You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

795 lines
23 KiB

// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2006-2009 the V8 project authors. All rights reserved.
#include "v8.h"
#include "arguments.h"
#include "execution.h"
#include "ic-inl.h"
#include "factory.h"
#include "runtime.h"
#include "serialize.h"
#include "stub-cache.h"
#include "regexp-stack.h"
#include "ast.h"
#include "regexp-macro-assembler.h"
#include "platform.h"
// Include native regexp-macro-assembler.
#ifndef V8_INTERPRETED_REGEXP
#if V8_TARGET_ARCH_IA32
#include "ia32/regexp-macro-assembler-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/regexp-macro-assembler-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/regexp-macro-assembler-arm.h"
#else // Unknown architecture.
#error "Unknown architecture."
#endif // Target architecture.
#endif // V8_INTERPRETED_REGEXP
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Implementation of Label
int Label::pos() const {
if (pos_ < 0) return -pos_ - 1;
if (pos_ > 0) return pos_ - 1;
UNREACHABLE();
return 0;
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfoWriter and RelocIterator
//
// Encoding
//
// The most common modes are given single-byte encodings. Also, it is
// easy to identify the type of reloc info and skip unwanted modes in
// an iteration.
//
// The encoding relies on the fact that there are less than 14
// different relocation modes.
//
// embedded_object: [6 bits pc delta] 00
//
// code_taget: [6 bits pc delta] 01
//
// position: [6 bits pc delta] 10,
// [7 bits signed data delta] 0
//
// statement_position: [6 bits pc delta] 10,
// [7 bits signed data delta] 1
//
// any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only
// 00 [6 bits pc delta]
//
// pc-jump: 00 1111 11,
// 00 [6 bits pc delta]
//
// pc-jump: 01 1111 11,
// (variable length) 7 - 26 bit pc delta, written in chunks of 7
// bits, the lowest 7 bits written first.
//
// data-jump + pos: 00 1110 11,
// signed intptr_t, lowest byte written first
//
// data-jump + st.pos: 01 1110 11,
// signed intptr_t, lowest byte written first
//
// data-jump + comm.: 10 1110 11,
// signed intptr_t, lowest byte written first
//
const int kMaxRelocModes = 14;
const int kTagBits = 2;
const int kTagMask = (1 << kTagBits) - 1;
const int kExtraTagBits = 4;
const int kPositionTypeTagBits = 1;
const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
const int kEmbeddedObjectTag = 0;
const int kCodeTargetTag = 1;
const int kPositionTag = 2;
const int kDefaultTag = 3;
const int kPCJumpTag = (1 << kExtraTagBits) - 1;
const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
const int kVariableLengthPCJumpTopTag = 1;
const int kChunkBits = 7;
const int kChunkMask = (1 << kChunkBits) - 1;
const int kLastChunkTagBits = 1;
const int kLastChunkTagMask = 1;
const int kLastChunkTag = 1;
const int kDataJumpTag = kPCJumpTag - 1;
const int kNonstatementPositionTag = 0;
const int kStatementPositionTag = 1;
const int kCommentTag = 2;
uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
// Return if the pc_delta can fit in kSmallPCDeltaBits bits.
// Otherwise write a variable length PC jump for the bits that do
// not fit in the kSmallPCDeltaBits bits.
if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
ASSERT(pc_jump > 0);
// Write kChunkBits size chunks of the pc_jump.
for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
byte b = pc_jump & kChunkMask;
*--pos_ = b << kLastChunkTagBits;
}
// Tag the last chunk so it can be identified.
