You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

881 lines
24 KiB

#include "string_bytes.h"
#include "node.h"
#include "node_buffer.h"
#include "v8.h"
#include <limits.h>
#include <string.h> // memcpy
#include <vector>
// When creating strings >= this length v8's gc spins up and consumes
// most of the execution time. For these cases it's more performant to
// use external string resources.
#define EXTERN_APEX 0xFBEE9
namespace node {
using v8::EscapableHandleScope;
using v8::HandleScope;
using v8::Isolate;
using v8::Local;
using v8::Object;
using v8::String;
using v8::Value;
using v8::MaybeLocal;
template <typename ResourceType, typename TypeName>
class ExternString: public ResourceType {
public:
~ExternString() override {
free(const_cast<TypeName*>(data_));
isolate()->AdjustAmountOfExternalAllocatedMemory(-byte_length());
}
const TypeName* data() const override {
return data_;
}
size_t length() const override {
return length_;
}
int64_t byte_length() const {
return length() * sizeof(*data());
}
static Local<String> NewFromCopy(Isolate* isolate,
const TypeName* data,
size_t length) {
EscapableHandleScope scope(isolate);
if (length == 0)
return scope.Escape(String::Empty(isolate));
TypeName* new_data =
static_cast<TypeName*>(malloc(length * sizeof(*new_data)));
if (new_data == nullptr) {
return Local<String>();
}
memcpy(new_data, data, length * sizeof(*new_data));
return scope.Escape(ExternString<ResourceType, TypeName>::New(isolate,
new_data,
length));
}
// uses "data" for external resource, and will be free'd on gc
static Local<String> New(Isolate* isolate,
const TypeName* data,
size_t length) {
EscapableHandleScope scope(isolate);
if (length == 0)
return scope.Escape(String::Empty(isolate));
ExternString* h_str = new ExternString<ResourceType, TypeName>(isolate,
data,
length);
MaybeLocal<String> str = String::NewExternal(isolate, h_str);
isolate->AdjustAmountOfExternalAllocatedMemory(h_str->byte_length());
if (str.IsEmpty()) {
delete h_str;
return Local<String>();
}
return scope.Escape(str.ToLocalChecked());
}
inline Isolate* isolate() const { return isolate_; }
private:
ExternString(Isolate* isolate, const TypeName* data, size_t length)
: isolate_(isolate), data_(data), length_(length) { }
Isolate* isolate_;
const TypeName* data_;
size_t length_;
};
typedef ExternString<String::ExternalOneByteStringResource,
char> ExternOneByteString;
typedef ExternString<String::ExternalStringResource,
uint16_t> ExternTwoByteString;
//// Base 64 ////
#define base64_encoded_size(size) ((size + 2 - ((size + 2) % 3)) / 3 * 4)
// Doesn't check for padding at the end. Can be 1-2 bytes over.
static inline size_t base64_decoded_size_fast(size_t size) {
size_t remainder = size % 4;
size = (size / 4) * 3;
if (remainder) {
if (size == 0 && remainder == 1) {
// special case: 1-byte input cannot be decoded
size = 0;
} else {
// non-padded input, add 1 or 2 extra bytes
size += 1 + (remainder == 3);
}
}
return size;
}
template <typename TypeName>
size_t base64_decoded_size(const TypeName* src, size_t size) {
if (size == 0)
return 0;
if (src[size - 1] == '=')
size--;
if (size > 0 && src[size - 1] == '=')
size--;
return base64_decoded_size_fast(size);
}
// supports regular and URL-safe base64
static const int8_t unbase64_table[] =
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, -2, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, 62, -1, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1,
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
-1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
#define unbase64(x) \
static_cast<uint8_t>(unbase64_table[static_cast<uint8_t>(x)])
template <typename TypeName>
size_t base64_decode_slow(char* dst, size_t dstlen,
const TypeName* src, size_t srclen) {
uint8_t hi;
uint8_t lo;
size_t i = 0;
size_t k = 0;
for (;;) {
#define V(expr) \
while (i < srclen) { \
const uint8_t c = src[i]; \
lo = unbase64(c); \
i += 1; \
if (lo < 64) \
break; /* Legal character. */ \
if (c == '=') \
return k; \
} \
expr; \
if (i >= srclen) \
return k; \
if (k >= dstlen) \
return k; \
hi = lo;
V(/* Nothing. */);
V(dst[k++] = ((hi & 0x3F) << 2) | ((lo & 0x30) >> 4));
V(dst[k++] = ((hi & 0x0F) << 4) | ((lo & 0x3C) >> 2));
V(dst[k++] = ((hi & 0x03) << 6) | ((lo & 0x3F) >> 0));
#undef V
}
UNREACHABLE();
}
template <typename TypeName>
size_t base64_decode_fast(char* const dst, const size_t dstlen,
const TypeName* const src, const size_t srclen,
const size_t decoded_size) {
const size_t available = dstlen < decoded_size ? dstlen : decoded_size;
const size_t max_i = srclen / 4 * 4;
const size_t max_k = available / 3 * 3;
size_t i = 0;
size_t k = 0;
while (i < max_i && k < max_k) {
const uint32_t v =
unbase64(src[i + 0]) << 24 |
unbase64(src[i + 1]) << 16 |
unbase64(src[i + 2]) << 8 |
unbase64(src[i + 3]);
// If MSB is set, input contains whitespace or is not valid base64.
