You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

485 lines
15 KiB

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "oprofile-agent.h"
#include "prettyprinter.h"
#include "register-allocator-inl.h"
#include "rewriter.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "stub-cache.h"
#include "virtual-frame-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
#ifdef DEBUG
Comment::Comment(MacroAssembler* masm, const char* msg)
: masm_(masm), msg_(msg) {
__ RecordComment(msg);
}
Comment::~Comment() {
if (msg_[0] == '[') __ RecordComment("]");
}
#endif // DEBUG
#undef __
CodeGenerator* CodeGeneratorScope::top_ = NULL;
void CodeGenerator::ProcessDeferred() {
while (!deferred_.is_empty()) {
DeferredCode* code = deferred_.RemoveLast();
ASSERT(masm_ == code->masm());
// Record position of deferred code stub.
masm_->positions_recorder()->RecordStatementPosition(
code->statement_position());
if (code->position() != RelocInfo::kNoPosition) {
masm_->positions_recorder()->RecordPosition(code->position());
}
// Generate the code.
Comment cmnt(masm_, code->comment());
masm_->bind(code->entry_label());
if (code->AutoSaveAndRestore()) {
code->SaveRegisters();
}
code->Generate();
if (code->AutoSaveAndRestore()) {
code->RestoreRegisters();
code->Exit();
}
}
}
void DeferredCode::Exit() {
masm_->jmp(exit_label());
}
void CodeGenerator::SetFrame(VirtualFrame* new_frame,
RegisterFile* non_frame_registers) {
RegisterFile saved_counts;
if (has_valid_frame()) {
frame_->DetachFromCodeGenerator();
// The remaining register reference counts are the non-frame ones.
allocator_->SaveTo(&saved_counts);
}
if (new_frame != NULL) {
// Restore the non-frame register references that go with the new frame.
allocator_->RestoreFrom(non_frame_registers);
new_frame->AttachToCodeGenerator();
}
frame_ = new_frame;
saved_counts.CopyTo(non_frame_registers);
}
void CodeGenerator::DeleteFrame() {
if (has_valid_frame()) {
frame_->DetachFromCodeGenerator();
frame_ = NULL;
}
}
void CodeGenerator::MakeCodePrologue(CompilationInfo* info) {
#ifdef DEBUG
bool print_source = false;
bool print_ast = false;
bool print_json_ast = false;
const char* ftype;
if (Bootstrapper::IsActive()) {
print_source = FLAG_print_builtin_source;
print_ast = FLAG_print_builtin_ast;
print_json_ast = FLAG_print_builtin_json_ast;
ftype = "builtin";
} else {
print_source = FLAG_print_source;
print_ast = FLAG_print_ast;
print_json_ast = FLAG_print_json_ast;
Vector<const char> filter = CStrVector(FLAG_hydrogen_filter);
if (print_source && !filter.is_empty()) {
print_source = info->function()->name()->IsEqualTo(filter);
}
if (print_ast && !filter.is_empty()) {
print_ast = info->function()->name()->IsEqualTo(filter);
}
if (print_json_ast && !filter.is_empty()) {
print_json_ast = info->function()->name()->IsEqualTo(filter);
}
ftype = "user-defined";
}
if (FLAG_trace_codegen || print_source || print_ast) {
PrintF("*** Generate code for %s function: ", ftype);
info->function()->name()->ShortPrint();
PrintF(" ***\n");
}
if (print_source) {
PrintF("--- Source from AST ---\n%s\n",
PrettyPrinter().PrintProgram(info->function()));
}
if (print_ast) {
PrintF("--- AST ---\n%s\n",
AstPrinter().PrintProgram(info->function()));
}
if (print_json_ast) {
JsonAstBuilder builder;
PrintF("%s", builder.BuildProgram(info->function()));
}
#endif // DEBUG
}
Handle<Code> CodeGenerator::MakeCodeEpilogue(MacroAssembler* masm,
Code::Flags flags,
CompilationInfo* info) {
// Allocate and install the code.