*pos_ = *pos_ | kLastChunkTag;
// Return the remaining kSmallPCDeltaBits of the pc_delta.
return pc_delta & kSmallPCDeltaMask;
}
void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
// Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
pc_delta = WriteVariableLengthPCJump(pc_delta);
*--pos_ = pc_delta << kTagBits | tag;
}
void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
*--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
}
void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
*--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
extra_tag << kTagBits |
kDefaultTag);
}
void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
// Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
pc_delta = WriteVariableLengthPCJump(pc_delta);
WriteExtraTag(extra_tag, 0);
*--pos_ = pc_delta;
}
void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
WriteExtraTag(kDataJumpTag, top_tag);
for (int i = 0; i < kIntptrSize; i++) {
*--pos_ = static_cast<byte>(data_delta);
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
data_delta = data_delta >> kBitsPerByte;
}
}
void RelocInfoWriter::Write(const RelocInfo* rinfo) {
#ifdef DEBUG
byte* begin_pos = pos_;
#endif
Counters::reloc_info_count.Increment();
ASSERT(rinfo->pc() - last_pc_ >= 0);
ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
// Use unsigned delta-encoding for pc.
uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
RelocInfo::Mode rmode = rinfo->rmode();
// The two most common modes are given small tags, and usually fit in a byte.
if (rmode == RelocInfo::EMBEDDED_OBJECT) {
WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
} else if (rmode == RelocInfo::CODE_TARGET) {
WriteTaggedPC(pc_delta, kCodeTargetTag);
} else if (RelocInfo::IsPosition(rmode)) {
// Use signed delta-encoding for data.
intptr_t data_delta = rinfo->data() - last_data_;
int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
: kStatementPositionTag;
// Check if data is small enough to fit in a tagged byte.
// We cannot use is_intn because data_delta is not an int32_t.
if (data_delta >= -(1 << (kSmallDataBits-1)) &&
data_delta < 1 << (kSmallDataBits-1)) {
WriteTaggedPC(pc_delta, kPositionTag);
WriteTaggedData(data_delta, pos_type_tag);
last_data_ = rinfo->data();
} else {
// Otherwise, use costly encoding.
WriteExtraTaggedPC(pc_delta, kPCJumpTag);
WriteExtraTaggedData(data_delta, pos_type_tag);
last_data_ = rinfo->data();
}
} else if (RelocInfo::IsComment(rmode)) {
// Comments are normally not generated, so we use the costly encoding.
WriteExtraTaggedPC(pc_delta, kPCJumpTag);
WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
last_data_ = rinfo->data();
} else {
// For all other modes we simply use the mode as the extra tag.
// None of these modes need a data component.
ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
WriteExtraTaggedPC(pc_delta, rmode);
}
last_pc_ = rinfo->pc();
#ifdef DEBUG
ASSERT(begin_pos - pos_ <= kMaxSize);
#endif
}
inline int RelocIterator::AdvanceGetTag() {
return *--pos_ & kTagMask;
}
inline int RelocIterator::GetExtraTag() {
return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
}
inline int RelocIterator::GetTopTag() {
return *pos_ >> (kTagBits + kExtraTagBits);
}
inline void RelocIterator::ReadTaggedPC() {
rinfo_.pc_ += *pos_ >> kTagBits;
}
inline void RelocIterator::AdvanceReadPC() {
rinfo_.pc_ += *--pos_;
}
void RelocIterator::AdvanceReadData() {
intptr_t x = 0;
for (int i = 0; i < kIntptrSize; i++) {
x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
}
rinfo_.data_ += x;
}
void RelocIterator::AdvanceReadVariableLengthPCJump() {
// Read the 32-kSmallPCDeltaBits most significant bits of the
// pc jump in kChunkBits bit chunks and shift them into place.
// Stop when the last chunk is encountered.
uint32_t pc_jump = 0;
for (int i = 0; i < kIntSize; i++) {
byte pc_jump_part = *--pos_;
pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
if ((pc_jump_part & kLastChunkTagMask) == 1) break;
}
// The least significant kSmallPCDeltaBits bits will be added
// later.
rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
}
inline int RelocIterator::GetPositionTypeTag() {
return *pos_ & ((1 << kPositionTypeTagBits) - 1);
}
inline void RelocIterator::ReadTaggedData() {
int8_t signed_b = *pos_;
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
rinfo_.data_ += signed_b >> kPositionTypeTagBits;
}
inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
if (tag == kStatementPositionTag) {
return RelocInfo::STATEMENT_POSITION;
} else if (tag == kNonstatementPositionTag) {
return RelocInfo::POSITION;
} else {
ASSERT(tag == kCommentTag);
return RelocInfo::COMMENT;
}
}
void RelocIterator::next() {
ASSERT(!done());
// Basically, do the opposite of RelocInfoWriter::Write.