if (v & 0x80808080) {
break;
}
dst[k + 0] = ((v >> 22) & 0xFC) | ((v >> 20) & 0x03);
dst[k + 1] = ((v >> 12) & 0xF0) | ((v >> 10) & 0x0F);
dst[k + 2] = ((v >> 2) & 0xC0) | ((v >> 0) & 0x3F);
i += 4;
k += 3;
}
if (i < srclen && k < dstlen) {
return k + base64_decode_slow(dst + k, dstlen - k, src + i, srclen - i);
}
return k;
}
template <typename TypeName>
size_t base64_decode(char* const dst, const size_t dstlen,
const TypeName* const src, const size_t srclen) {
const size_t decoded_size = base64_decoded_size(src, srclen);
return base64_decode_fast(dst, dstlen, src, srclen, decoded_size);
}
template <typename TypeName>
unsigned hex2bin(TypeName c) {
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'A' && c <= 'F')
return 10 + (c - 'A');
if (c >= 'a' && c <= 'f')
return 10 + (c - 'a');
return static_cast<unsigned>(-1);
}
template <typename TypeName>
size_t hex_decode(char* buf,
size_t len,
const TypeName* src,
const size_t srcLen) {
size_t i;
for (i = 0; i < len && i * 2 + 1 < srcLen; ++i) {
unsigned a = hex2bin(src[i * 2 + 0]);
unsigned b = hex2bin(src[i * 2 + 1]);
if (!~a || !~b)
return i;
buf[i] = a * 16 + b;
}
return i;
}
bool StringBytes::GetExternalParts(Isolate* isolate,
Local<Value> val,
const char** data,
size_t* len) {
if (Buffer::HasInstance(val)) {
*data = Buffer::Data(val);
*len = Buffer::Length(val);
return true;
}
if (!val->IsString())
return false;
Local<String> str = val.As<String>();
if (str->IsExternalOneByte()) {
const String::ExternalOneByteStringResource* ext;
ext = str->GetExternalOneByteStringResource();
*data = ext->data();
*len = ext->length();
return true;
} else if (str->IsExternal()) {
const String::ExternalStringResource* ext;
ext = str->GetExternalStringResource();
*data = reinterpret_cast<const char*>(ext->data());
*len = ext->length() * sizeof(*ext->data());
return true;
}
return false;
}
size_t StringBytes::WriteUCS2(char* buf,
size_t buflen,
size_t nbytes,
const char* data,
Local<String> str,
int flags,
size_t* chars_written) {
uint16_t* const dst = reinterpret_cast<uint16_t*>(buf);
size_t max_chars = (buflen / sizeof(*dst));
size_t nchars;
size_t alignment = reinterpret_cast<uintptr_t>(dst) % sizeof(*dst);
if (alignment == 0) {
nchars = str->Write(dst, 0, max_chars, flags);
*chars_written = nchars;
return nchars * sizeof(*dst);
}
uint16_t* aligned_dst =
reinterpret_cast<uint16_t*>(buf + sizeof(*dst) - alignment);
ASSERT_EQ(reinterpret_cast<uintptr_t>(aligned_dst) % sizeof(*dst), 0);
// Write all but the last char
nchars = str->Write(aligned_dst, 0, max_chars - 1, flags);
// Shift everything to unaligned-left
memmove(dst, aligned_dst, nchars * sizeof(*dst));
// One more char to be written
uint16_t last;
if (nchars == max_chars - 1 && str->Write(&last, nchars, 1, flags) != 0) {
memcpy(buf + nchars * sizeof(*dst), &last, sizeof(last));
nchars++;
}
*chars_written = nchars;
return nchars * sizeof(*dst);
}
size_t StringBytes::Write(Isolate* isolate,
char* buf,
size_t buflen,
Local<Value> val,
enum encoding encoding,
int* chars_written) {
