mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
6284 lines
202 KiB
6284 lines
202 KiB
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "bootstrapper.h"
|
|
#include "codegen.h"
|
|
#include "compilation-cache.h"
|
|
#include "debug.h"
|
|
#include "deoptimizer.h"
|
|
#include "global-handles.h"
|
|
#include "heap-profiler.h"
|
|
#include "liveobjectlist-inl.h"
|
|
#include "mark-compact.h"
|
|
#include "natives.h"
|
|
#include "objects-visiting.h"
|
|
#include "runtime-profiler.h"
|
|
#include "scopeinfo.h"
|
|
#include "snapshot.h"
|
|
#include "v8threads.h"
|
|
#include "vm-state-inl.h"
|
|
#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
|
|
#include "regexp-macro-assembler.h"
|
|
#include "arm/regexp-macro-assembler-arm.h"
|
|
#endif
|
|
#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
|
|
#include "regexp-macro-assembler.h"
|
|
#include "mips/regexp-macro-assembler-mips.h"
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
static const intptr_t kMinimumPromotionLimit = 2 * MB;
|
|
static const intptr_t kMinimumAllocationLimit = 8 * MB;
|
|
|
|
|
|
static Mutex* gc_initializer_mutex = OS::CreateMutex();
|
|
|
|
|
|
Heap::Heap()
|
|
: isolate_(NULL),
|
|
// semispace_size_ should be a power of 2 and old_generation_size_ should be
|
|
// a multiple of Page::kPageSize.
|
|
#if defined(ANDROID)
|
|
reserved_semispace_size_(2*MB),
|
|
max_semispace_size_(2*MB),
|
|
initial_semispace_size_(128*KB),
|
|
max_old_generation_size_(192*MB),
|
|
max_executable_size_(max_old_generation_size_),
|
|
code_range_size_(0),
|
|
#elif defined(V8_TARGET_ARCH_X64)
|
|
reserved_semispace_size_(16*MB),
|
|
max_semispace_size_(16*MB),
|
|
initial_semispace_size_(1*MB),
|
|
max_old_generation_size_(1400*MB),
|
|
max_executable_size_(256*MB),
|
|
code_range_size_(512*MB),
|
|
#else
|
|
reserved_semispace_size_(8*MB),
|
|
max_semispace_size_(8*MB),
|
|
initial_semispace_size_(512*KB),
|
|
max_old_generation_size_(700*MB),
|
|
max_executable_size_(128*MB),
|
|
code_range_size_(0),
|
|
#endif
|
|
// Variables set based on semispace_size_ and old_generation_size_ in
|
|
// ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_)
|
|
// Will be 4 * reserved_semispace_size_ to ensure that young
|
|
// generation can be aligned to its size.
|
|
survived_since_last_expansion_(0),
|
|
sweep_generation_(0),
|
|
always_allocate_scope_depth_(0),
|
|
linear_allocation_scope_depth_(0),
|
|
contexts_disposed_(0),
|
|
new_space_(this),
|
|
old_pointer_space_(NULL),
|
|
old_data_space_(NULL),
|
|
code_space_(NULL),
|
|
map_space_(NULL),
|
|
cell_space_(NULL),
|
|
lo_space_(NULL),
|
|
gc_state_(NOT_IN_GC),
|
|
gc_post_processing_depth_(0),
|
|
mc_count_(0),
|
|
ms_count_(0),
|
|
gc_count_(0),
|
|
unflattened_strings_length_(0),
|
|
#ifdef DEBUG
|
|
allocation_allowed_(true),
|
|
allocation_timeout_(0),
|
|
disallow_allocation_failure_(false),
|
|
debug_utils_(NULL),
|
|
#endif // DEBUG
|
|
old_gen_promotion_limit_(kMinimumPromotionLimit),
|
|
old_gen_allocation_limit_(kMinimumAllocationLimit),
|
|
external_allocation_limit_(0),
|
|
amount_of_external_allocated_memory_(0),
|
|
amount_of_external_allocated_memory_at_last_global_gc_(0),
|
|
old_gen_exhausted_(false),
|
|
hidden_symbol_(NULL),
|
|
global_gc_prologue_callback_(NULL),
|
|
global_gc_epilogue_callback_(NULL),
|
|
gc_safe_size_of_old_object_(NULL),
|
|
total_regexp_code_generated_(0),
|
|
tracer_(NULL),
|
|
young_survivors_after_last_gc_(0),
|
|
high_survival_rate_period_length_(0),
|
|
survival_rate_(0),
|
|
previous_survival_rate_trend_(Heap::STABLE),
|
|
survival_rate_trend_(Heap::STABLE),
|
|
max_gc_pause_(0),
|
|
max_alive_after_gc_(0),
|
|
min_in_mutator_(kMaxInt),
|
|
alive_after_last_gc_(0),
|
|
last_gc_end_timestamp_(0.0),
|
|
page_watermark_invalidated_mark_(1 << Page::WATERMARK_INVALIDATED),
|
|
number_idle_notifications_(0),
|
|
last_idle_notification_gc_count_(0),
|
|
last_idle_notification_gc_count_init_(false),
|
|
configured_(false),
|
|
is_safe_to_read_maps_(true) {
|
|
// Allow build-time customization of the max semispace size. Building
|
|
// V8 with snapshots and a non-default max semispace size is much
|
|
// easier if you can define it as part of the build environment.
|
|
#if defined(V8_MAX_SEMISPACE_SIZE)
|
|
max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
|
|
#endif
|
|
|
|
intptr_t max_virtual = OS::MaxVirtualMemory();
|
|
|
|
if (max_virtual > 0) {
|
|
if (code_range_size_ > 0) {
|
|
// Reserve no more than 1/8 of the memory for the code range.
|
|
code_range_size_ = Min(code_range_size_, max_virtual >> 3);
|
|
}
|
|
}
|
|
|
|
memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
|
|
global_contexts_list_ = NULL;
|
|
mark_compact_collector_.heap_ = this;
|
|
external_string_table_.heap_ = this;
|
|
}
|
|
|
|
|
|
intptr_t Heap::Capacity() {
|
|
if (!HasBeenSetup()) return 0;
|
|
|
|
return new_space_.Capacity() +
|
|
old_pointer_space_->Capacity() +
|
|
old_data_space_->Capacity() +
|
|
code_space_->Capacity() +
|
|
map_space_->Capacity() +
|
|
cell_space_->Capacity();
|
|
}
|
|
|
|
|
|
intptr_t Heap::CommittedMemory() {
|
|
if (!HasBeenSetup()) return 0;
|
|
|
|
return new_space_.CommittedMemory() +
|
|
old_pointer_space_->CommittedMemory() +
|
|
old_data_space_->CommittedMemory() +
|
|
code_space_->CommittedMemory() +
|
|
map_space_->CommittedMemory() +
|
|
cell_space_->CommittedMemory() +
|
|
lo_space_->Size();
|
|
}
|
|
|
|
intptr_t Heap::CommittedMemoryExecutable() {
|
|
if (!HasBeenSetup()) return 0;
|
|
|
|
return isolate()->memory_allocator()->SizeExecutable();
|
|
}
|
|
|
|
|
|
intptr_t Heap::Available() {
|
|
if (!HasBeenSetup()) return 0;
|
|
|
|
return new_space_.Available() +
|
|
old_pointer_space_->Available() +
|
|
old_data_space_->Available() +
|
|
code_space_->Available() +
|
|
map_space_->Available() +
|
|
cell_space_->Available();
|
|
}
|
|
|
|
|
|
bool Heap::HasBeenSetup() {
|
|
return old_pointer_space_ != NULL &&
|
|
old_data_space_ != NULL &&
|
|
code_space_ != NULL &&
|
|
map_space_ != NULL &&
|
|
cell_space_ != NULL &&
|
|
lo_space_ != NULL;
|
|
}
|
|
|
|
|
|
int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
|
|
ASSERT(!HEAP->InNewSpace(object)); // Code only works for old objects.
|
|
ASSERT(!HEAP->mark_compact_collector()->are_map_pointers_encoded());
|
|
MapWord map_word = object->map_word();
|
|
map_word.ClearMark();
|
|
map_word.ClearOverflow();
|
|
return object->SizeFromMap(map_word.ToMap());
|
|
}
|
|
|
|
|
|
int Heap::GcSafeSizeOfOldObjectWithEncodedMap(HeapObject* object) {
|
|
ASSERT(!HEAP->InNewSpace(object)); // Code only works for old objects.
|
|
ASSERT(HEAP->mark_compact_collector()->are_map_pointers_encoded());
|
|
uint32_t marker = Memory::uint32_at(object->address());
|
|
if (marker == MarkCompactCollector::kSingleFreeEncoding) {
|
|
return kIntSize;
|
|
} else if (marker == MarkCompactCollector::kMultiFreeEncoding) {
|
|
return Memory::int_at(object->address() + kIntSize);
|
|
} else {
|
|
MapWord map_word = object->map_word();
|
|
Address map_address = map_word.DecodeMapAddress(HEAP->map_space());
|
|
Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_address));
|
|
return object->SizeFromMap(map);
|
|
}
|
|
}
|
|
|
|
|
|
GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
|
|
// Is global GC requested?
|
|
if (space != NEW_SPACE || FLAG_gc_global) {
|
|
isolate_->counters()->gc_compactor_caused_by_request()->Increment();
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Is enough data promoted to justify a global GC?
|
|
if (OldGenerationPromotionLimitReached()) {
|
|
isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Have allocation in OLD and LO failed?
|
|
if (old_gen_exhausted_) {
|
|
isolate_->counters()->
|
|
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Is there enough space left in OLD to guarantee that a scavenge can
|
|
// succeed?
|
|
//
|
|
// Note that MemoryAllocator->MaxAvailable() undercounts the memory available
|
|
// for object promotion. It counts only the bytes that the memory
|
|
// allocator has not yet allocated from the OS and assigned to any space,
|
|
// and does not count available bytes already in the old space or code
|
|
// space. Undercounting is safe---we may get an unrequested full GC when
|
|
// a scavenge would have succeeded.
|
|
if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
|
|
isolate_->counters()->
|
|
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Default
|
|
return SCAVENGER;
|
|
}
|
|
|
|
|
|
// TODO(1238405): Combine the infrastructure for --heap-stats and
|
|
// --log-gc to avoid the complicated preprocessor and flag testing.
|
|
void Heap::ReportStatisticsBeforeGC() {
|
|
// Heap::ReportHeapStatistics will also log NewSpace statistics when
|
|
// compiled --log-gc is set. The following logic is used to avoid
|
|
// double logging.
