
|
|
|
|
|
|
// Fast support for number to string.
|
|
void HGraphBuilder::GenerateNumberToString(CallRuntime* call) {
|
|
ASSERT_EQ(1, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::NumberToString, 1);
|
|
Drop(1);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast call for custom callbacks.
|
|
void HGraphBuilder::GenerateCallFunction(CallRuntime* call) {
|
|
// 1 ~ The function to call is not itself an argument to the call.
|
|
int arg_count = call->arguments()->length() - 1;
|
|
ASSERT(arg_count >= 1); // There's always at least a receiver.
|
|
|
|
for (int i = 0; i < arg_count; ++i) {
|
|
CHECK_ALIVE(VisitArgument(call->arguments()->at(i)));
|
|
}
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->last()));
|
|
|
|
HValue* function = Pop();
|
|
HValue* context = environment()->LookupContext();
|
|
|
|
// Branch for function proxies, or other non-functions.
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
new(zone()) HHasInstanceTypeAndBranch(function, JS_FUNCTION_TYPE);
|
|
HBasicBlock* if_jsfunction = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_nonfunction = graph()->CreateBasicBlock();
|
|
HBasicBlock* join = graph()->CreateBasicBlock();
|
|
typecheck->SetSuccessorAt(0, if_jsfunction);
|
|
typecheck->SetSuccessorAt(1, if_nonfunction);
|
|
current_block()->Finish(typecheck);
|
|
|
|
set_current_block(if_jsfunction);
|
|
HInstruction* invoke_result = AddInstruction(
|
|
new(zone()) HInvokeFunction(context, function, arg_count));
|
|
Drop(arg_count);
|
|
Push(invoke_result);
|
|
if_jsfunction->Goto(join);
|
|
|
|
set_current_block(if_nonfunction);
|
|
HInstruction* call_result = AddInstruction(
|
|
new(zone()) HCallFunction(context, function, arg_count));
|
|
Drop(arg_count);
|
|
Push(call_result);
|
|
if_nonfunction->Goto(join);
|
|
|
|
set_current_block(join);
|
|
join->SetJoinId(call->id());
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
// Fast call to math functions.
|
|
void HGraphBuilder::GenerateMathPow(CallRuntime* call) {
|
|
ASSERT_EQ(2, call->arguments()->length());
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HPower* result = new(zone()) HPower(left, right);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateMathSin(CallRuntime* call) {
|
|
ASSERT_EQ(1, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
|
|
result->set_transcendental_type(TranscendentalCache::SIN);
|
|
Drop(1);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateMathCos(CallRuntime* call) {
|
|
ASSERT_EQ(1, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
|
|
result->set_transcendental_type(TranscendentalCache::COS);
|
|
Drop(1);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateMathTan(CallRuntime* call) {
|
|
ASSERT_EQ(1, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
|
|
result->set_transcendental_type(TranscendentalCache::TAN);
|
|
Drop(1);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateMathLog(CallRuntime* call) {
|
|
ASSERT_EQ(1, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HValue* context = environment()->LookupContext();
|
|
HCallStub* result =
|
|
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
|
|
result->set_transcendental_type(TranscendentalCache::LOG);
|
|
Drop(1);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
|
|
return Bailout("inlined runtime function: MathSqrt");
|
|
}
|
|
|
|
|
|
// Check whether two RegExps are equivalent
|
|
void HGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) {
|
|
return Bailout("inlined runtime function: IsRegExpEquivalent");
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HGetCachedArrayIndex* result = new(zone()) HGetCachedArrayIndex(value);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
|
|
return Bailout("inlined runtime function: FastAsciiArrayJoin");
|
|
}
|
|
|
|
|
|
#undef CHECK_BAILOUT
|
|
#undef CHECK_ALIVE
|
|
|
|
|
|
HEnvironment::HEnvironment(HEnvironment* outer,
|
|
Scope* scope,
|
|
Handle<JSFunction> closure,
|
|
Zone* zone)
|
|
: closure_(closure),
|
|
values_(0, zone),
|
|
assigned_variables_(4, zone),
|
|