// Reading of data is as far as possible avoided for unwanted modes,
// but we must always update the pc.
//
// We exit this loop by returning when we find a mode we want.
while (pos_ > end_) {
int tag = AdvanceGetTag();
if (tag == kEmbeddedObjectTag) {
ReadTaggedPC();
if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
} else if (tag == kCodeTargetTag) {
ReadTaggedPC();
if (SetMode(RelocInfo::CODE_TARGET)) return;
} else if (tag == kPositionTag) {
ReadTaggedPC();
Advance();
// Check if we want source positions.
if (mode_mask_ & RelocInfo::kPositionMask) {
// Check if we want this type of source position.
if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
// Finally read the data before returning.
ReadTaggedData();
return;
}
}
} else {
ASSERT(tag == kDefaultTag);
int extra_tag = GetExtraTag();
if (extra_tag == kPCJumpTag) {
int top_tag = GetTopTag();
if (top_tag == kVariableLengthPCJumpTopTag) {
AdvanceReadVariableLengthPCJump();
} else {
AdvanceReadPC();
}
} else if (extra_tag == kDataJumpTag) {
// Check if we want debug modes (the only ones with data).
if (mode_mask_ & RelocInfo::kDebugMask) {
int top_tag = GetTopTag();
AdvanceReadData();
if (SetMode(DebugInfoModeFromTag(top_tag))) return;
} else {
// Otherwise, just skip over the data.
Advance(kIntptrSize);
}
} else {
AdvanceReadPC();
if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
}
}
}
done_ = true;
}
RelocIterator::RelocIterator(Code* code, int mode_mask) {
rinfo_.pc_ = code->instruction_start();
rinfo_.data_ = 0;
// relocation info is read backwards
pos_ = code->relocation_start() + code->relocation_size();
end_ = code->relocation_start();
done_ = false;
mode_mask_ = mode_mask;
if (mode_mask_ == 0) pos_ = end_;
next();
}
RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
rinfo_.pc_ = desc.buffer;
rinfo_.data_ = 0;
// relocation info is read backwards
pos_ = desc.buffer + desc.buffer_size;
end_ = pos_ - desc.reloc_size;
done_ = false;
mode_mask_ = mode_mask;
if (mode_mask_ == 0) pos_ = end_;
next();
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
#ifdef ENABLE_DISASSEMBLER
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
switch (rmode) {
case RelocInfo::NONE:
return "no reloc";
case RelocInfo::EMBEDDED_OBJECT:
return "embedded object";
case RelocInfo::CONSTRUCT_CALL:
return "code target (js construct call)";
case RelocInfo::CODE_TARGET_CONTEXT:
return "code target (context)";
case RelocInfo::DEBUG_BREAK:
#ifndef ENABLE_DEBUGGER_SUPPORT
UNREACHABLE();
#endif
return "debug break";
case RelocInfo::CODE_TARGET:
return "code target";
case RelocInfo::RUNTIME_ENTRY:
return "runtime entry";
case RelocInfo::JS_RETURN:
return "js return";
case RelocInfo::COMMENT:
return "comment";
case RelocInfo::POSITION:
return "position";
case RelocInfo::STATEMENT_POSITION:
return "statement position";
case RelocInfo::EXTERNAL_REFERENCE:
return "external reference";
case RelocInfo::INTERNAL_REFERENCE:
return "internal reference";
case RelocInfo::NUMBER_OF_MODES:
UNREACHABLE();
return "number_of_modes";
}
return "unknown relocation type";
}
void RelocInfo::Print() {
PrintF("%p %s", pc_, RelocModeName(rmode_));
if (IsComment(rmode_)) {
PrintF(" (%s)", data_);
} else if (rmode_ == EMBEDDED_OBJECT) {
PrintF(" (");
target_object()->ShortPrint();
PrintF(")");
} else if (rmode_ == EXTERNAL_REFERENCE) {
ExternalReferenceEncoder ref_encoder;
PrintF(" (%s) (%p)",
ref_encoder.NameOfAddress(*target_reference_address()),
*target_reference_address());
} else if (IsCodeTarget(rmode_)) {
Code* code = Code::GetCodeFromTargetAddress(target_address());
PrintF(" (%s) (%p)", Code::Kind2String(code->kind()), target_address());
} else if (IsPosition(rmode_)) {
PrintF(" (%d)", data());
}
PrintF("\n");
}
#endif // ENABLE_DISASSEMBLER
#ifdef DEBUG
void RelocInfo::Verify() {