|
|
#ifdef DEBUG
|
|
if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
|
|
if (FLAG_heap_stats) {
|
|
ReportHeapStatistics("Before GC");
|
|
} else if (FLAG_log_gc) {
|
|
new_space_.ReportStatistics();
|
|
}
|
|
if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
|
|
#else
|
|
if (FLAG_log_gc) {
|
|
new_space_.CollectStatistics();
|
|
new_space_.ReportStatistics();
|
|
new_space_.ClearHistograms();
|
|
}
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
void Heap::PrintShortHeapStatistics() {
|
|
if (!FLAG_trace_gc_verbose) return;
|
|
PrintF("Memory allocator, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d\n",
|
|
isolate_->memory_allocator()->Size(),
|
|
isolate_->memory_allocator()->Available());
|
|
PrintF("New space, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d\n",
|
|
Heap::new_space_.Size(),
|
|
new_space_.Available());
|
|
PrintF("Old pointers, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d"
|
|
", waste: %8" V8_PTR_PREFIX "d\n",
|
|
old_pointer_space_->Size(),
|
|
old_pointer_space_->Available(),
|
|
old_pointer_space_->Waste());
|
|
PrintF("Old data space, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d"
|
|
", waste: %8" V8_PTR_PREFIX "d\n",
|
|
old_data_space_->Size(),
|
|
old_data_space_->Available(),
|
|
old_data_space_->Waste());
|
|
PrintF("Code space, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d"
|
|
", waste: %8" V8_PTR_PREFIX "d\n",
|
|
code_space_->Size(),
|
|
code_space_->Available(),
|
|
code_space_->Waste());
|
|
PrintF("Map space, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d"
|
|
", waste: %8" V8_PTR_PREFIX "d\n",
|
|
map_space_->Size(),
|
|
map_space_->Available(),
|
|
map_space_->Waste());
|
|
PrintF("Cell space, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d"
|
|
", waste: %8" V8_PTR_PREFIX "d\n",
|
|
cell_space_->Size(),
|
|
cell_space_->Available(),
|
|
cell_space_->Waste());
|
|
PrintF("Large object space, used: %8" V8_PTR_PREFIX "d"
|
|
", available: %8" V8_PTR_PREFIX "d\n",
|
|
lo_space_->Size(),
|
|
lo_space_->Available());
|
|
}
|
|
|
|
|
|
// TODO(1238405): Combine the infrastructure for --heap-stats and
|
|
// --log-gc to avoid the complicated preprocessor and flag testing.
|
|
void Heap::ReportStatisticsAfterGC() {
|
|
// Similar to the before GC, we use some complicated logic to ensure that
|
|
// NewSpace statistics are logged exactly once when --log-gc is turned on.
|
|
#if defined(DEBUG)
|
|
if (FLAG_heap_stats) {
|
|
new_space_.CollectStatistics();
|
|
ReportHeapStatistics("After GC");
|
|
} else if (FLAG_log_gc) {
|
|
new_space_.ReportStatistics();
|
|
}
|
|
#else
|
|
if (FLAG_log_gc) new_space_.ReportStatistics();
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
void Heap::GarbageCollectionPrologue() {
|
|
isolate_->transcendental_cache()->Clear();
|
|
ClearJSFunctionResultCaches();
|
|
gc_count_++;
|
|
unflattened_strings_length_ = 0;
|
|
#ifdef DEBUG
|
|
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
|
|
allow_allocation(false);
|
|
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
|
|
if (FLAG_gc_verbose) Print();
|
|
#endif // DEBUG
|
|
|
|
#if defined(DEBUG)
|
|
ReportStatisticsBeforeGC();
|
|
#endif // DEBUG
|
|
|
|
LiveObjectList::GCPrologue();
|
|
}
|
|
|
|
intptr_t Heap::SizeOfObjects() {
|
|
intptr_t total = 0;
|
|
AllSpaces spaces;
|
|
for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
|
|
total += space->SizeOfObjects();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
void Heap::GarbageCollectionEpilogue() {
|
|
LiveObjectList::GCEpilogue();
|
|
#ifdef DEBUG
|
|
allow_allocation(true);
|
|
ZapFromSpace();
|
|
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
|
|
if (FLAG_print_global_handles) isolate_->global_handles()->Print();
|
|
if (FLAG_print_handles) PrintHandles();
|
|
if (FLAG_gc_verbose) Print();
|
|
if (FLAG_code_stats) ReportCodeStatistics("After GC");
|
|
#endif
|
|
|
|
isolate_->counters()->alive_after_last_gc()->Set(
|
|
static_cast<int>(SizeOfObjects()));
|
|
|
|
isolate_->counters()->symbol_table_capacity()->Set(
|
|
symbol_table()->Capacity());
|
|
isolate_->counters()->number_of_symbols()->Set(
|
|
symbol_table()->NumberOfElements());
|
|
#if defined(DEBUG)
|
|
ReportStatisticsAfterGC();
|
|
#endif // DEBUG
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
isolate_->debug()->AfterGarbageCollection();
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
}
|
|
|
|
|
|
void Heap::CollectAllGarbage(bool force_compaction) {
|
|
// Since we are ignoring the return value, the exact choice of space does
|
|
// not matter, so long as we do not specify NEW_SPACE, which would not
|
|
// cause a full GC.
|
|
mark_compact_collector_.SetForceCompaction(force_compaction);
|
|
CollectGarbage(OLD_POINTER_SPACE);
|
|
mark_compact_collector_.SetForceCompaction(false);
|
|
}
|
|
|
|
|
|
void Heap::CollectAllAvailableGarbage() {
|
|
// Since we are ignoring the return value, the exact choice of space does
|
|
// not matter, so long as we do not specify NEW_SPACE, which would not
|
|
// cause a full GC.
|
|
mark_compact_collector()->SetForceCompaction(true);
|
|
|
|
// Major GC would invoke weak handle callbacks on weakly reachable
|
|
// handles, but won't collect weakly reachable objects until next
|
|
// major GC. Therefore if we collect aggressively and weak handle callback
|
|
// has been invoked, we rerun major GC to release objects which become
|
|
// garbage.
|
|
// Note: as weak callbacks can execute arbitrary code, we cannot
|
|
// hope that eventually there will be no weak callbacks invocations.
|
|
// Therefore stop recollecting after several attempts.
|
|
const int kMaxNumberOfAttempts = 7;
|
|
for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
|
|
if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR)) {
|
|
break;
|
|
}
|
|
}
|
|
mark_compact_collector()->SetForceCompaction(false);
|
|
}
|
|
|
|
|
|
bool Heap::CollectGarbage(AllocationSpace space, GarbageCollector collector) {
|
|
// The VM is in the GC state until exiting this function.
|
|
VMState state(isolate_, GC);
|
|
|
|
#ifdef DEBUG
|
|
// Reset the allocation timeout to the GC interval, but make sure to
|
|
// allow at least a few allocations after a collection. The reason
|
|
// for this is that we have a lot of allocation sequences and we
|
|
// assume that a garbage collection will allow the subsequent
|
|
// allocation attempts to go through.
|
|
allocation_timeout_ = Max(6, FLAG_gc_interval);
|
|
#endif
|
|
|
|
bool next_gc_likely_to_collect_more = false;
|
|
|
|
{ GCTracer tracer(this);
|
|
GarbageCollectionPrologue();
|
|
// The GC count was incremented in the prologue. Tell the tracer about
|
|
// it.
|
|
tracer.set_gc_count(gc_count_);
|
|
|
|
// Tell the tracer which collector we've selected.
|
|
tracer.set_collector(collector);
|
|
|
|
HistogramTimer* rate = (collector == SCAVENGER)
|
|
? isolate_->counters()->gc_scavenger()
|
|
: isolate_->counters()->gc_compactor();
|
|
rate->Start();
|
|
next_gc_likely_to_collect_more =
|
|
PerformGarbageCollection(collector, &tracer);
|
|
rate->Stop();
|
|
|
|
GarbageCollectionEpilogue();
|
|
}
|
|
|
|
return next_gc_likely_to_collect_more;
|
|
}
|
|
|
|
|
|
void Heap::PerformScavenge() {
|
|
GCTracer tracer(this);
|
|
PerformGarbageCollection(SCAVENGER, &tracer);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
// Helper class for verifying the symbol table.
|
|
class SymbolTableVerifier : public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Visit all HeapObject pointers in [start, end).
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject()) {
|
|
// Check that the symbol is actually a symbol.
|
|
ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol());
|
|
}
|
|
}
|
|
}
|
|
};
|
|
#endif // DEBUG
|
|
|
|
|
|
static void VerifySymbolTable() {
|
|
#ifdef DEBUG
|
|
SymbolTableVerifier verifier;
|
|
HEAP->symbol_table()->IterateElements(&verifier);
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
void Heap::ReserveSpace(
|
|
int new_space_size,
|
|
int pointer_space_size,
|
|
int data_space_size,
|
|
int code_space_size,
|
|
int map_space_size,
|
|
int cell_space_size,
|
|
int large_object_size) {
|
|
NewSpace* new_space = Heap::new_space();
|
|
PagedSpace* old_pointer_space = Heap::old_pointer_space();
|
|
PagedSpace* old_data_space = Heap::old_data_space();
|
|
PagedSpace* code_space = Heap::code_space();
|
|
PagedSpace* map_space = Heap::map_space();
|
|
PagedSpace* cell_space = Heap::cell_space();
|
|
LargeObjectSpace* lo_space = Heap::lo_space();
|
|
bool gc_performed = true;
|
|
while (gc_performed) {
|
|
gc_performed = false;
|
|
if (!new_space->ReserveSpace(new_space_size)) {
|
|
Heap::CollectGarbage(NEW_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
if (!old_pointer_space->ReserveSpace(pointer_space_size)) {
|
|
Heap::CollectGarbage(OLD_POINTER_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
if (!(old_data_space->ReserveSpace(data_space_size))) {
|
|
Heap::CollectGarbage(OLD_DATA_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
if (!(code_space->ReserveSpace(code_space_size))) {
|
|
Heap::CollectGarbage(CODE_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
if (!(map_space->ReserveSpace(map_space_size))) {
|
|
Heap::CollectGarbage(MAP_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
if (!(cell_space->ReserveSpace(cell_space_size))) {
|
|
Heap::CollectGarbage(CELL_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
// We add a slack-factor of 2 in order to have space for a series of
|
|
// large-object allocations that are only just larger than the page size.
|
|
large_object_size *= 2;
|
|
// The ReserveSpace method on the large object space checks how much
|
|
// we can expand the old generation. This includes expansion caused by
|
|
// allocation in the other spaces.
|
|
large_object_size += cell_space_size + map_space_size + code_space_size +
|
|
data_space_size + pointer_space_size;
|
|
if (!(lo_space->ReserveSpace(large_object_size))) {
|
|
Heap::CollectGarbage(LO_SPACE);
|
|
gc_performed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::EnsureFromSpaceIsCommitted() {
|
|
if (new_space_.CommitFromSpaceIfNeeded()) return;
|
|
|
|
// Committing memory to from space failed.
|
|
// Try shrinking and try again.
|
|
PagedSpaces spaces;
|
|
for (PagedSpace* space = spaces.next();
|
|
space != NULL;
|
|
space = spaces.next()) {
|
|
space->RelinkPageListInChunkOrder(true);
|
|
}
|
|
|
|
Shrink();
|
|
if (new_space_.CommitFromSpaceIfNeeded()) return;
|
|
|
|
// Committing memory to from space failed again.
|
|
// Memory is exhausted and we will die.