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = Factory::NewCode(desc, flags, masm->CodeObject());
if (!code.is_null()) {
Counters::total_compiled_code_size.Increment(code->instruction_size());
}
return code;
}
void CodeGenerator::PrintCode(Handle<Code> code, CompilationInfo* info) {
#ifdef ENABLE_DISASSEMBLER
bool print_code = Bootstrapper::IsActive()
? FLAG_print_builtin_code
: (FLAG_print_code || (info->IsOptimizing() && FLAG_print_opt_code));
Vector<const char> filter = CStrVector(FLAG_hydrogen_filter);
FunctionLiteral* function = info->function();
bool match = filter.is_empty() || function->debug_name()->IsEqualTo(filter);
if (print_code && match) {
// Print the source code if available.
Handle<Script> script = info->script();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
PrintF("--- Raw source ---\n");
StringInputBuffer stream(String::cast(script->source()));
stream.Seek(function->start_position());
// fun->end_position() points to the last character in the stream. We
// need to compensate by adding one to calculate the length.
int source_len =
function->end_position() - function->start_position() + 1;
for (int i = 0; i < source_len; i++) {
if (stream.has_more()) PrintF("%c", stream.GetNext());
}
PrintF("\n\n");
}
if (info->IsOptimizing()) {
if (FLAG_print_unopt_code) {
PrintF("--- Unoptimized code ---\n");
info->closure()->shared()->code()->Disassemble(
*function->debug_name()->ToCString());
}
PrintF("--- Optimized code ---\n");
} else {
PrintF("--- Code ---\n");
}
code->Disassemble(*function->debug_name()->ToCString());
}
#endif // ENABLE_DISASSEMBLER
}
// Generate the code. Compile the AST and assemble all the pieces into a
// Code object.
bool CodeGenerator::MakeCode(CompilationInfo* info) {
// When using Crankshaft the classic backend should never be used.
ASSERT(!V8::UseCrankshaft());
Handle<Script> script = info->script();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
int len = String::cast(script->source())->length();
Counters::total_old_codegen_source_size.Increment(len);
}
if (FLAG_trace_codegen) {
PrintF("Classic Compiler - ");
}
MakeCodePrologue(info);
// Generate code.
const int kInitialBufferSize = 4 * KB;
MacroAssembler masm(NULL, kInitialBufferSize);
CodeGenerator cgen(&masm);
CodeGeneratorScope scope(&cgen);
cgen.Generate(info);
if (cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return false;
}
InLoopFlag in_loop = info->is_in_loop() ? IN_LOOP : NOT_IN_LOOP;
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, in_loop);
Handle<Code> code = MakeCodeEpilogue(cgen.masm(), flags, info);
// There is no stack check table in code generated by the classic backend.
code->SetNoStackCheckTable();
CodeGenerator::PrintCode(code, info);
info->SetCode(code); // May be an empty handle.
return !code.is_null();
}
#ifdef ENABLE_LOGGING_AND_PROFILING
bool CodeGenerator::ShouldGenerateLog(Expression* type) {
ASSERT(type != NULL);
if (!Logger::is_logging() && !CpuProfiler::is_profiling()) return false;
Handle<String> name = Handle<String>::cast(type->AsLiteral()->handle());
if (FLAG_log_regexp) {
static Vector<const char> kRegexp = CStrVector("regexp");
if (name->IsEqualTo(kRegexp))
return true;
}
return false;
}
#endif
void CodeGenerator::ProcessDeclarations(ZoneList<Declaration*>* declarations) {
int length = declarations->length();
int globals = 0;
for (int i = 0; i < length; i++) {
Declaration* node = declarations->at(i);
Variable* var = node->proxy()->var();
Slot* slot = var->AsSlot();
// If it was not possible to allocate the variable at compile
// time, we need to "declare" it at runtime to make sure it
// actually exists in the local context.
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
VisitDeclaration(node);
} else {
// Count global variables and functions for later processing
globals++;
}
}
// Return in case of no declared global functions or variables.
if (globals == 0) return;
// Compute array of global variable and function declarations.
Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
for (int j = 0, i = 0; i < length; i++) {
Declaration* node = declarations->at(i);
Variable* var = node->proxy()->var();
Slot* slot = var->AsSlot();
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
// Skip - already processed.
} else {
array->set(j++, *(var->name()));
if (node->fun() == NULL) {
if (var->mode() == Variable::CONST) {
// In case this is const property use the hole.
array->set_the_hole(j++);
} else {
array->set_undefined(j++);
}
} else {
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(node->fun(), script());
// Check for stack-overflow exception.
if (function.is_null()) {
SetStackOverflow();
return;
}
array->set(j++, *function);
}
}
}
// Invoke the platform-dependent code generator to do the actual
// declaration the global variables and functions.