HandleScope scope(isolate);
const char* data = nullptr;
size_t nbytes = 0;
const bool is_extern = GetExternalParts(isolate, val, &data, &nbytes);
const size_t external_nbytes = nbytes;
CHECK(val->IsString() == true);
Local<String> str = val.As<String>();
if (nbytes > buflen)
nbytes = buflen;
int flags = String::HINT_MANY_WRITES_EXPECTED |
String::NO_NULL_TERMINATION |
String::REPLACE_INVALID_UTF8;
switch (encoding) {
case ASCII:
case BINARY:
case BUFFER:
if (is_extern && str->IsOneByte()) {
memcpy(buf, data, nbytes);
} else {
uint8_t* const dst = reinterpret_cast<uint8_t*>(buf);
nbytes = str->WriteOneByte(dst, 0, buflen, flags);
}
if (chars_written != nullptr)
*chars_written = nbytes;
break;
case UTF8:
nbytes = str->WriteUtf8(buf, buflen, chars_written, flags);
break;
case UCS2: {
size_t nchars;
if (is_extern && !str->IsOneByte()) {
memcpy(buf, data, nbytes);
nchars = nbytes / sizeof(uint16_t);
} else {
nbytes = WriteUCS2(buf, buflen, nbytes, data, str, flags, &nchars);
}
if (chars_written != nullptr)
*chars_written = nchars;
if (!IsBigEndian())
break;
// Node's "ucs2" encoding wants LE character data stored in
// the Buffer, so we need to reorder on BE platforms. See
// http://nodejs.org/api/buffer.html regarding Node's "ucs2"
// encoding specification
const bool is_aligned =
reinterpret_cast<uintptr_t>(buf) % sizeof(uint16_t);
if (is_aligned) {
uint16_t* const dst = reinterpret_cast<uint16_t*>(buf);
SwapBytes(dst, dst, nchars);
}
ASSERT_EQ(sizeof(uint16_t), 2);
for (size_t i = 0; i < nchars; i++) {
char tmp = buf[i * 2];
buf[i * 2] = buf[i * 2 + 1];
buf[i * 2 + 1] = tmp;
}
break;
}
case BASE64:
if (is_extern) {
nbytes = base64_decode(buf, buflen, data, external_nbytes);
} else {
String::Value value(str);
nbytes = base64_decode(buf, buflen, *value, value.length());
}
if (chars_written != nullptr) {
*chars_written = nbytes;
}
break;
case HEX:
if (is_extern) {
nbytes = hex_decode(buf, buflen, data, external_nbytes);
} else {
String::Value value(str);
nbytes = hex_decode(buf, buflen, *value, value.length());
}
if (chars_written != nullptr) {
*chars_written = nbytes;
}
break;
default:
CHECK(0 && "unknown encoding");
break;
}
return nbytes;
}
bool StringBytes::IsValidString(Isolate* isolate,
Local<String> string,
enum encoding enc) {
if (enc == HEX && string->Length() % 2 != 0)
return false;
// TODO(bnoordhuis) Add BASE64 check?
return true;
}
// Quick and dirty size calculation
// Will always be at least big enough, but may have some extra
// UTF8 can be as much as 3x the size, Base64 can have 1-2 extra bytes
size_t StringBytes::StorageSize(Isolate* isolate,
Local<Value> val,
enum encoding encoding) {
HandleScope scope(isolate);
size_t data_size = 0;
bool is_buffer = Buffer::HasInstance(val);
if (is_buffer && (encoding == BUFFER || encoding == BINARY)) {
return Buffer::Length(val);
}
Local<String> str = val->ToString(isolate);
switch (encoding) {
case BINARY:
case BUFFER:
case ASCII:
data_size = str->Length();
break;
case UTF8:
// A single UCS2 codepoint never takes up more than 3 utf8 bytes.