|
|
V8::FatalProcessOutOfMemory("Committing semi space failed.");
|
|
}
|
|
|
|
|
|
void Heap::ClearJSFunctionResultCaches() {
|
|
if (isolate_->bootstrapper()->IsActive()) return;
|
|
|
|
Object* context = global_contexts_list_;
|
|
while (!context->IsUndefined()) {
|
|
// Get the caches for this context:
|
|
FixedArray* caches =
|
|
Context::cast(context)->jsfunction_result_caches();
|
|
// Clear the caches:
|
|
int length = caches->length();
|
|
for (int i = 0; i < length; i++) {
|
|
JSFunctionResultCache::cast(caches->get(i))->Clear();
|
|
}
|
|
// Get the next context:
|
|
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Heap::ClearNormalizedMapCaches() {
|
|
if (isolate_->bootstrapper()->IsActive()) return;
|
|
|
|
Object* context = global_contexts_list_;
|
|
while (!context->IsUndefined()) {
|
|
Context::cast(context)->normalized_map_cache()->Clear();
|
|
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
enum PageWatermarkValidity {
|
|
ALL_VALID,
|
|
ALL_INVALID
|
|
};
|
|
|
|
static void VerifyPageWatermarkValidity(PagedSpace* space,
|
|
PageWatermarkValidity validity) {
|
|
PageIterator it(space, PageIterator::PAGES_IN_USE);
|
|
bool expected_value = (validity == ALL_VALID);
|
|
while (it.has_next()) {
|
|
Page* page = it.next();
|
|
ASSERT(page->IsWatermarkValid() == expected_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void Heap::UpdateSurvivalRateTrend(int start_new_space_size) {
|
|
double survival_rate =
|
|
(static_cast<double>(young_survivors_after_last_gc_) * 100) /
|
|
start_new_space_size;
|
|
|
|
if (survival_rate > kYoungSurvivalRateThreshold) {
|
|
high_survival_rate_period_length_++;
|
|
} else {
|
|
high_survival_rate_period_length_ = 0;
|
|
}
|
|
|
|
double survival_rate_diff = survival_rate_ - survival_rate;
|
|
|
|
if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) {
|
|
set_survival_rate_trend(DECREASING);
|
|
} else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) {
|
|
set_survival_rate_trend(INCREASING);
|
|
} else {
|
|
set_survival_rate_trend(STABLE);
|
|
}
|
|
|
|
survival_rate_ = survival_rate;
|
|
}
|
|
|
|
bool Heap::PerformGarbageCollection(GarbageCollector collector,
|
|
GCTracer* tracer) {
|
|
bool next_gc_likely_to_collect_more = false;
|
|
|
|
if (collector != SCAVENGER) {
|
|
PROFILE(isolate_, CodeMovingGCEvent());
|
|
}
|
|
|
|
VerifySymbolTable();
|
|
if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
|
|
ASSERT(!allocation_allowed_);
|
|
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
|
|
global_gc_prologue_callback_();
|
|
}
|
|
|
|
GCType gc_type =
|
|
collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
|
|
|
|
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
|
|
if (gc_type & gc_prologue_callbacks_[i].gc_type) {
|
|
gc_prologue_callbacks_[i].callback(gc_type, kNoGCCallbackFlags);
|
|
}
|
|
}
|
|
|
|
EnsureFromSpaceIsCommitted();
|
|
|
|
int start_new_space_size = Heap::new_space()->SizeAsInt();
|
|
|
|
if (collector == MARK_COMPACTOR) {
|
|
// Perform mark-sweep with optional compaction.
|
|
MarkCompact(tracer);
|
|
sweep_generation_++;
|
|
bool high_survival_rate_during_scavenges = IsHighSurvivalRate() &&
|
|
IsStableOrIncreasingSurvivalTrend();
|
|
|
|
UpdateSurvivalRateTrend(start_new_space_size);
|
|
|
|
intptr_t old_gen_size = PromotedSpaceSize();
|
|
old_gen_promotion_limit_ =
|
|
old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3);
|
|
old_gen_allocation_limit_ =
|
|
old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 2);
|
|
|
|
if (high_survival_rate_during_scavenges &&
|
|
IsStableOrIncreasingSurvivalTrend()) {
|
|
// Stable high survival rates of young objects both during partial and
|
|
// full collection indicate that mutator is either building or modifying
|
|
// a structure with a long lifetime.
|
|
// In this case we aggressively raise old generation memory limits to
|
|
// postpone subsequent mark-sweep collection and thus trade memory
|
|
// space for the mutation speed.
|
|
old_gen_promotion_limit_ *= 2;
|
|
old_gen_allocation_limit_ *= 2;
|
|
}
|
|
|
|
old_gen_exhausted_ = false;
|
|
} else {
|
|
tracer_ = tracer;
|
|
Scavenge();
|
|
tracer_ = NULL;
|
|
|
|
UpdateSurvivalRateTrend(start_new_space_size);
|
|
}
|
|
|
|
isolate_->counters()->objs_since_last_young()->Set(0);
|
|
|
|
gc_post_processing_depth_++;
|
|
{ DisableAssertNoAllocation allow_allocation;
|
|
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
|
|
next_gc_likely_to_collect_more =
|
|
isolate_->global_handles()->PostGarbageCollectionProcessing(collector);
|
|
}
|
|
gc_post_processing_depth_--;
|
|
|
|
// Update relocatables.
|
|
Relocatable::PostGarbageCollectionProcessing();
|
|
|
|
if (collector == MARK_COMPACTOR) {
|
|
// Register the amount of external allocated memory.
|
|
amount_of_external_allocated_memory_at_last_global_gc_ =
|
|
amount_of_external_allocated_memory_;
|
|
}
|
|
|
|
GCCallbackFlags callback_flags = tracer->is_compacting()
|
|
? kGCCallbackFlagCompacted
|
|
: kNoGCCallbackFlags;
|
|
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
|
|
if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
|
|
gc_epilogue_callbacks_[i].callback(gc_type, callback_flags);
|
|
}
|
|
}
|
|
|
|
if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
|
|
ASSERT(!allocation_allowed_);
|
|
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
|
|
global_gc_epilogue_callback_();
|
|
}
|
|
VerifySymbolTable();
|
|
|
|
return next_gc_likely_to_collect_more;
|
|
}
|
|
|
|
|
|
void Heap::MarkCompact(GCTracer* tracer) {
|
|
gc_state_ = MARK_COMPACT;
|
|
LOG(isolate_, ResourceEvent("markcompact", "begin"));
|
|
|
|
mark_compact_collector_.Prepare(tracer);
|
|
|
|
bool is_compacting = mark_compact_collector_.IsCompacting();
|
|
|
|
if (is_compacting) {
|
|
mc_count_++;
|
|
} else {
|
|
ms_count_++;
|
|
}
|
|
tracer->set_full_gc_count(mc_count_ + ms_count_);
|
|
|
|
MarkCompactPrologue(is_compacting);
|
|
|
|
is_safe_to_read_maps_ = false;
|
|
mark_compact_collector_.CollectGarbage();
|
|
is_safe_to_read_maps_ = true;
|
|
|
|
LOG(isolate_, ResourceEvent("markcompact", "end"));
|
|
|
|
gc_state_ = NOT_IN_GC;
|
|
|
|
Shrink();
|
|
|
|
isolate_->counters()->objs_since_last_full()->Set(0);
|
|
|
|
contexts_disposed_ = 0;
|
|
}
|
|
|
|
|
|
void Heap::MarkCompactPrologue(bool is_compacting) {
|
|
// At any old GC clear the keyed lookup cache to enable collection of unused
|
|
// maps.
|
|
isolate_->keyed_lookup_cache()->Clear();
|
|
isolate_->context_slot_cache()->Clear();
|
|
isolate_->descriptor_lookup_cache()->Clear();
|
|
StringSplitCache::Clear(string_split_cache());
|
|
|
|
isolate_->compilation_cache()->MarkCompactPrologue();
|
|
|
|
CompletelyClearInstanceofCache();
|
|
|
|
if (is_compacting) FlushNumberStringCache();
|
|
if (FLAG_cleanup_code_caches_at_gc) {
|
|
polymorphic_code_cache()->set_cache(undefined_value());
|
|
}
|
|
|
|
ClearNormalizedMapCaches();
|
|
}
|
|
|
|
|
|
Object* Heap::FindCodeObject(Address a) {
|
|
Object* obj = NULL; // Initialization to please compiler.
|
|
{ MaybeObject* maybe_obj = code_space_->FindObject(a);
|
|
if (!maybe_obj->ToObject(&obj)) {
|
|
obj = lo_space_->FindObject(a)->ToObjectUnchecked();
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
|
|
// Helper class for copying HeapObjects
|
|
class ScavengeVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
|
|
|
|
void VisitPointer(Object** p) { ScavengePointer(p); }
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Copy all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) ScavengePointer(p);
|
|
}
|
|
|
|
private:
|
|
void ScavengePointer(Object** p) {
|
|
Object* object = *p;
|
|
if (!heap_->InNewSpace(object)) return;
|
|
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
|
|
reinterpret_cast<HeapObject*>(object));
|
|
}
|
|
|
|
Heap* heap_;
|
|
};
|
|
|
|
|
|
#ifdef DEBUG
|
|
// Visitor class to verify pointers in code or data space do not point into
|
|
// new space.
|
|
class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object**end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
if ((*current)->IsHeapObject()) {
|
|
ASSERT(!HEAP->InNewSpace(HeapObject::cast(*current)));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
static void VerifyNonPointerSpacePointers() {
|
|
// Verify that there are no pointers to new space in spaces where we
|
|
// do not expect them.
|
|
VerifyNonPointerSpacePointersVisitor v;
|
|
HeapObjectIterator code_it(HEAP->code_space());
|
|
for (HeapObject* object = code_it.next();
|
|
object != NULL; object = code_it.next())
|
|
object->Iterate(&v);
|
|
|
|
HeapObjectIterator data_it(HEAP->old_data_space());
|
|
for (HeapObject* object = data_it.next();
|
|
object != NULL; object = data_it.next())
|
|
object->Iterate(&v);
|
|
}
|
|
#endif
|
|
|
|
|
|
void Heap::CheckNewSpaceExpansionCriteria() {
|
|
if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
|
|
survived_since_last_expansion_ > new_space_.Capacity()) {
|
|
// Grow the size of new space if there is room to grow and enough
|
|
// data has survived scavenge since the last expansion.
|
|
new_space_.Grow();
|
|
survived_since_last_expansion_ = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
|
|
return heap->InNewSpace(*p) &&
|
|
!HeapObject::cast(*p)->map_word().IsForwardingAddress();
|
|
}
|
|
|
|
|
|
void Heap::Scavenge() {
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers();
|
|
#endif
|
|
|
|
gc_state_ = SCAVENGE;
|
|
|
|
SwitchScavengingVisitorsTableIfProfilingWasEnabled();
|
|
|
|
Page::FlipMeaningOfInvalidatedWatermarkFlag(this);
|
|
#ifdef DEBUG
|
|
VerifyPageWatermarkValidity(old_pointer_space_, ALL_VALID);
|
|
VerifyPageWatermarkValidity(map_space_, ALL_VALID);
|
|
#endif
|
|
|
|
// We do not update an allocation watermark of the top page during linear
|
|
// allocation to avoid overhead. So to maintain the watermark invariant
|
|
// we have to manually cache the watermark and mark the top page as having an
|
|
// invalid watermark. This guarantees that dirty regions iteration will use a
|
|
// correct watermark even if a linear allocation happens.
|
|
old_pointer_space_->FlushTopPageWatermark();
|
|
map_space_->FlushTopPageWatermark();
|
|
|
|
// Implements Cheney's copying algorithm
|
|
LOG(isolate_, ResourceEvent("scavenge", "begin"));
|
|
|
|
// Clear descriptor cache.