frame_type_(JS_FUNCTION),
|
|
parameter_count_(0),
|
|
specials_count_(1),
|
|
local_count_(0),
|
|
outer_(outer),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(BailoutId::None()),
|
|
zone_(zone) {
|
|
Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
|
|
}
|
|
|
|
|
|
HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
|
|
: values_(0, zone),
|
|
assigned_variables_(0, zone),
|
|
frame_type_(JS_FUNCTION),
|
|
parameter_count_(0),
|
|
specials_count_(1),
|
|
local_count_(0),
|
|
outer_(NULL),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(other->ast_id()),
|
|
zone_(zone) {
|
|
Initialize(other);
|
|
}
|
|
|
|
|
|
HEnvironment::HEnvironment(HEnvironment* outer,
|
|
Handle<JSFunction> closure,
|
|
FrameType frame_type,
|
|
int arguments,
|
|
Zone* zone)
|
|
: closure_(closure),
|
|
values_(arguments, zone),
|
|
assigned_variables_(0, zone),
|
|
frame_type_(frame_type),
|
|
parameter_count_(arguments),
|
|
local_count_(0),
|
|
outer_(outer),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(BailoutId::None()),
|
|
zone_(zone) {
|
|
}
|
|
|
|
|
|
void HEnvironment::Initialize(int parameter_count,
|
|
int local_count,
|
|
int stack_height) {
|
|
parameter_count_ = parameter_count;
|
|
local_count_ = local_count;
|
|
|
|
// Avoid reallocating the temporaries' backing store on the first Push.
|
|
int total = parameter_count + specials_count_ + local_count + stack_height;
|
|
values_.Initialize(total + 4, zone());
|
|
for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
|
|
}
|
|
|
|
|
|
void HEnvironment::Initialize(const HEnvironment* other) {
|
|
closure_ = other->closure();
|
|
values_.AddAll(other->values_, zone());
|
|
assigned_variables_.AddAll(other->assigned_variables_, zone());
|
|
frame_type_ = other->frame_type_;
|
|
parameter_count_ = other->parameter_count_;
|
|
local_count_ = other->local_count_;
|
|
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
|
|
entry_ = other->entry_;
|
|
pop_count_ = other->pop_count_;
|
|
push_count_ = other->push_count_;
|
|
ast_id_ = other->ast_id_;
|
|
}
|
|
|
|
|
|
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
|
|
ASSERT(!block->IsLoopHeader());
|
|
ASSERT(values_.length() == other->values_.length());
|
|
|
|
int length = values_.length();
|
|
for (int i = 0; i < length; ++i) {
|
|
HValue* value = values_[i];
|
|
if (value != NULL && value->IsPhi() && value->block() == block) {
|
|
// There is already a phi for the i'th value.
|
|
HPhi* phi = HPhi::cast(value);
|
|
// Assert index is correct and that we haven't missed an incoming edge.
|
|
ASSERT(phi->merged_index() == i);
|
|
ASSERT(phi->OperandCount() == block->predecessors()->length());
|
|
phi->AddInput(other->values_[i]);
|
|
} else if (values_[i] != other->values_[i]) {
|
|
// There is a fresh value on the incoming edge, a phi is needed.
|
|
ASSERT(values_[i] != NULL && other->values_[i] != NULL);
|
|
HPhi* phi = new(zone()) HPhi(i, zone());
|
|
HValue* old_value = values_[i];
|
|
for (int j = 0; j < block->predecessors()->length(); j++) {
|
|
phi->AddInput(old_value);
|
|
}
|
|
phi->AddInput(other->values_[i]);
|
|
this->values_[i] = phi;
|
|
block->AddPhi(phi);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HEnvironment::Bind(int index, HValue* value) {
|
|
ASSERT(value != NULL);
|
|
if (!assigned_variables_.Contains(index)) {
|
|
assigned_variables_.Add(index, zone());
|
|
}
|
|
values_[index] = value;
|
|
}
|
|
|
|
|
|
bool HEnvironment::HasExpressionAt(int index) const {
|
|
return index >= parameter_count_ + specials_count_ + local_count_;
|
|
}
|
|
|
|
|
|
bool HEnvironment::ExpressionStackIsEmpty() const {
|
|
ASSERT(length() >= first_expression_index());
|
|
return length() == first_expression_index();
|
|
}
|
|
|
|
|
|
void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
|
|
int count = index_from_top + 1;
|
|
int index = values_.length() - count;
|
|
ASSERT(HasExpressionAt(index));
|
|
// The push count must include at least the element in question or else
|
|
// the new value will not be included in this environment's history.