switch (rmode_) {
case EMBEDDED_OBJECT:
Object::VerifyPointer(target_object());
break;
case DEBUG_BREAK:
#ifndef ENABLE_DEBUGGER_SUPPORT
UNREACHABLE();
break;
#endif
case CONSTRUCT_CALL:
case CODE_TARGET_CONTEXT:
case CODE_TARGET: {
// convert inline target address to code object
Address addr = target_address();
ASSERT(addr != NULL);
// Check that we can find the right code object.
Code* code = Code::GetCodeFromTargetAddress(addr);
Object* found = Heap::FindCodeObject(addr);
ASSERT(found->IsCode());
ASSERT(code->address() == HeapObject::cast(found)->address());
break;
}
case RUNTIME_ENTRY:
case JS_RETURN:
case COMMENT:
case POSITION:
case STATEMENT_POSITION:
case EXTERNAL_REFERENCE:
case INTERNAL_REFERENCE:
case NONE:
break;
case NUMBER_OF_MODES:
UNREACHABLE();
break;
}
}
#endif // DEBUG
// -----------------------------------------------------------------------------
// Implementation of ExternalReference
ExternalReference::ExternalReference(Builtins::CFunctionId id)
: address_(Redirect(Builtins::c_function_address(id))) {}
ExternalReference::ExternalReference(ApiFunction* fun)
: address_(Redirect(fun->address())) {}
ExternalReference::ExternalReference(Builtins::Name name)
: address_(Builtins::builtin_address(name)) {}
ExternalReference::ExternalReference(Runtime::FunctionId id)
: address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
ExternalReference::ExternalReference(Runtime::Function* f)
: address_(Redirect(f->entry)) {}
ExternalReference::ExternalReference(const IC_Utility& ic_utility)
: address_(Redirect(ic_utility.address())) {}
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference::ExternalReference(const Debug_Address& debug_address)
: address_(debug_address.address()) {}
#endif
ExternalReference::ExternalReference(StatsCounter* counter)
: address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
ExternalReference::ExternalReference(Top::AddressId id)
: address_(Top::get_address_from_id(id)) {}
ExternalReference::ExternalReference(const SCTableReference& table_ref)
: address_(table_ref.address()) {}
ExternalReference ExternalReference::perform_gc_function() {
return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
}
ExternalReference ExternalReference::fill_heap_number_with_random_function() {
return
ExternalReference(Redirect(FUNCTION_ADDR(V8::FillHeapNumberWithRandom)));
}
ExternalReference ExternalReference::random_uint32_function() {
return ExternalReference(Redirect(FUNCTION_ADDR(V8::Random)));
}
ExternalReference ExternalReference::transcendental_cache_array_address() {
return ExternalReference(TranscendentalCache::cache_array_address());
}
ExternalReference ExternalReference::keyed_lookup_cache_keys() {
return ExternalReference(KeyedLookupCache::keys_address());
}
ExternalReference ExternalReference::keyed_lookup_cache_field_offsets() {
return ExternalReference(KeyedLookupCache::field_offsets_address());
}
ExternalReference ExternalReference::the_hole_value_location() {
return ExternalReference(Factory::the_hole_value().location());
}
ExternalReference ExternalReference::roots_address() {
return ExternalReference(Heap::roots_address());
}
ExternalReference ExternalReference::address_of_stack_limit() {
return ExternalReference(StackGuard::address_of_jslimit());
}
ExternalReference ExternalReference::address_of_real_stack_limit() {
return ExternalReference(StackGuard::address_of_real_jslimit());
}
ExternalReference ExternalReference::address_of_regexp_stack_limit() {
return ExternalReference(RegExpStack::limit_address());
}
ExternalReference ExternalReference::new_space_start() {
return ExternalReference(Heap::NewSpaceStart());
}
ExternalReference ExternalReference::new_space_mask() {
return ExternalReference(reinterpret_cast<Address>(Heap::NewSpaceMask()));
}