|
|
isolate_->descriptor_lookup_cache()->Clear();
|
|
|
|
// Used for updating survived_since_last_expansion_ at function end.
|
|
intptr_t survived_watermark = PromotedSpaceSize();
|
|
|
|
CheckNewSpaceExpansionCriteria();
|
|
|
|
// Flip the semispaces. After flipping, to space is empty, from space has
|
|
// live objects.
|
|
new_space_.Flip();
|
|
new_space_.ResetAllocationInfo();
|
|
|
|
// We need to sweep newly copied objects which can be either in the
|
|
// to space or promoted to the old generation. For to-space
|
|
// objects, we treat the bottom of the to space as a queue. Newly
|
|
// copied and unswept objects lie between a 'front' mark and the
|
|
// allocation pointer.
|
|
//
|
|
// Promoted objects can go into various old-generation spaces, and
|
|
// can be allocated internally in the spaces (from the free list).
|
|
// We treat the top of the to space as a queue of addresses of
|
|
// promoted objects. The addresses of newly promoted and unswept
|
|
// objects lie between a 'front' mark and a 'rear' mark that is
|
|
// updated as a side effect of promoting an object.
|
|
//
|
|
// There is guaranteed to be enough room at the top of the to space
|
|
// for the addresses of promoted objects: every object promoted
|
|
// frees up its size in bytes from the top of the new space, and
|
|
// objects are at least one pointer in size.
|
|
Address new_space_front = new_space_.ToSpaceLow();
|
|
promotion_queue_.Initialize(new_space_.ToSpaceHigh());
|
|
|
|
is_safe_to_read_maps_ = false;
|
|
ScavengeVisitor scavenge_visitor(this);
|
|
// Copy roots.
|
|
IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
|
|
|
|
// Copy objects reachable from the old generation. By definition,
|
|
// there are no intergenerational pointers in code or data spaces.
|
|
IterateDirtyRegions(old_pointer_space_,
|
|
&Heap::IteratePointersInDirtyRegion,
|
|
&ScavengePointer,
|
|
WATERMARK_CAN_BE_INVALID);
|
|
|
|
IterateDirtyRegions(map_space_,
|
|
&IteratePointersInDirtyMapsRegion,
|
|
&ScavengePointer,
|
|
WATERMARK_CAN_BE_INVALID);
|
|
|
|
lo_space_->IterateDirtyRegions(&ScavengePointer);
|
|
|
|
// Copy objects reachable from cells by scavenging cell values directly.
|
|
HeapObjectIterator cell_iterator(cell_space_);
|
|
for (HeapObject* cell = cell_iterator.next();
|
|
cell != NULL; cell = cell_iterator.next()) {
|
|
if (cell->IsJSGlobalPropertyCell()) {
|
|
Address value_address =
|
|
reinterpret_cast<Address>(cell) +
|
|
(JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
|
|
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
|
|
}
|
|
}
|
|
|
|
// Scavenge object reachable from the global contexts list directly.
|
|
scavenge_visitor.VisitPointer(BitCast<Object**>(&global_contexts_list_));
|
|
|
|
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
|
isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
|
|
&IsUnscavengedHeapObject);
|
|
isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
|
|
&scavenge_visitor);
|
|
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
|
|
|
|
|
UpdateNewSpaceReferencesInExternalStringTable(
|
|
&UpdateNewSpaceReferenceInExternalStringTableEntry);
|
|
|
|
LiveObjectList::UpdateReferencesForScavengeGC();
|
|
isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
|
|
|
|
ASSERT(new_space_front == new_space_.top());
|
|
|
|
is_safe_to_read_maps_ = true;
|
|
|
|
// Set age mark.
|
|
new_space_.set_age_mark(new_space_.top());
|
|
|
|
// Update how much has survived scavenge.
|
|
IncrementYoungSurvivorsCounter(static_cast<int>(
|
|
(PromotedSpaceSize() - survived_watermark) + new_space_.Size()));
|
|
|
|
LOG(isolate_, ResourceEvent("scavenge", "end"));
|
|
|
|
gc_state_ = NOT_IN_GC;
|
|
}
|
|
|
|
|
|
String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
|
|
Object** p) {
|
|
MapWord first_word = HeapObject::cast(*p)->map_word();
|
|
|
|
if (!first_word.IsForwardingAddress()) {
|
|
// Unreachable external string can be finalized.
|
|
heap->FinalizeExternalString(String::cast(*p));
|
|
return NULL;
|
|
}
|
|
|
|
// String is still reachable.
|
|
return String::cast(first_word.ToForwardingAddress());
|
|
}
|
|
|
|
|
|
void Heap::UpdateNewSpaceReferencesInExternalStringTable(
|
|
ExternalStringTableUpdaterCallback updater_func) {
|
|
external_string_table_.Verify();
|
|
|
|
if (external_string_table_.new_space_strings_.is_empty()) return;
|
|
|
|
Object** start = &external_string_table_.new_space_strings_[0];
|
|
Object** end = start + external_string_table_.new_space_strings_.length();
|
|
Object** last = start;
|
|
|
|
for (Object** p = start; p < end; ++p) {
|
|
ASSERT(InFromSpace(*p));
|
|
String* target = updater_func(this, p);
|
|
|
|
if (target == NULL) continue;
|
|
|
|
ASSERT(target->IsExternalString());
|
|
|
|
if (InNewSpace(target)) {
|
|
// String is still in new space. Update the table entry.
|
|
*last = target;
|
|
++last;
|
|
} else {
|
|
// String got promoted. Move it to the old string list.
|
|
external_string_table_.AddOldString(target);
|
|
}
|
|
}
|
|
|
|
ASSERT(last <= end);
|
|
external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
|
|
}
|
|
|
|
|
|
static Object* ProcessFunctionWeakReferences(Heap* heap,
|
|
Object* function,
|
|
WeakObjectRetainer* retainer) {
|
|
Object* head = heap->undefined_value();
|
|
JSFunction* tail = NULL;
|
|
Object* candidate = function;
|
|
while (candidate != heap->undefined_value()) {
|
|
// Check whether to keep the candidate in the list.
|
|
JSFunction* candidate_function = reinterpret_cast<JSFunction*>(candidate);
|
|
Object* retain = retainer->RetainAs(candidate);
|
|
if (retain != NULL) {
|
|
if (head == heap->undefined_value()) {
|
|
// First element in the list.
|
|
head = candidate_function;
|
|
} else {
|
|
// Subsequent elements in the list.
|
|
ASSERT(tail != NULL);
|
|
tail->set_next_function_link(candidate_function);
|
|
}
|
|
// Retained function is new tail.
|
|
tail = candidate_function;
|
|
}
|
|
// Move to next element in the list.
|
|
candidate = candidate_function->next_function_link();
|
|
}
|
|
|
|
// Terminate the list if there is one or more elements.
|
|
if (tail != NULL) {
|
|
tail->set_next_function_link(heap->undefined_value());
|
|
}
|
|
|
|
return head;
|
|
}
|
|
|
|
|
|
void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
|
|
Object* head = undefined_value();
|
|
Context* tail = NULL;
|
|
Object* candidate = global_contexts_list_;
|
|
while (candidate != undefined_value()) {
|
|
// Check whether to keep the candidate in the list.
|
|
Context* candidate_context = reinterpret_cast<Context*>(candidate);
|
|
Object* retain = retainer->RetainAs(candidate);
|
|
if (retain != NULL) {
|
|
if (head == undefined_value()) {
|
|
// First element in the list.
|
|
head = candidate_context;
|
|
} else {
|
|
// Subsequent elements in the list.
|
|
ASSERT(tail != NULL);
|
|
tail->set_unchecked(this,
|
|
Context::NEXT_CONTEXT_LINK,
|
|
candidate_context,
|
|
UPDATE_WRITE_BARRIER);
|
|
}
|
|
// Retained context is new tail.
|
|
tail = candidate_context;
|
|
|
|
// Process the weak list of optimized functions for the context.
|
|
Object* function_list_head =
|
|
ProcessFunctionWeakReferences(
|
|
this,
|
|
candidate_context->get(Context::OPTIMIZED_FUNCTIONS_LIST),
|
|
retainer);
|
|
candidate_context->set_unchecked(this,
|
|
Context::OPTIMIZED_FUNCTIONS_LIST,
|
|
function_list_head,
|
|
UPDATE_WRITE_BARRIER);
|
|
}
|
|
// Move to next element in the list.
|
|
candidate = candidate_context->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
|
|
// Terminate the list if there is one or more elements.
|
|
if (tail != NULL) {
|
|
tail->set_unchecked(this,
|
|
Context::NEXT_CONTEXT_LINK,
|
|
Heap::undefined_value(),
|
|
UPDATE_WRITE_BARRIER);
|
|
}
|
|
|
|
// Update the head of the list of contexts.
|
|
global_contexts_list_ = head;
|
|
}
|
|
|
|
|
|
class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
|
|
public:
|
|
static inline void VisitPointer(Heap* heap, Object** p) {
|
|
Object* object = *p;
|
|
if (!heap->InNewSpace(object)) return;
|
|
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
|
|
reinterpret_cast<HeapObject*>(object));
|
|
}
|
|
};
|
|
|
|
|
|
Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
|
|
Address new_space_front) {
|
|
do {
|
|
ASSERT(new_space_front <= new_space_.top());
|
|
|
|
// The addresses new_space_front and new_space_.top() define a
|
|
// queue of unprocessed copied objects. Process them until the
|
|
// queue is empty.
|
|
while (new_space_front < new_space_.top()) {
|
|
HeapObject* object = HeapObject::FromAddress(new_space_front);
|
|
new_space_front += NewSpaceScavenger::IterateBody(object->map(), object);
|
|
}
|
|
|
|
// Promote and process all the to-be-promoted objects.
|
|
while (!promotion_queue_.is_empty()) {
|
|
HeapObject* target;
|
|
int size;
|
|
promotion_queue_.remove(&target, &size);
|
|
|
|
// Promoted object might be already partially visited
|
|
// during dirty regions iteration. Thus we search specificly
|
|
// for pointers to from semispace instead of looking for pointers
|
|
// to new space.
|
|
ASSERT(!target->IsMap());
|
|
IterateAndMarkPointersToFromSpace(target->address(),
|
|
target->address() + size,
|
|
&ScavengePointer);
|
|
}
|
|
|
|
// Take another spin if there are now unswept objects in new space
|
|
// (there are currently no more unswept promoted objects).