|
|
if (push_count_ < count) {
|
|
// This is the same effect as popping then re-pushing 'count' elements.
|
|
pop_count_ += (count - push_count_);
|
|
push_count_ = count;
|
|
}
|
|
values_[index] = value;
|
|
}
|
|
|
|
|
|
void HEnvironment::Drop(int count) {
|
|
for (int i = 0; i < count; ++i) {
|
|
Pop();
|
|
}
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::Copy() const {
|
|
return new(zone()) HEnvironment(this, zone());
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CopyWithoutHistory() const {
|
|
HEnvironment* result = Copy();
|
|
result->ClearHistory();
|
|
return result;
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
|
|
HEnvironment* new_env = Copy();
|
|
for (int i = 0; i < values_.length(); ++i) {
|
|
HPhi* phi = new(zone()) HPhi(i, zone());
|
|
phi->AddInput(values_[i]);
|
|
new_env->values_[i] = phi;
|
|
loop_header->AddPhi(phi);
|
|
}
|
|
new_env->ClearHistory();
|
|
return new_env;
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
|
|
Handle<JSFunction> target,
|
|
FrameType frame_type,
|
|
int arguments) const {
|
|
HEnvironment* new_env =
|
|
new(zone()) HEnvironment(outer, target, frame_type,
|
|
arguments + 1, zone());
|
|
for (int i = 0; i <= arguments; ++i) { // Include receiver.
|
|
new_env->Push(ExpressionStackAt(arguments - i));
|
|
}
|
|
new_env->ClearHistory();
|
|
return new_env;
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CopyForInlining(
|
|
Handle<JSFunction> target,
|
|
int arguments,
|
|
FunctionLiteral* function,
|
|
HConstant* undefined,
|
|
CallKind call_kind,
|
|
InliningKind inlining_kind) const {
|
|
ASSERT(frame_type() == JS_FUNCTION);
|
|
|
|
// Outer environment is a copy of this one without the arguments.
|
|
int arity = function->scope()->num_parameters();
|
|
|
|
HEnvironment* outer = Copy();
|
|
outer->Drop(arguments + 1); // Including receiver.
|
|
outer->ClearHistory();
|
|
|
|
if (inlining_kind == CONSTRUCT_CALL_RETURN) {
|
|
// Create artificial constructor stub environment. The receiver should
|
|
// actually be the constructor function, but we pass the newly allocated
|
|
// object instead, DoComputeConstructStubFrame() relies on that.
|
|
outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
|
|
} else if (inlining_kind == GETTER_CALL_RETURN) {
|
|
// We need an additional StackFrame::INTERNAL frame for restoring the
|
|
// correct context.
|
|
outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
|
|
} else if (inlining_kind == SETTER_CALL_RETURN) {
|
|
// We need an additional StackFrame::INTERNAL frame for temporarily saving
|
|
// the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
|
|
outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
|
|
}
|
|
|
|
if (arity != arguments) {
|
|
// Create artificial arguments adaptation environment.
|
|
outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
|
|
}
|
|
|
|
HEnvironment* inner =
|
|
new(zone()) HEnvironment(outer, function->scope(), target, zone());
|
|
// Get the argument values from the original environment.
|
|
for (int i = 0; i <= arity; ++i) { // Include receiver.
|
|
HValue* push = (i <= arguments) ?
|
|
ExpressionStackAt(arguments - i) : undefined;
|
|
inner->SetValueAt(i, push);
|
|
}
|
|
// If the function we are inlining is a strict mode function or a
|
|
// builtin function, pass undefined as the receiver for function
|
|
// calls (instead of the global receiver).