DeclareGlobals(array);
}
void CodeGenerator::VisitIncrementOperation(IncrementOperation* expr) {
UNREACHABLE();
}
// Lookup table for code generators for special runtime calls which are
// generated inline.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
&CodeGenerator::Generate##Name,
const CodeGenerator::InlineFunctionGenerator
CodeGenerator::kInlineFunctionGenerators[] = {
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
};
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
bool CodeGenerator::CheckForInlineRuntimeCall(CallRuntime* node) {
ZoneList<Expression*>* args = node->arguments();
Handle<String> name = node->name();
Runtime::Function* function = node->function();
if (function != NULL && function->intrinsic_type == Runtime::INLINE) {
int lookup_index = static_cast<int>(function->function_id) -
static_cast<int>(Runtime::kFirstInlineFunction);
ASSERT(lookup_index >= 0);
ASSERT(static_cast<size_t>(lookup_index) <
ARRAY_SIZE(kInlineFunctionGenerators));
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
(this->*generator)(args);
return true;
}
return false;
}
// Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a
// known result for the test expression, with no side effects.
CodeGenerator::ConditionAnalysis CodeGenerator::AnalyzeCondition(
Expression* cond) {
if (cond == NULL) return ALWAYS_TRUE;
Literal* lit = cond->AsLiteral();
if (lit == NULL) return DONT_KNOW;
if (lit->IsTrue()) {
return ALWAYS_TRUE;
} else if (lit->IsFalse()) {
return ALWAYS_FALSE;
}
return DONT_KNOW;
}
bool CodeGenerator::RecordPositions(MacroAssembler* masm,
int pos,
bool right_here) {
if (pos != RelocInfo::kNoPosition) {
masm->positions_recorder()->RecordStatementPosition(pos);
masm->positions_recorder()->RecordPosition(pos);
if (right_here) {
return masm->positions_recorder()->WriteRecordedPositions();
}
}
return false;
}
void CodeGenerator::CodeForFunctionPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) RecordPositions(masm(), fun->start_position(), false);
}
void CodeGenerator::CodeForReturnPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) RecordPositions(masm(), fun->end_position() - 1, false);
}
void CodeGenerator::CodeForStatementPosition(Statement* stmt) {
if (FLAG_debug_info) RecordPositions(masm(), stmt->statement_pos(), false);
}
void CodeGenerator::CodeForDoWhileConditionPosition(DoWhileStatement* stmt) {
if (FLAG_debug_info)
RecordPositions(masm(), stmt->condition_position(), false);
}
void CodeGenerator::CodeForSourcePosition(int pos) {
if (FLAG_debug_info && pos != RelocInfo::kNoPosition) {
masm()->positions_recorder()->RecordPosition(pos);
}
}
const char* GenericUnaryOpStub::GetName() {
switch (op_) {
case Token::SUB:
if (negative_zero_ == kStrictNegativeZero) {
return overwrite_ == UNARY_OVERWRITE
? "GenericUnaryOpStub_SUB_Overwrite_Strict0"
: "GenericUnaryOpStub_SUB_Alloc_Strict0";
} else {
return overwrite_ == UNARY_OVERWRITE
? "GenericUnaryOpStub_SUB_Overwrite_Ignore0"
: "GenericUnaryOpStub_SUB_Alloc_Ignore0";
}
case Token::BIT_NOT:
return overwrite_ == UNARY_OVERWRITE
? "GenericUnaryOpStub_BIT_NOT_Overwrite"
: "GenericUnaryOpStub_BIT_NOT_Alloc";
default:
UNREACHABLE();
return "<unknown>";
}
}
void ArgumentsAccessStub::Generate(MacroAssembler* masm) {
switch (type_) {
case READ_ELEMENT: GenerateReadElement(masm); break;
case NEW_OBJECT: GenerateNewObject(masm); break;
}
}
int CEntryStub::MinorKey() {
ASSERT(result_size_ == 1 || result_size_ == 2);
int result = save_doubles_ ? 1 : 0;
#ifdef _WIN64
return result | ((result_size_ == 1) ? 0 : 2);
#else
return result;
#endif
}
} } // namespace v8::internal