|
|
} while (new_space_front < new_space_.top());
|
|
|
|
return new_space_front;
|
|
}
|
|
|
|
|
|
enum LoggingAndProfiling {
|
|
LOGGING_AND_PROFILING_ENABLED,
|
|
LOGGING_AND_PROFILING_DISABLED
|
|
};
|
|
|
|
|
|
typedef void (*ScavengingCallback)(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object);
|
|
|
|
|
|
static Atomic32 scavenging_visitors_table_mode_;
|
|
static VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
|
|
|
|
|
|
INLINE(static void DoScavengeObject(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* obj));
|
|
|
|
|
|
void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
|
|
scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
|
|
}
|
|
|
|
|
|
template<LoggingAndProfiling logging_and_profiling_mode>
|
|
class ScavengingVisitor : public StaticVisitorBase {
|
|
public:
|
|
static void Initialize() {
|
|
table_.Register(kVisitSeqAsciiString, &EvacuateSeqAsciiString);
|
|
table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
|
|
table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
|
|
table_.Register(kVisitByteArray, &EvacuateByteArray);
|
|
table_.Register(kVisitFixedArray, &EvacuateFixedArray);
|
|
table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
|
|
|
|
table_.Register(kVisitGlobalContext,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<Context::kSize>);
|
|
|
|
table_.Register(kVisitConsString,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<ConsString::kSize>);
|
|
|
|
table_.Register(kVisitSlicedString,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<SlicedString::kSize>);
|
|
|
|
table_.Register(kVisitSharedFunctionInfo,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<SharedFunctionInfo::kSize>);
|
|
|
|
table_.Register(kVisitJSWeakMap,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
table_.Register(kVisitJSRegExp,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
table_.Register(kVisitJSFunction,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<JSFunction::kSize>);
|
|
|
|
table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
|
|
kVisitDataObject,
|
|
kVisitDataObjectGeneric>();
|
|
|
|
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
|
|
kVisitJSObject,
|
|
kVisitJSObjectGeneric>();
|
|
|
|
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
|
|
kVisitStruct,
|
|
kVisitStructGeneric>();
|
|
}
|
|
|
|
static VisitorDispatchTable<ScavengingCallback>* GetTable() {
|
|
return &table_;
|
|
}
|
|
|
|
private:
|
|
enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
|
|
enum SizeRestriction { SMALL, UNKNOWN_SIZE };
|
|
|
|
static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
|
|
bool should_record = false;
|
|
#ifdef DEBUG
|
|
should_record = FLAG_heap_stats;
|
|
#endif
|
|
should_record = should_record || FLAG_log_gc;
|
|
if (should_record) {
|
|
if (heap->new_space()->Contains(obj)) {
|
|
heap->new_space()->RecordAllocation(obj);
|
|
} else {
|
|
heap->new_space()->RecordPromotion(obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function used by CopyObject to copy a source object to an
|
|
// allocated target object and update the forwarding pointer in the source
|
|
// object. Returns the target object.
|
|
INLINE(static HeapObject* MigrateObject(Heap* heap,
|
|
HeapObject* source,
|
|
HeapObject* target,
|
|
int size)) {
|
|
// Copy the content of source to target.
|
|
heap->CopyBlock(target->address(), source->address(), size);
|
|
|
|
// Set the forwarding address.
|
|
source->set_map_word(MapWord::FromForwardingAddress(target));
|
|
|
|
if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
|
|
// Update NewSpace stats if necessary.
|
|
RecordCopiedObject(heap, target);
|
|
HEAP_PROFILE(heap, ObjectMoveEvent(source->address(), target->address()));
|
|
Isolate* isolate = heap->isolate();
|
|
if (isolate->logger()->is_logging() ||
|
|
CpuProfiler::is_profiling(isolate)) {
|
|
if (target->IsSharedFunctionInfo()) {
|
|
PROFILE(isolate, SharedFunctionInfoMoveEvent(
|
|
source->address(), target->address()));
|
|
}
|
|
}
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
|
|
template<ObjectContents object_contents, SizeRestriction size_restriction>
|
|
static inline void EvacuateObject(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object,
|
|
int object_size) {
|
|
ASSERT((size_restriction != SMALL) ||
|
|
(object_size <= Page::kMaxHeapObjectSize));
|
|
ASSERT(object->Size() == object_size);
|
|
|
|
Heap* heap = map->heap();
|
|
if (heap->ShouldBePromoted(object->address(), object_size)) {
|
|
MaybeObject* maybe_result;
|
|
|
|
if ((size_restriction != SMALL) &&
|
|
(object_size > Page::kMaxHeapObjectSize)) {
|
|
maybe_result = heap->lo_space()->AllocateRawFixedArray(object_size);
|
|
} else {
|
|
if (object_contents == DATA_OBJECT) {
|
|
maybe_result = heap->old_data_space()->AllocateRaw(object_size);
|
|
} else {
|
|
maybe_result = heap->old_pointer_space()->AllocateRaw(object_size);
|
|
}
|
|
}
|
|
|
|
Object* result = NULL; // Initialization to please compiler.
|
|
if (maybe_result->ToObject(&result)) {
|
|
HeapObject* target = HeapObject::cast(result);
|
|
*slot = MigrateObject(heap, object , target, object_size);
|
|
|
|
if (object_contents == POINTER_OBJECT) {
|
|
heap->promotion_queue()->insert(target, object_size);
|
|
}
|
|
|
|
heap->tracer()->increment_promoted_objects_size(object_size);
|
|
return;
|
|
}
|
|
}
|
|
Object* result =
|
|
heap->new_space()->AllocateRaw(object_size)->ToObjectUnchecked();
|
|
*slot = MigrateObject(heap, object, HeapObject::cast(result), object_size);
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void EvacuateFixedArray(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
|
|
EvacuateObject<POINTER_OBJECT, UNKNOWN_SIZE>(map,
|
|
slot,
|
|
object,
|
|
object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateFixedDoubleArray(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
|
|
int object_size = FixedDoubleArray::SizeFor(length);
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map,
|
|
slot,
|
|
object,
|
|
object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateByteArray(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateSeqAsciiString(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = SeqAsciiString::cast(object)->
|
|
SeqAsciiStringSize(map->instance_type());
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateSeqTwoByteString(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = SeqTwoByteString::cast(object)->
|
|
SeqTwoByteStringSize(map->instance_type());
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
|
|
}
|
|
|
|
|
|
static inline bool IsShortcutCandidate(int type) {
|
|
return ((type & kShortcutTypeMask) == kShortcutTypeTag);
|
|
}
|
|
|
|
static inline void EvacuateShortcutCandidate(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
ASSERT(IsShortcutCandidate(map->instance_type()));
|
|
|
|
if (ConsString::cast(object)->unchecked_second() ==
|
|
map->heap()->empty_string()) {
|
|
HeapObject* first =
|
|
HeapObject::cast(ConsString::cast(object)->unchecked_first());
|
|
|
|
*slot = first;
|
|
|
|
if (!map->heap()->InNewSpace(first)) {
|
|
object->set_map_word(MapWord::FromForwardingAddress(first));
|
|
return;
|
|
}
|
|
|
|
MapWord first_word = first->map_word();
|
|
if (first_word.IsForwardingAddress()) {
|
|
HeapObject* target = first_word.ToForwardingAddress();
|
|
|
|
*slot = target;
|
|
object->set_map_word(MapWord::FromForwardingAddress(target));
|
|
return;
|
|
}
|
|
|
|
DoScavengeObject(first->map(), slot, first);
|
|
object->set_map_word(MapWord::FromForwardingAddress(*slot));
|
|
return;
|
|
}
|
|
|
|
int object_size = ConsString::kSize;
|
|
EvacuateObject<POINTER_OBJECT, SMALL>(map, slot, object, object_size);
|
|
}
|
|
|
|
template<ObjectContents object_contents>
|
|
class ObjectEvacuationStrategy {
|
|
public:
|
|
template<int object_size>
|
|
static inline void VisitSpecialized(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
|
|
}
|
|
|
|
static inline void Visit(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = map->instance_size();
|
|
EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
|
|
}
|
|
};
|
|
|
|
static VisitorDispatchTable<ScavengingCallback> table_;
|
|
};
|
|
|
|
|
|
template<LoggingAndProfiling logging_and_profiling_mode>
|
|
VisitorDispatchTable<ScavengingCallback>
|
|
ScavengingVisitor<logging_and_profiling_mode>::table_;
|
|
|
|
|
|
static void InitializeScavengingVisitorsTables() {
|
|
ScavengingVisitor<LOGGING_AND_PROFILING_DISABLED>::Initialize();
|
|
ScavengingVisitor<LOGGING_AND_PROFILING_ENABLED>::Initialize();
|
|
scavenging_visitors_table_.CopyFrom(
|
|
ScavengingVisitor<LOGGING_AND_PROFILING_DISABLED>::GetTable());
|
|
scavenging_visitors_table_mode_ = LOGGING_AND_PROFILING_DISABLED;
|
|
}
|
|
|
|
|
|
void Heap::SwitchScavengingVisitorsTableIfProfilingWasEnabled() {
|
|
if (scavenging_visitors_table_mode_ == LOGGING_AND_PROFILING_ENABLED) {
|
|
// Table was already updated by some isolate.
|
|
return;
|
|
}
|
|
|
|
if (isolate()->logger()->is_logging() |
|
|
CpuProfiler::is_profiling(isolate()) ||
|
|
(isolate()->heap_profiler() != NULL &&
|
|
isolate()->heap_profiler()->is_profiling())) {
|
|
// If one of the isolates is doing scavenge at this moment of time
|
|
// it might see this table in an inconsitent state when
|
|
// some of the callbacks point to
|
|
// ScavengingVisitor<LOGGING_AND_PROFILING_ENABLED> and others
|
|
// to ScavengingVisitor<LOGGING_AND_PROFILING_DISABLED>.
|
|
// However this does not lead to any bugs as such isolate does not have
|
|
// profiling enabled and any isolate with enabled profiling is guaranteed
|
|
// to see the table in the consistent state.
|
|
scavenging_visitors_table_.CopyFrom(
|
|
ScavengingVisitor<LOGGING_AND_PROFILING_ENABLED>::GetTable());
|
|
|
|
// We use Release_Store to prevent reordering of this write before writes
|
|
// to the table.
|
|
Release_Store(&scavenging_visitors_table_mode_,
|
|
LOGGING_AND_PROFILING_ENABLED);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
|
|
ASSERT(HEAP->InFromSpace(object));
|
|
MapWord first_word = object->map_word();
|
|
ASSERT(!first_word.IsForwardingAddress());
|
|
Map* map = first_word.ToMap();
|
|
DoScavengeObject(map, p, object);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type,
|
|
int instance_size) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawMap();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Map::cast cannot be used due to uninitialized map field.
|
|
reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
|
|
reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
|
|
reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
|
|
reinterpret_cast<Map*>(result)->set_visitor_id(
|
|
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
|
|
reinterpret_cast<Map*>(result)->set_inobject_properties(0);
|
|
reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
|
|
reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
|
|
reinterpret_cast<Map*>(result)->set_bit_field(0);
|
|
reinterpret_cast<Map*>(result)->set_bit_field2(0);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateMap(InstanceType instance_type, int instance_size) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawMap();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
Map* map = reinterpret_cast<Map*>(result);
|
|
map->set_map(meta_map());
|
|
map->set_instance_type(instance_type);
|
|
map->set_visitor_id(
|
|
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
|
|
map->set_prototype(null_value());
|
|
map->set_constructor(null_value());
|
|
map->set_instance_size(instance_size);
|
|
map->set_inobject_properties(0);
|
|
map->set_pre_allocated_property_fields(0);
|
|
map->init_instance_descriptors();
|
|
map->set_code_cache(empty_fixed_array());
|
|
map->set_prototype_transitions(empty_fixed_array());
|
|
map->set_unused_property_fields(0);
|
|
map->set_bit_field(0);
|
|
map->set_bit_field2(1 << Map::kIsExtensible);
|
|
map->set_elements_kind(FAST_ELEMENTS);
|
|
|
|
// If the map object is aligned fill the padding area with Smi 0 objects.