// It is an exercise for the caller to decide when a string is
// long enough to justify calling Size() instead of StorageSize()
data_size = 3 * str->Length();
break;
case UCS2:
data_size = str->Length() * sizeof(uint16_t);
break;
case BASE64:
data_size = base64_decoded_size_fast(str->Length());
break;
case HEX:
CHECK(str->Length() % 2 == 0 && "invalid hex string length");
data_size = str->Length() / 2;
break;
default:
CHECK(0 && "unknown encoding");
break;
}
return data_size;
}
size_t StringBytes::Size(Isolate* isolate,
Local<Value> val,
enum encoding encoding) {
HandleScope scope(isolate);
size_t data_size = 0;
bool is_buffer = Buffer::HasInstance(val);
if (is_buffer && (encoding == BUFFER || encoding == BINARY))
return Buffer::Length(val);
const char* data;
if (GetExternalParts(isolate, val, &data, &data_size))
return data_size;
Local<String> str = val->ToString(isolate);
switch (encoding) {
case BINARY:
case BUFFER:
case ASCII:
data_size = str->Length();
break;
case UTF8:
data_size = str->Utf8Length();
break;
case UCS2:
data_size = str->Length() * sizeof(uint16_t);
break;
case BASE64: {
String::Value value(str);
data_size = base64_decoded_size(*value, value.length());
break;
}
case HEX:
data_size = str->Length() / 2;
break;
default:
CHECK(0 && "unknown encoding");
break;
}
return data_size;
}
static bool contains_non_ascii_slow(const char* buf, size_t len) {
for (size_t i = 0; i < len; ++i) {
if (buf[i] & 0x80)
return true;
}
return false;
}
static bool contains_non_ascii(const char* src, size_t len) {
if (len < 16) {
return contains_non_ascii_slow(src, len);
}
const unsigned bytes_per_word = sizeof(uintptr_t);
const unsigned align_mask = bytes_per_word - 1;
const unsigned unaligned = reinterpret_cast<uintptr_t>(src) & align_mask;
if (unaligned > 0) {
const unsigned n = bytes_per_word - unaligned;
if (contains_non_ascii_slow(src, n))
return true;
src += n;
len -= n;
}
#if defined(_WIN64) || defined(_LP64)
const uintptr_t mask = 0x8080808080808080ll;
#else
const uintptr_t mask = 0x80808080l;
#endif
const uintptr_t* srcw = reinterpret_cast<const uintptr_t*>(src);
for (size_t i = 0, n = len / bytes_per_word; i < n; ++i) {
if (srcw[i] & mask)
return true;
}
const unsigned remainder = len & align_mask;
if (remainder > 0) {
const size_t offset = len - remainder;
if (contains_non_ascii_slow(src + offset, remainder))
return true;
}
return false;
}
static void force_ascii_slow(const char* src, char* dst, size_t len) {
for (size_t i = 0; i < len; ++i) {
dst[i] = src[i] & 0x7f;
}
}
static void force_ascii(const char* src, char* dst, size_t len) {
if (len < 16) {
force_ascii_slow(src, dst, len);
return;
}
const unsigned bytes_per_word = sizeof(uintptr_t);
const unsigned align_mask = bytes_per_word - 1;
const unsigned src_unalign = reinterpret_cast<uintptr_t>(src) & align_mask;
const unsigned dst_unalign = reinterpret_cast<uintptr_t>(dst) & align_mask;
if (src_unalign > 0) {
if (src_unalign == dst_unalign) {
const unsigned unalign = bytes_per_word - src_unalign;
force_ascii_slow(src, dst, unalign);
src += unalign;
dst += unalign;
len -= src_unalign;
} else {
force_ascii_slow(src, dst, len);
return;
}
}
#if defined(_WIN64) || defined(_LP64)
const uintptr_t mask = ~0x8080808080808080ll;
#else
const uintptr_t mask = ~0x80808080l;
#endif
const uintptr_t* srcw = reinterpret_cast<const uintptr_t*>(src);
uintptr_t* dstw = reinterpret_cast<uintptr_t*>(dst);
for (size_t i = 0, n = len / bytes_per_word; i < n; ++i) {
dstw[i] = srcw[i] & mask;
}
const unsigned remainder = len & align_mask;
if (remainder > 0) {
const size_t offset = len - remainder;
force_ascii_slow(src + offset, dst + offset, remainder);
}
}
static size_t base64_encode(const char* src,
size_t slen,
char* dst,
size_t dlen) {
// We know how much we'll write, just make sure that there's space.