|
|
if ((target->shared()->native() || !function->is_classic_mode()) &&
|
|
call_kind == CALL_AS_FUNCTION && inlining_kind != CONSTRUCT_CALL_RETURN) {
|
|
inner->SetValueAt(0, undefined);
|
|
}
|
|
inner->SetValueAt(arity + 1, LookupContext());
|
|
for (int i = arity + 2; i < inner->length(); ++i) {
|
|
inner->SetValueAt(i, undefined);
|
|
}
|
|
|
|
inner->set_ast_id(BailoutId::FunctionEntry());
|
|
return inner;
|
|
}
|
|
|
|
|
|
void HEnvironment::PrintTo(StringStream* stream) {
|
|
for (int i = 0; i < length(); i++) {
|
|
if (i == 0) stream->Add("parameters\n");
|
|
if (i == parameter_count()) stream->Add("specials\n");
|
|
if (i == parameter_count() + specials_count()) stream->Add("locals\n");
|
|
if (i == parameter_count() + specials_count() + local_count()) {
|
|
stream->Add("expressions\n");
|
|
}
|
|
HValue* val = values_.at(i);
|
|
stream->Add("%d: ", i);
|
|
if (val != NULL) {
|
|
val->PrintNameTo(stream);
|
|
} else {
|
|
stream->Add("NULL");
|
|
}
|
|
stream->Add("\n");
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
|
|
|
|
void HEnvironment::PrintToStd() {
|
|
HeapStringAllocator string_allocator;
|
|
StringStream trace(&string_allocator);
|
|
PrintTo(&trace);
|
|
PrintF("%s", *trace.ToCString());
|
|
}
|
|
|
|
|
|
void HTracer::TraceCompilation(FunctionLiteral* function) {
|
|
Tag tag(this, "compilation");
|
|
Handle<String> name = function->debug_name();
|
|
PrintStringProperty("name", *name->ToCString());
|
|
PrintStringProperty("method", *name->ToCString());
|
|
PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
|
|
}
|
|
|
|
|
|
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
|
|
Trace(name, chunk->graph(), chunk);
|
|
}
|
|
|
|
|
|
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
|
|
Trace(name, graph, NULL);
|
|
}
|
|
|
|
|
|
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
|
|
Tag tag(this, "cfg");
|
|
PrintStringProperty("name", name);
|
|
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
|
|
for (int i = 0; i < blocks->length(); i++) {
|
|
HBasicBlock* current = blocks->at(i);
|
|
Tag block_tag(this, "block");
|
|
PrintBlockProperty("name", current->block_id());
|
|
PrintIntProperty("from_bci", -1);
|
|
PrintIntProperty("to_bci", -1);
|
|
|
|
if (!current->predecessors()->is_empty()) {
|
|
PrintIndent();
|
|
trace_.Add("predecessors");
|
|
for (int j = 0; j < current->predecessors()->length(); ++j) {
|
|
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
|
|
}
|
|
trace_.Add("\n");
|
|
} else {
|
|
PrintEmptyProperty("predecessors");
|
|
}
|
|
|
|
if (current->end()->SuccessorCount() == 0) {
|
|
PrintEmptyProperty("successors");
|
|
} else {
|
|
PrintIndent();
|
|
trace_.Add("successors");
|
|
for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
|
|
trace_.Add(" \"B%d\"", it.Current()->block_id());
|
|
}
|
|
trace_.Add("\n");
|
|
}
|
|
|
|
PrintEmptyProperty("xhandlers");
|
|
const char* flags = current->IsLoopSuccessorDominator()
|
|
? "dom-loop-succ"
|
|
: "";
|
|
PrintStringProperty("flags", flags);
|
|
|
|
if (current->dominator() != NULL) {
|
|
PrintBlockProperty("dominator", current->dominator()->block_id());
|
|
}
|
|
|
|
PrintIntProperty("loop_depth", current->LoopNestingDepth());
|
|
|
|
if (chunk != NULL) {
|
|
int first_index = current->first_instruction_index();
|
|
int last_index = current->last_instruction_index();
|
|
PrintIntProperty(
|
|
"first_lir_id",
|
|
LifetimePosition::FromInstructionIndex(first_index).Value());
|
|
PrintIntProperty(
|
|
"last_lir_id",
|
|
LifetimePosition::FromInstructionIndex(last_index).Value());
|
|
}
|
|
|
|
{
|
|
Tag states_tag(this, "states");
|
|
Tag locals_tag(this, "locals");