|
|
if (Map::kPadStart < Map::kSize) {
|
|
memset(reinterpret_cast<byte*>(map) + Map::kPadStart - kHeapObjectTag,
|
|
0,
|
|
Map::kSize - Map::kPadStart);
|
|
}
|
|
return map;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateCodeCache() {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateStruct(CODE_CACHE_TYPE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
CodeCache* code_cache = CodeCache::cast(result);
|
|
code_cache->set_default_cache(empty_fixed_array());
|
|
code_cache->set_normal_type_cache(undefined_value());
|
|
return code_cache;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocatePolymorphicCodeCache() {
|
|
return AllocateStruct(POLYMORPHIC_CODE_CACHE_TYPE);
|
|
}
|
|
|
|
|
|
const Heap::StringTypeTable Heap::string_type_table[] = {
|
|
#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
|
|
{type, size, k##camel_name##MapRootIndex},
|
|
STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
|
|
#undef STRING_TYPE_ELEMENT
|
|
};
|
|
|
|
|
|
const Heap::ConstantSymbolTable Heap::constant_symbol_table[] = {
|
|
#define CONSTANT_SYMBOL_ELEMENT(name, contents) \
|
|
{contents, k##name##RootIndex},
|
|
SYMBOL_LIST(CONSTANT_SYMBOL_ELEMENT)
|
|
#undef CONSTANT_SYMBOL_ELEMENT
|
|
};
|
|
|
|
|
|
const Heap::StructTable Heap::struct_table[] = {
|
|
#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
|
|
{ NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
|
|
STRUCT_LIST(STRUCT_TABLE_ELEMENT)
|
|
#undef STRUCT_TABLE_ELEMENT
|
|
};
|
|
|
|
|
|
bool Heap::CreateInitialMaps() {
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
// Map::cast cannot be used due to uninitialized map field.
|
|
Map* new_meta_map = reinterpret_cast<Map*>(obj);
|
|
set_meta_map(new_meta_map);
|
|
new_meta_map->set_map(new_meta_map);
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_fixed_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_oddball_map(Map::cast(obj));
|
|
|
|
// Allocate the empty array.
|
|
{ MaybeObject* maybe_obj = AllocateEmptyFixedArray();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_fixed_array(FixedArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_DATA_SPACE);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_null_value(obj);
|
|
Oddball::cast(obj)->set_kind(Oddball::kNull);
|
|
|
|
// Allocate the empty descriptor array.
|
|
{ MaybeObject* maybe_obj = AllocateEmptyFixedArray();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_descriptor_array(DescriptorArray::cast(obj));
|
|
|
|
// Fix the instance_descriptors for the existing maps.
|
|
meta_map()->init_instance_descriptors();
|
|
meta_map()->set_code_cache(empty_fixed_array());
|
|
meta_map()->set_prototype_transitions(empty_fixed_array());
|
|
|
|
fixed_array_map()->init_instance_descriptors();
|
|
fixed_array_map()->set_code_cache(empty_fixed_array());
|
|
fixed_array_map()->set_prototype_transitions(empty_fixed_array());
|
|
|
|
oddball_map()->init_instance_descriptors();
|
|
oddball_map()->set_code_cache(empty_fixed_array());
|
|
oddball_map()->set_prototype_transitions(empty_fixed_array());
|
|
|
|
// Fix prototype object for existing maps.
|
|
meta_map()->set_prototype(null_value());
|
|
meta_map()->set_constructor(null_value());
|
|
|
|
fixed_array_map()->set_prototype(null_value());
|
|
fixed_array_map()->set_constructor(null_value());
|
|
|
|
oddball_map()->set_prototype(null_value());
|
|
oddball_map()->set_constructor(null_value());
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_fixed_cow_array_map(Map::cast(obj));
|
|
ASSERT(fixed_array_map() != fixed_cow_array_map());
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_serialized_scope_info_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_heap_number_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(FOREIGN_TYPE, Foreign::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_foreign_map(Map::cast(obj));
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
|
|
const StringTypeTable& entry = string_type_table[i];
|
|
{ MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
roots_[entry.index] = Map::cast(obj);
|
|
}
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_undetectable_string_map(Map::cast(obj));
|
|
Map::cast(obj)->set_is_undetectable();
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_undetectable_ascii_string_map(Map::cast(obj));
|
|
Map::cast(obj)->set_is_undetectable();
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_DOUBLE_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_fixed_double_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_byte_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateByteArray(0, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_byte_array(ByteArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_pixel_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_byte_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_unsigned_byte_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_short_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_unsigned_short_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_int_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_unsigned_int_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_float_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_non_strict_arguments_elements_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_DOUBLE_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_double_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_code_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(JS_GLOBAL_PROPERTY_CELL_TYPE,
|
|
JSGlobalPropertyCell::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_global_property_cell_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_one_pointer_filler_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_two_pointer_filler_map(Map::cast(obj));
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
|
|
const StructTable& entry = struct_table[i];
|
|
{ MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
roots_[entry.index] = Map::cast(obj);
|
|
}
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_hash_table_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_function_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_catch_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_with_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_block_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
Map* global_context_map = Map::cast(obj);
|
|
global_context_map->set_visitor_id(StaticVisitorBase::kVisitGlobalContext);
|
|
set_global_context_map(global_context_map);
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE,
|
|
SharedFunctionInfo::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_shared_function_info_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE,
|
|
JSMessageObject::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_message_object_map(Map::cast(obj));
|
|
|
|
ASSERT(!InNewSpace(empty_fixed_array()));
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
|
|
// Statically ensure that it is safe to allocate heap numbers in paged
|
|
// spaces.
|
|
STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
HeapObject::cast(result)->set_map(heap_number_map());
|
|
HeapNumber::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateHeapNumber(double value) {
|
|
// Use general version, if we're forced to always allocate.
|
|
if (always_allocate()) return AllocateHeapNumber(value, TENURED);
|
|
|
|
// This version of AllocateHeapNumber is optimized for
|
|
// allocation in new space.
|
|
STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
|
|
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = new_space_.AllocateRaw(HeapNumber::kSize);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
HeapObject::cast(result)->set_map(heap_number_map());
|
|
HeapNumber::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSGlobalPropertyCell(Object* value) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawCell();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
HeapObject::cast(result)->set_map(global_property_cell_map());
|
|
JSGlobalPropertyCell::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CreateOddball(const char* to_string,
|
|
Object* to_number,
|
|
byte kind) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(oddball_map(), OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
return Oddball::cast(result)->Initialize(to_string, to_number, kind);
|
|
}
|
|
|
|
|
|
bool Heap::CreateApiObjects() {
|
|
Object* obj;
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_neander_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map());
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
Object* elements;
|
|
{ MaybeObject* maybe_elements = AllocateFixedArray(2);
|
|
if (!maybe_elements->ToObject(&elements)) return false;
|
|
}
|
|
FixedArray::cast(elements)->set(0, Smi::FromInt(0));
|
|
JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
|
|
set_message_listeners(JSObject::cast(obj));
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Heap::CreateJSEntryStub() {
|
|
JSEntryStub stub;
|
|
set_js_entry_code(*stub.GetCode());
|
|
}
|
|
|
|
|
|
void Heap::CreateJSConstructEntryStub() {
|
|
JSConstructEntryStub stub;
|
|
set_js_construct_entry_code(*stub.GetCode());
|
|
}
|
|
|
|
|
|
void Heap::CreateFixedStubs() {
|
|
// Here we create roots for fixed stubs. They are needed at GC
|
|
// for cooking and uncooking (check out frames.cc).
|
|
// The eliminates the need for doing dictionary lookup in the
|
|
// stub cache for these stubs.
|
|
HandleScope scope;
|
|
// gcc-4.4 has problem generating correct code of following snippet:
|
|
// { JSEntryStub stub;
|
|
// js_entry_code_ = *stub.GetCode();
|
|
// }
|
|
// { JSConstructEntryStub stub;
|
|
// js_construct_entry_code_ = *stub.GetCode();
|
|
// }
|
|
// To workaround the problem, make separate functions without inlining.
|
|
Heap::CreateJSEntryStub();
|
|
Heap::CreateJSConstructEntryStub();
|
|
}
|
|
|
|
|
|
bool Heap::CreateInitialObjects() {
|
|
Object* obj;
|
|
|
|
// The -0 value must be set before NumberFromDouble works.
|
|
{ MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_minus_zero_value(obj);
|
|
ASSERT(signbit(minus_zero_value()->Number()) != 0);
|
|
|
|
{ MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_nan_value(obj);
|
|
|
|
{ MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_DATA_SPACE);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_undefined_value(obj);
|
|
Oddball::cast(obj)->set_kind(Oddball::kUndefined);
|
|
ASSERT(!InNewSpace(undefined_value()));
|
|
|
|
// Allocate initial symbol table.
|
|
{ MaybeObject* maybe_obj = SymbolTable::Allocate(kInitialSymbolTableSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
// Don't use set_symbol_table() due to asserts.
|
|
roots_[kSymbolTableRootIndex] = obj;
|
|
|
|
// Assign the print strings for oddballs after creating symboltable.
|
|
Object* symbol;
|
|
{ MaybeObject* maybe_symbol = LookupAsciiSymbol("undefined");
|
|
if (!maybe_symbol->ToObject(&symbol)) return false;
|
|
}
|
|
Oddball::cast(undefined_value())->set_to_string(String::cast(symbol));
|
|
Oddball::cast(undefined_value())->set_to_number(nan_value());
|
|
|
|
// Allocate the null_value
|
|
{ MaybeObject* maybe_obj =
|
|
Oddball::cast(null_value())->Initialize("null",
|
|
Smi::FromInt(0),
|
|
Oddball::kNull);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("true",
|
|
Smi::FromInt(1),
|
|
Oddball::kTrue);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_true_value(obj);
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("false",
|
|
Smi::FromInt(0),
|
|
Oddball::kFalse);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_false_value(obj);
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("hole",
|
|
Smi::FromInt(-1),
|
|
Oddball::kTheHole);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_the_hole_value(obj);
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("arguments_marker",
|
|
Smi::FromInt(-4),
|
|
Oddball::kArgumentMarker);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_arguments_marker(obj);
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel",
|
|
Smi::FromInt(-2),
|
|
Oddball::kOther);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_no_interceptor_result_sentinel(obj);
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("termination_exception",
|
|
Smi::FromInt(-3),
|
|
Oddball::kOther);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_termination_exception(obj);
|
|
|
|
// Allocate the empty string.
|
|
{ MaybeObject* maybe_obj = AllocateRawAsciiString(0, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_string(String::cast(obj));
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(constant_symbol_table); i++) {
|
|
{ MaybeObject* maybe_obj =
|
|
LookupAsciiSymbol(constant_symbol_table[i].contents);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
roots_[constant_symbol_table[i].index] = String::cast(obj);
|
|
}
|
|
|
|
// Allocate the hidden symbol which is used to identify the hidden properties
|
|
// in JSObjects. The hash code has a special value so that it will not match
|
|
// the empty string when searching for the property. It cannot be part of the
|
|
// loop above because it needs to be allocated manually with the special
|
|
// hash code in place. The hash code for the hidden_symbol is zero to ensure
|
|
// that it will always be at the first entry in property descriptors.