ExternalReference ExternalReference::new_space_allocation_top_address() {
return ExternalReference(Heap::NewSpaceAllocationTopAddress());
}
ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
return ExternalReference(Heap::always_allocate_scope_depth_address());
}
ExternalReference ExternalReference::new_space_allocation_limit_address() {
return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
}
ExternalReference ExternalReference::handle_scope_extensions_address() {
return ExternalReference(HandleScope::current_extensions_address());
}
ExternalReference ExternalReference::handle_scope_next_address() {
return ExternalReference(HandleScope::current_next_address());
}
ExternalReference ExternalReference::handle_scope_limit_address() {
return ExternalReference(HandleScope::current_limit_address());
}
ExternalReference ExternalReference::scheduled_exception_address() {
return ExternalReference(Top::scheduled_exception_address());
}
#ifndef V8_INTERPRETED_REGEXP
ExternalReference ExternalReference::re_check_stack_guard_state() {
Address function;
#ifdef V8_TARGET_ARCH_X64
function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
#elif V8_TARGET_ARCH_IA32
function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
#elif V8_TARGET_ARCH_ARM
function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
#else
UNREACHABLE();
#endif
return ExternalReference(Redirect(function));
}
ExternalReference ExternalReference::re_grow_stack() {
return ExternalReference(
Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
}
ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
return ExternalReference(Redirect(
FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
}
ExternalReference ExternalReference::re_word_character_map() {
return ExternalReference(
NativeRegExpMacroAssembler::word_character_map_address());
}
ExternalReference ExternalReference::address_of_static_offsets_vector() {
return ExternalReference(OffsetsVector::static_offsets_vector_address());
}
ExternalReference ExternalReference::address_of_regexp_stack_memory_address() {
return ExternalReference(RegExpStack::memory_address());
}
ExternalReference ExternalReference::address_of_regexp_stack_memory_size() {
return ExternalReference(RegExpStack::memory_size_address());
}
#endif // V8_INTERPRETED_REGEXP
static double add_two_doubles(double x, double y) {
return x + y;
}
static double sub_two_doubles(double x, double y) {
return x - y;
}
static double mul_two_doubles(double x, double y) {
return x * y;
}
static double div_two_doubles(double x, double y) {
return x / y;
}
static double mod_two_doubles(double x, double y) {
return modulo(x, y);
}
static int native_compare_doubles(double y, double x) {
if (x == y) return EQUAL;
return x < y ? LESS : GREATER;
}
ExternalReference ExternalReference::double_fp_operation(
Token::Value operation) {
typedef double BinaryFPOperation(double x, double y);
BinaryFPOperation* function = NULL;
switch (operation) {
case Token::ADD:
function = &add_two_doubles;
break;
case Token::SUB:
function = &sub_two_doubles;
break;
case Token::MUL:
function = &mul_two_doubles;
break;
case Token::DIV:
function = &div_two_doubles;
break;
case Token::MOD:
function = &mod_two_doubles;
break;
default:
UNREACHABLE();
}
// Passing true as 2nd parameter indicates that they return an fp value.
return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
}
ExternalReference ExternalReference::compare_doubles() {
return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
false));
}
ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference ExternalReference::debug_break() {
return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
}
ExternalReference ExternalReference::debug_step_in_fp_address() {
return ExternalReference(Debug::step_in_fp_addr());
}
#endif
} } // namespace v8::internal