|
|
int total = current->phis()->length();
|
|
PrintIntProperty("size", current->phis()->length());
|
|
PrintStringProperty("method", "None");
|
|
for (int j = 0; j < total; ++j) {
|
|
HPhi* phi = current->phis()->at(j);
|
|
PrintIndent();
|
|
trace_.Add("%d ", phi->merged_index());
|
|
phi->PrintNameTo(&trace_);
|
|
trace_.Add(" ");
|
|
phi->PrintTo(&trace_);
|
|
trace_.Add("\n");
|
|
}
|
|
}
|
|
|
|
{
|
|
Tag HIR_tag(this, "HIR");
|
|
HInstruction* instruction = current->first();
|
|
while (instruction != NULL) {
|
|
int bci = 0;
|
|
int uses = instruction->UseCount();
|
|
PrintIndent();
|
|
trace_.Add("%d %d ", bci, uses);
|
|
instruction->PrintNameTo(&trace_);
|
|
trace_.Add(" ");
|
|
instruction->PrintTo(&trace_);
|
|
trace_.Add(" <|@\n");
|
|
instruction = instruction->next();
|
|
}
|
|
}
|
|
|
|
|
|
if (chunk != NULL) {
|
|
Tag LIR_tag(this, "LIR");
|
|
int first_index = current->first_instruction_index();
|
|
int last_index = current->last_instruction_index();
|
|
if (first_index != -1 && last_index != -1) {
|
|
const ZoneList<LInstruction*>* instructions = chunk->instructions();
|
|
for (int i = first_index; i <= last_index; ++i) {
|
|
LInstruction* linstr = instructions->at(i);
|
|
if (linstr != NULL) {
|
|
PrintIndent();
|
|
trace_.Add("%d ",
|
|
LifetimePosition::FromInstructionIndex(i).Value());
|
|
linstr->PrintTo(&trace_);
|
|
trace_.Add(" <|@\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
|
|
Tag tag(this, "intervals");
|
|
PrintStringProperty("name", name);
|
|
|
|
const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
|
|
for (int i = 0; i < fixed_d->length(); ++i) {
|
|
TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
|
|
}
|
|
|
|
const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
|
|
for (int i = 0; i < fixed->length(); ++i) {
|
|
TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
|
|
}
|
|
|
|
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
|
|
for (int i = 0; i < live_ranges->length(); ++i) {
|
|
TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
|
|
}
|
|
}
|
|
|
|
|
|
void HTracer::TraceLiveRange(LiveRange* range, const char* type,
|
|
Zone* zone) {
|
|
if (range != NULL && !range->IsEmpty()) {
|
|
PrintIndent();
|
|
trace_.Add("%d %s", range->id(), type);
|
|
if (range->HasRegisterAssigned()) {
|
|
LOperand* op = range->CreateAssignedOperand(zone);
|
|
int assigned_reg = op->index();
|
|
if (op->IsDoubleRegister()) {
|
|
trace_.Add(" \"%s\"",
|
|
DoubleRegister::AllocationIndexToString(assigned_reg));
|
|
} else {
|
|
ASSERT(op->IsRegister());
|
|
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
|
|
}
|
|
} else if (range->IsSpilled()) {
|
|
LOperand* op = range->TopLevel()->GetSpillOperand();
|
|
if (op->IsDoubleStackSlot()) {
|
|
trace_.Add(" \"double_stack:%d\"", op->index());
|
|
} else {
|
|
ASSERT(op->IsStackSlot());
|
|
trace_.Add(" \"stack:%d\"", op->index());
|
|
}
|
|
}
|
|
int parent_index = -1;
|
|
if (range->IsChild()) {
|
|
parent_index = range->parent()->id();
|
|
} else {
|
|
parent_index = range->id();
|
|
}
|
|
LOperand* op = range->FirstHint();
|
|
int hint_index = -1;
|
|
if (op != NULL && op->IsUnallocated()) {
|
|
hint_index = LUnallocated::cast(op)->virtual_register();
|
|
}
|
|
trace_.Add(" %d %d", parent_index, hint_index);
|
|
UseInterval* cur_interval = range->first_interval();
|
|
while (cur_interval != NULL && range->Covers(cur_interval->start())) {
|
|
trace_.Add(" [%d, %d[",
|
|
cur_interval->start().Value(),
|
|
cur_interval->end().Value());
|
|
cur_interval = cur_interval->next();
|
|
}
|
|
|
|
UsePosition* current_pos = range->first_pos();
|
|
while (current_pos != NULL) {