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateSymbol(CStrVector(""), 0, String::kZeroHash);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
hidden_symbol_ = String::cast(obj);
|
|
|
|
// Allocate the foreign for __proto__.
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateForeign((Address) &Accessors::ObjectPrototype);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_prototype_accessors(Foreign::cast(obj));
|
|
|
|
// Allocate the code_stubs dictionary. The initial size is set to avoid
|
|
// expanding the dictionary during bootstrapping.
|
|
{ MaybeObject* maybe_obj = NumberDictionary::Allocate(128);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_code_stubs(NumberDictionary::cast(obj));
|
|
|
|
// Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
|
|
// is set to avoid expanding the dictionary during bootstrapping.
|
|
{ MaybeObject* maybe_obj = NumberDictionary::Allocate(64);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_non_monomorphic_cache(NumberDictionary::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocatePolymorphicCodeCache();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_polymorphic_code_cache(PolymorphicCodeCache::cast(obj));
|
|
|
|
set_instanceof_cache_function(Smi::FromInt(0));
|
|
set_instanceof_cache_map(Smi::FromInt(0));
|
|
set_instanceof_cache_answer(Smi::FromInt(0));
|
|
|
|
CreateFixedStubs();
|
|
|
|
// Allocate the dictionary of intrinsic function names.
|
|
{ MaybeObject* maybe_obj = StringDictionary::Allocate(Runtime::kNumFunctions);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
{ MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this,
|
|
obj);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_intrinsic_function_names(StringDictionary::cast(obj));
|
|
|
|
if (InitializeNumberStringCache()->IsFailure()) return false;
|
|
|
|
// Allocate cache for single character ASCII strings.
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateFixedArray(String::kMaxAsciiCharCode + 1, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_single_character_string_cache(FixedArray::cast(obj));
|
|
|
|
// Allocate cache for string split.
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateFixedArray(StringSplitCache::kStringSplitCacheSize, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_string_split_cache(FixedArray::cast(obj));
|
|
|
|
// Allocate cache for external strings pointing to native source code.
|
|
{ MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount());
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_natives_source_cache(FixedArray::cast(obj));
|
|
|
|
// Handling of script id generation is in FACTORY->NewScript.
|
|
set_last_script_id(undefined_value());
|
|
|
|
// Initialize keyed lookup cache.
|
|
isolate_->keyed_lookup_cache()->Clear();
|
|
|
|
// Initialize context slot cache.
|
|
isolate_->context_slot_cache()->Clear();
|
|
|
|
// Initialize descriptor cache.
|
|
isolate_->descriptor_lookup_cache()->Clear();
|
|
|
|
// Initialize compilation cache.
|
|
isolate_->compilation_cache()->Clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
Object* StringSplitCache::Lookup(
|
|
FixedArray* cache, String* string, String* pattern) {
|
|
if (!string->IsSymbol() || !pattern->IsSymbol()) return Smi::FromInt(0);
|
|
uint32_t hash = string->Hash();
|
|
uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
|
|
~(kArrayEntriesPerCacheEntry - 1));
|
|
if (cache->get(index + kStringOffset) == string &&
|
|
cache->get(index + kPatternOffset) == pattern) {
|
|
return cache->get(index + kArrayOffset);
|
|
}
|
|
index = ((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
|
|
if (cache->get(index + kStringOffset) == string &&
|
|
cache->get(index + kPatternOffset) == pattern) {
|
|
return cache->get(index + kArrayOffset);
|
|
}
|
|
return Smi::FromInt(0);
|
|
}
|
|
|
|
|
|
void StringSplitCache::Enter(Heap* heap,
|
|
FixedArray* cache,
|
|
String* string,
|
|
String* pattern,
|
|
FixedArray* array) {
|
|
if (!string->IsSymbol() || !pattern->IsSymbol()) return;
|
|
uint32_t hash = string->Hash();
|
|
uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
|
|
~(kArrayEntriesPerCacheEntry - 1));
|
|
if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
|
|
cache->set(index + kStringOffset, string);
|
|
cache->set(index + kPatternOffset, pattern);
|
|
cache->set(index + kArrayOffset, array);
|
|
} else {
|
|
uint32_t index2 =
|
|
((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
|
|
if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
|
|
cache->set(index2 + kStringOffset, string);
|
|
cache->set(index2 + kPatternOffset, pattern);
|
|
cache->set(index2 + kArrayOffset, array);
|
|
} else {
|
|
cache->set(index2 + kStringOffset, Smi::FromInt(0));
|
|
cache->set(index2 + kPatternOffset, Smi::FromInt(0));
|
|
cache->set(index2 + kArrayOffset, Smi::FromInt(0));
|
|
cache->set(index + kStringOffset, string);
|
|
cache->set(index + kPatternOffset, pattern);
|
|
cache->set(index + kArrayOffset, array);
|
|
}
|
|
}
|
|
if (array->length() < 100) { // Limit how many new symbols we want to make.
|
|
for (int i = 0; i < array->length(); i++) {
|
|
String* str = String::cast(array->get(i));
|
|
Object* symbol;
|
|
MaybeObject* maybe_symbol = heap->LookupSymbol(str);
|
|
if (maybe_symbol->ToObject(&symbol)) {
|
|
array->set(i, symbol);
|
|
}
|
|
}
|
|
}
|
|
array->set_map(heap->fixed_cow_array_map());
|
|
}
|
|
|
|
|
|
void StringSplitCache::Clear(FixedArray* cache) {
|
|
for (int i = 0; i < kStringSplitCacheSize; i++) {
|
|
cache->set(i, Smi::FromInt(0));
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::InitializeNumberStringCache() {
|
|
// Compute the size of the number string cache based on the max heap size.
|
|
// max_semispace_size_ == 512 KB => number_string_cache_size = 32.
|
|
// max_semispace_size_ == 8 MB => number_string_cache_size = 16KB.
|
|
int number_string_cache_size = max_semispace_size_ / 512;
|
|
number_string_cache_size = Max(32, Min(16*KB, number_string_cache_size));
|
|
Object* obj;
|
|
MaybeObject* maybe_obj =
|
|
AllocateFixedArray(number_string_cache_size * 2, TENURED);
|
|
if (maybe_obj->ToObject(&obj)) set_number_string_cache(FixedArray::cast(obj));
|
|
return maybe_obj;
|
|
}
|
|
|
|
|
|
void Heap::FlushNumberStringCache() {
|
|
// Flush the number to string cache.
|
|
int len = number_string_cache()->length();
|
|
for (int i = 0; i < len; i++) {
|
|
number_string_cache()->set_undefined(this, i);
|
|
}
|
|
}
|
|
|
|
|
|
static inline int double_get_hash(double d) {
|
|
DoubleRepresentation rep(d);
|
|
return static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32);
|
|
}
|
|
|
|
|
|
static inline int smi_get_hash(Smi* smi) {
|
|
return smi->value();
|
|
}
|
|
|
|
|
|
Object* Heap::GetNumberStringCache(Object* number) {
|
|
int hash;
|
|
int mask = (number_string_cache()->length() >> 1) - 1;
|
|
if (number->IsSmi()) {
|
|
hash = smi_get_hash(Smi::cast(number)) & mask;
|
|
} else {
|
|
hash = double_get_hash(number->Number()) & mask;
|
|
}
|
|
Object* key = number_string_cache()->get(hash * 2);
|
|
if (key == number) {
|
|
return String::cast(number_string_cache()->get(hash * 2 + 1));
|
|
} else if (key->IsHeapNumber() &&
|
|
number->IsHeapNumber() &&
|
|
key->Number() == number->Number()) {
|
|
return String::cast(number_string_cache()->get(hash * 2 + 1));
|
|
}
|
|
return undefined_value();
|
|
}
|
|
|
|
|
|
void Heap::SetNumberStringCache(Object* number, String* string) {
|
|
int hash;
|
|
int mask = (number_string_cache()->length() >> 1) - 1;
|
|
if (number->IsSmi()) {
|
|
hash = smi_get_hash(Smi::cast(number)) & mask;
|
|
number_string_cache()->set(hash * 2, Smi::cast(number));
|
|
} else {
|
|
hash = double_get_hash(number->Number()) & mask;
|
|
number_string_cache()->set(hash * 2, number);
|
|
}
|
|
number_string_cache()->set(hash * 2 + 1, string);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::NumberToString(Object* number,
|
|
bool check_number_string_cache) {
|
|
isolate_->counters()->number_to_string_runtime()->Increment();
|
|
if (check_number_string_cache) {
|
|
Object* cached = GetNumberStringCache(number);
|
|
if (cached != undefined_value()) {
|
|
return cached;
|
|
}
|
|
}
|
|
|
|
char arr[100];
|
|
Vector<char> buffer(arr, ARRAY_SIZE(arr));
|
|
const char* str;
|
|
if (number->IsSmi()) {
|
|
int num = Smi::cast(number)->value();
|
|
str = IntToCString(num, buffer);
|
|
} else {
|
|
double num = HeapNumber::cast(number)->value();
|
|
str = DoubleToCString(num, buffer);
|
|
}
|
|
|
|
Object* js_string;
|
|
MaybeObject* maybe_js_string = AllocateStringFromAscii(CStrVector(str));
|
|
if (maybe_js_string->ToObject(&js_string)) {
|
|
SetNumberStringCache(number, String::cast(js_string));
|
|
}
|
|
return maybe_js_string;
|
|
}
|
|
|
|
|
|
Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
|
|
return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
|
|
}
|
|
|
|
|
|
Heap::RootListIndex Heap::RootIndexForExternalArrayType(
|
|
ExternalArrayType array_type) {
|
|
switch (array_type) {
|
|
case kExternalByteArray:
|
|
return kExternalByteArrayMapRootIndex;
|
|
case kExternalUnsignedByteArray:
|
|
return kExternalUnsignedByteArrayMapRootIndex;
|
|
case kExternalShortArray:
|
|
return kExternalShortArrayMapRootIndex;
|
|
case kExternalUnsignedShortArray:
|
|
return kExternalUnsignedShortArrayMapRootIndex;
|
|
case kExternalIntArray:
|
|
return kExternalIntArrayMapRootIndex;
|
|
case kExternalUnsignedIntArray:
|
|
return kExternalUnsignedIntArrayMapRootIndex;
|
|
case kExternalFloatArray:
|
|
return kExternalFloatArrayMapRootIndex;
|
|
case kExternalDoubleArray:
|
|
return kExternalDoubleArrayMapRootIndex;
|
|
case kExternalPixelArray:
|
|
return kExternalPixelArrayMapRootIndex;
|
|
default:
|
|
UNREACHABLE();
|
|
return kUndefinedValueRootIndex;
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
|
|
// We need to distinguish the minus zero value and this cannot be
|
|
// done after conversion to int. Doing this by comparing bit
|
|
// patterns is faster than using fpclassify() et al.
|
|
static const DoubleRepresentation minus_zero(-0.0);
|
|
|
|
DoubleRepresentation rep(value);
|
|
if (rep.bits == minus_zero.bits) {
|
|
return AllocateHeapNumber(-0.0, pretenure);
|
|
}
|
|
|
|
int int_value = FastD2I(value);
|
|
if (value == int_value && Smi::IsValid(int_value)) {
|
|
return Smi::FromInt(int_value);
|
|
}
|
|
|
|
// Materialize the value in the heap.