CHECK(dlen >= base64_encoded_size(slen) &&
"not enough space provided for base64 encode");
dlen = base64_encoded_size(slen);
unsigned a;
unsigned b;
unsigned c;
unsigned i;
unsigned k;
unsigned n;
static const char table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
i = 0;
k = 0;
n = slen / 3 * 3;
while (i < n) {
a = src[i + 0] & 0xff;
b = src[i + 1] & 0xff;
c = src[i + 2] & 0xff;
dst[k + 0] = table[a >> 2];
dst[k + 1] = table[((a & 3) << 4) | (b >> 4)];
dst[k + 2] = table[((b & 0x0f) << 2) | (c >> 6)];
dst[k + 3] = table[c & 0x3f];
i += 3;
k += 4;
}
if (n != slen) {
switch (slen - n) {
case 1:
a = src[i + 0] & 0xff;
dst[k + 0] = table[a >> 2];
dst[k + 1] = table[(a & 3) << 4];
dst[k + 2] = '=';
dst[k + 3] = '=';
break;
case 2:
a = src[i + 0] & 0xff;
b = src[i + 1] & 0xff;
dst[k + 0] = table[a >> 2];
dst[k + 1] = table[((a & 3) << 4) | (b >> 4)];
dst[k + 2] = table[(b & 0x0f) << 2];
dst[k + 3] = '=';
break;
}
}
return dlen;
}
static size_t hex_encode(const char* src, size_t slen, char* dst, size_t dlen) {
// We know how much we'll write, just make sure that there's space.
CHECK(dlen >= slen * 2 &&
"not enough space provided for hex encode");
dlen = slen * 2;
for (uint32_t i = 0, k = 0; k < dlen; i += 1, k += 2) {
static const char hex[] = "0123456789abcdef";
uint8_t val = static_cast<uint8_t>(src[i]);
dst[k + 0] = hex[val >> 4];
dst[k + 1] = hex[val & 15];
}
return dlen;
}
Local<Value> StringBytes::Encode(Isolate* isolate,
const char* buf,
size_t buflen,
enum encoding encoding) {
EscapableHandleScope scope(isolate);
CHECK_NE(encoding, UCS2);
CHECK_LE(buflen, Buffer::kMaxLength);
if (!buflen && encoding != BUFFER)
return scope.Escape(String::Empty(isolate));
Local<String> val;
switch (encoding) {
case BUFFER:
{
Local<Object> vbuf =
Buffer::Copy(isolate, buf, buflen).ToLocalChecked();
return scope.Escape(vbuf);
}
case ASCII:
if (contains_non_ascii(buf, buflen)) {
char* out = static_cast<char*>(malloc(buflen));
if (out == nullptr) {
return Local<String>();
}
force_ascii(buf, out, buflen);
if (buflen < EXTERN_APEX) {
val = OneByteString(isolate, out, buflen);
free(out);
} else {
val = ExternOneByteString::New(isolate, out, buflen);
}
} else {
if (buflen < EXTERN_APEX)
val = OneByteString(isolate, buf, buflen);
else
val = ExternOneByteString::NewFromCopy(isolate, buf, buflen);
}
break;
case UTF8:
val = String::NewFromUtf8(isolate,
buf,
String::kNormalString,
buflen);
break;
case BINARY:
if (buflen < EXTERN_APEX)
val = OneByteString(isolate, buf, buflen);
else
val = ExternOneByteString::NewFromCopy(isolate, buf, buflen);
break;
case BASE64: {
size_t dlen = base64_encoded_size(buflen);
char* dst = static_cast<char*>(malloc(dlen));
if (dst == nullptr) {
return Local<String>();
}
size_t written = base64_encode(buf, buflen, dst, dlen);
CHECK_EQ(written, dlen);
if (dlen < EXTERN_APEX) {
val = OneByteString(isolate, dst, dlen);
free(dst);
} else {
val = ExternOneByteString::New(isolate, dst, dlen);
}
break;
}
case HEX: {
size_t dlen = buflen * 2;
char* dst = static_cast<char*>(malloc(dlen));
if (dst == nullptr) {
return Local<String>();
}
size_t written = hex_encode(buf, buflen, dst, dlen);
CHECK_EQ(written, dlen);
if (dlen < EXTERN_APEX) {
val = OneByteString(isolate, dst, dlen);
free(dst);
} else {
val = ExternOneByteString::New(isolate, dst, dlen);
}
break;
}
default:
CHECK(0 && "unknown encoding");
break;
}
return scope.Escape(val);
}
Local<Value> StringBytes::Encode(Isolate* isolate,
const uint16_t* buf,
size_t buflen) {
Local<String> val;
std::vector<uint16_t> dst;
if (IsBigEndian()) {
// Node's "ucs2" encoding expects LE character data inside a
// Buffer, so we need to reorder on BE platforms. See
// http://nodejs.org/api/buffer.html regarding Node's "ucs2"
// encoding specification
dst.resize(buflen);
SwapBytes(&dst[0], buf, buflen);
buf = &dst[0];
}
if (buflen < EXTERN_APEX) {
val = String::NewFromTwoByte(isolate,
buf,
String::kNormalString,
buflen);
} else {
val = ExternTwoByteString::NewFromCopy(isolate, buf, buflen);
}
return val;
}
} // namespace node