|
|
if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
|
|
trace_.Add(" %d M", current_pos->pos().Value());
|
|
}
|
|
current_pos = current_pos->next();
|
|
}
|
|
|
|
trace_.Add(" \"\"\n");
|
|
}
|
|
}
|
|
|
|
|
|
void HTracer::FlushToFile() {
|
|
AppendChars(filename_, *trace_.ToCString(), trace_.length(), false);
|
|
trace_.Reset();
|
|
}
|
|
|
|
|
|
void HStatistics::Initialize(CompilationInfo* info) {
|
|
source_size_ += info->shared_info()->SourceSize();
|
|
}
|
|
|
|
|
|
void HStatistics::Print() {
|
|
PrintF("Timing results:\n");
|
|
int64_t sum = 0;
|
|
for (int i = 0; i < timing_.length(); ++i) {
|
|
sum += timing_[i];
|
|
}
|
|
|
|
for (int i = 0; i < names_.length(); ++i) {
|
|
PrintF("%30s", names_[i]);
|
|
double ms = static_cast<double>(timing_[i]) / 1000;
|
|
double percent = static_cast<double>(timing_[i]) * 100 / sum;
|
|
PrintF(" - %7.3f ms / %4.1f %% ", ms, percent);
|
|
|
|
unsigned size = sizes_[i];
|
|
double size_percent = static_cast<double>(size) * 100 / total_size_;
|
|
PrintF(" %8u bytes / %4.1f %%\n", size, size_percent);
|
|
}
|
|
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
|
|
double normalized_time = source_size_in_kb > 0
|
|
? (static_cast<double>(sum) / 1000) / source_size_in_kb
|
|
: 0;
|
|
double normalized_bytes = source_size_in_kb > 0
|
|
? total_size_ / source_size_in_kb
|
|
: 0;
|
|
PrintF("%30s - %7.3f ms %7.3f bytes\n", "Sum",
|
|
normalized_time, normalized_bytes);
|
|
PrintF("---------------------------------------------------------------\n");
|
|
PrintF("%30s - %7.3f ms (%.1f times slower than full code gen)\n",
|
|
"Total",
|
|
static_cast<double>(total_) / 1000,
|
|
static_cast<double>(total_) / full_code_gen_);
|
|
}
|
|
|
|
|
|
void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) {
|
|
if (name == HPhase::kFullCodeGen) {
|
|
full_code_gen_ += ticks;
|
|
} else if (name == HPhase::kTotal) {
|
|
total_ += ticks;
|
|
} else {
|
|
total_size_ += size;
|
|
for (int i = 0; i < names_.length(); ++i) {
|
|
if (names_[i] == name) {
|
|
timing_[i] += ticks;
|
|
sizes_[i] += size;
|
|
return;
|
|
}
|
|
}
|
|
names_.Add(name);
|
|
timing_.Add(ticks);
|
|
sizes_.Add(size);
|
|
}
|
|
}
|
|
|
|
|
|
const char* const HPhase::kFullCodeGen = "Full code generator";
|
|
const char* const HPhase::kTotal = "Total";
|
|
|
|
|
|
void HPhase::Begin(const char* name,
|
|
HGraph* graph,
|
|
LChunk* chunk,
|
|
LAllocator* allocator) {
|
|
name_ = name;
|
|
graph_ = graph;
|
|
chunk_ = chunk;
|
|
allocator_ = allocator;
|
|
if (allocator != NULL && chunk_ == NULL) {
|
|
chunk_ = allocator->chunk();
|
|
}
|
|
if (FLAG_hydrogen_stats) start_ = OS::Ticks();
|
|
start_allocation_size_ = Zone::allocation_size_;
|
|
}
|
|
|
|
|
|
void HPhase::End() const {
|
|
if (FLAG_hydrogen_stats) {
|
|
int64_t end = OS::Ticks();
|
|
unsigned size = Zone::allocation_size_ - start_allocation_size_;
|
|
HStatistics::Instance()->SaveTiming(name_, end - start_, size);
|
|
}
|
|
|
|
// Produce trace output if flag is set so that the first letter of the
|
|
// phase name matches the command line parameter FLAG_trace_phase.
|
|
if (FLAG_trace_hydrogen &&
|
|
OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL) {
|
|
if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_);
|
|
if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_);
|
|
if (allocator_ != NULL) {
|
|
HTracer::Instance()->TraceLiveRanges(name_, allocator_);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (graph_ != NULL) graph_->Verify(false); // No full verify.
|
|
if (allocator_ != NULL) allocator_->Verify();
|
|
#endif
|
|
}
|
|
|
|
} } // namespace v8::internal
|
|
|