|
|
return AllocateHeapNumber(value, pretenure);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateForeign(Address address, PretenureFlag pretenure) {
|
|
// Statically ensure that it is safe to allocate foreigns in paged spaces.
|
|
STATIC_ASSERT(Foreign::kSize <= Page::kMaxHeapObjectSize);
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(foreign_map(), space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
Foreign::cast(result)->set_address(address);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) {
|
|
SharedFunctionInfo* share;
|
|
MaybeObject* maybe = Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
|
|
if (!maybe->To<SharedFunctionInfo>(&share)) return maybe;
|
|
|
|
// Set pointer fields.
|
|
share->set_name(name);
|
|
Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal);
|
|
share->set_code(illegal);
|
|
share->set_scope_info(SerializedScopeInfo::Empty());
|
|
Code* construct_stub =
|
|
isolate_->builtins()->builtin(Builtins::kJSConstructStubGeneric);
|
|
share->set_construct_stub(construct_stub);
|
|
share->set_instance_class_name(Object_symbol());
|
|
share->set_function_data(undefined_value());
|
|
share->set_script(undefined_value());
|
|
share->set_debug_info(undefined_value());
|
|
share->set_inferred_name(empty_string());
|
|
share->set_initial_map(undefined_value());
|
|
share->set_this_property_assignments(undefined_value());
|
|
share->set_deopt_counter(Smi::FromInt(FLAG_deopt_every_n_times));
|
|
|
|
// Set integer fields (smi or int, depending on the architecture).
|
|
share->set_length(0);
|
|
share->set_formal_parameter_count(0);
|
|
share->set_expected_nof_properties(0);
|
|
share->set_num_literals(0);
|
|
share->set_start_position_and_type(0);
|
|
share->set_end_position(0);
|
|
share->set_function_token_position(0);
|
|
// All compiler hints default to false or 0.
|
|
share->set_compiler_hints(0);
|
|
share->set_this_property_assignments_count(0);
|
|
share->set_opt_count(0);
|
|
|
|
return share;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSMessageObject(String* type,
|
|
JSArray* arguments,
|
|
int start_position,
|
|
int end_position,
|
|
Object* script,
|
|
Object* stack_trace,
|
|
Object* stack_frames) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
JSMessageObject* message = JSMessageObject::cast(result);
|
|
message->set_properties(Heap::empty_fixed_array());
|
|
message->set_elements(Heap::empty_fixed_array());
|
|
message->set_type(type);
|
|
message->set_arguments(arguments);
|
|
message->set_start_position(start_position);
|
|
message->set_end_position(end_position);
|
|
message->set_script(script);
|
|
message->set_stack_trace(stack_trace);
|
|
message->set_stack_frames(stack_frames);
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
// Returns true for a character in a range. Both limits are inclusive.
|
|
static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
|
|
// This makes uses of the the unsigned wraparound.
|
|
return character - from <= to - from;
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
|
|
Heap* heap,
|
|
uint32_t c1,
|
|
uint32_t c2) {
|
|
String* symbol;
|
|
// Numeric strings have a different hash algorithm not known by
|
|
// LookupTwoCharsSymbolIfExists, so we skip this step for such strings.
|
|
if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) &&
|
|
heap->symbol_table()->LookupTwoCharsSymbolIfExists(c1, c2, &symbol)) {
|
|
return symbol;
|
|
// Now we know the length is 2, we might as well make use of that fact
|
|
// when building the new string.
|
|
} else if ((c1 | c2) <= String::kMaxAsciiCharCodeU) { // We can do this
|
|
ASSERT(IsPowerOf2(String::kMaxAsciiCharCodeU + 1)); // because of this.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->AllocateRawAsciiString(2);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
char* dest = SeqAsciiString::cast(result)->GetChars();
|
|
dest[0] = c1;
|
|
dest[1] = c2;
|
|
return result;
|
|
} else {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
|
|
dest[0] = c1;
|
|
dest[1] = c2;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateConsString(String* first, String* second) {
|
|
int first_length = first->length();
|
|
if (first_length == 0) {
|
|
return second;
|
|
}
|
|
|
|
int second_length = second->length();
|
|
if (second_length == 0) {
|
|
return first;
|
|
}
|
|
|
|
int length = first_length + second_length;
|
|
|
|
// Optimization for 2-byte strings often used as keys in a decompression
|
|
// dictionary. Check whether we already have the string in the symbol
|
|
// table to prevent creation of many unneccesary strings.
|
|
if (length == 2) {
|
|
unsigned c1 = first->Get(0);
|
|
unsigned c2 = second->Get(0);
|
|
return MakeOrFindTwoCharacterString(this, c1, c2);
|
|
}
|
|
|
|
bool first_is_ascii = first->IsAsciiRepresentation();
|
|
bool second_is_ascii = second->IsAsciiRepresentation();
|
|
bool is_ascii = first_is_ascii && second_is_ascii;
|
|
|
|
// Make sure that an out of memory exception is thrown if the length
|
|
// of the new cons string is too large.
|
|
if (length > String::kMaxLength || length < 0) {
|
|
isolate()->context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
|
|
bool is_ascii_data_in_two_byte_string = false;
|
|
if (!is_ascii) {
|
|
// At least one of the strings uses two-byte representation so we
|
|
// can't use the fast case code for short ascii strings below, but
|
|
// we can try to save memory if all chars actually fit in ascii.
|
|
is_ascii_data_in_two_byte_string =
|
|
first->HasOnlyAsciiChars() && second->HasOnlyAsciiChars();
|
|
if (is_ascii_data_in_two_byte_string) {
|
|
isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
|
|
}
|
|
}
|
|
|
|
// If the resulting string is small make a flat string.
|
|
if (length < String::kMinNonFlatLength) {
|
|
// Note that neither of the two inputs can be a slice because:
|
|
STATIC_ASSERT(String::kMinNonFlatLength <= SlicedString::kMinLength);
|
|
ASSERT(first->IsFlat());
|
|
ASSERT(second->IsFlat());
|
|
if (is_ascii) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawAsciiString(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Copy the characters into the new object.
|
|
char* dest = SeqAsciiString::cast(result)->GetChars();
|
|
// Copy first part.
|
|
const char* src;
|
|
if (first->IsExternalString()) {
|
|
src = ExternalAsciiString::cast(first)->resource()->data();
|
|
} else {
|
|
src = SeqAsciiString::cast(first)->GetChars();
|
|
}
|
|
for (int i = 0; i < first_length; i++) *dest++ = src[i];
|
|
// Copy second part.
|
|
if (second->IsExternalString()) {
|
|
src = ExternalAsciiString::cast(second)->resource()->data();
|
|
} else {
|
|
src = SeqAsciiString::cast(second)->GetChars();
|
|
}
|
|
for (int i = 0; i < second_length; i++) *dest++ = src[i];
|
|
return result;
|
|
} else {
|
|
if (is_ascii_data_in_two_byte_string) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawAsciiString(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Copy the characters into the new object.
|
|
char* dest = SeqAsciiString::cast(result)->GetChars();
|
|
String::WriteToFlat(first, dest, 0, first_length);
|
|
String::WriteToFlat(second, dest + first_length, 0, second_length);
|
|
isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
|
|
return result;
|
|
}
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawTwoByteString(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Copy the characters into the new object.
|
|
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
|
|
String::WriteToFlat(first, dest, 0, first_length);
|
|
String::WriteToFlat(second, dest + first_length, 0, second_length);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
Map* map = (is_ascii || is_ascii_data_in_two_byte_string) ?
|
|
cons_ascii_string_map() : cons_string_map();
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
AssertNoAllocation no_gc;
|
|
ConsString* cons_string = ConsString::cast(result);
|
|
WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc);
|
|
cons_string->set_length(length);
|
|
cons_string->set_hash_field(String::kEmptyHashField);
|
|
cons_string->set_first(first, mode);
|
|
cons_string->set_second(second, mode);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateSubString(String* buffer,
|
|
int start,
|
|
int end,
|
|
PretenureFlag pretenure) {
|
|
int length = end - start;
|
|
if (length == 0) {
|
|
return empty_string();
|
|
} else if (length == 1) {
|
|
return LookupSingleCharacterStringFromCode(buffer->Get(start));
|
|
} else if (length == 2) {
|
|
// Optimization for 2-byte strings often used as keys in a decompression
|
|
// dictionary. Check whether we already have the string in the symbol
|
|
// table to prevent creation of many unneccesary strings.
|
|
unsigned c1 = buffer->Get(start);
|
|
unsigned c2 = buffer->Get(start + 1);
|
|
return MakeOrFindTwoCharacterString(this, c1, c2);
|
|
}
|
|
|
|
// Make an attempt to flatten the buffer to reduce access time.
|
|
buffer = buffer->TryFlattenGetString();
|
|
|
|
// TODO(1626): For now slicing external strings is not supported. However,
|
|
// a flat cons string can have an external string as first part in some cases.
|
|
// Therefore we have to single out this case as well.
|
|
if (!FLAG_string_slices ||
|
|
(buffer->IsConsString() &&
|
|
(!buffer->IsFlat() ||
|
|
!ConsString::cast(buffer)->first()->IsSeqString())) ||
|
|
buffer->IsExternalString() ||
|
|
length < SlicedString::kMinLength ||
|
|
pretenure == TENURED) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = buffer->IsAsciiRepresentation()
|
|
? AllocateRawAsciiString(length, pretenure)
|
|
: AllocateRawTwoByteString(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
String* string_result = String::cast(result);
|
|
// Copy the characters into the new object.
|
|
if (buffer->IsAsciiRepresentation()) {
|
|
ASSERT(string_result->IsAsciiRepresentation());
|
|
char* dest = SeqAsciiString::cast(string_result)->GetChars();
|
|
String::WriteToFlat(buffer, dest, start, end);
|
|
} else {
|
|
ASSERT(string_result->IsTwoByteRepresentation());
|
|
uc16* dest = SeqTwoByteString::cast(string_result)->GetChars();
|
|
String::WriteToFlat(buffer, dest, start, end);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ASSERT(buffer->IsFlat());
|
|
ASSERT(!buffer->IsExternalString());
|
|
#if DEBUG
|
|
buffer->StringVerify();
|
|
#endif
|
|
|
|
Object* result;
|
|
{ Map* map = buffer->IsAsciiRepresentation()
|
|
? sliced_ascii_string_map()
|
|
: sliced_string_map();
|
|
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
AssertNoAllocation no_gc;
|
|
SlicedString* sliced_string = SlicedString::cast(result);
|
|
sliced_string->set_length(length);
|
|
sliced_string->set_hash_field(String::kEmptyHashField);
|
|
if (buffer->IsConsString()) {
|
|
ConsString* cons = ConsString::cast(buffer);
|
|
ASSERT(cons->second()->length() == 0);
|
|
sliced_string->set_parent(cons->first());
|
|
sliced_string->set_offset(start);
|
|
} else if (buffer->IsSlicedString()) {
|
|
// Prevent nesting sliced strings.
|
|
SlicedString* parent_slice = SlicedString::cast(buffer);
|
|
sliced_string->set_parent(parent_slice->parent());
|
|
sliced_string->set_offset(start + parent_slice->offset());
|
|
} else {
|
|
sliced_string->set_parent(buffer);
|
|
sliced_string->set_offset(start);
|
|
}
|
|
ASSERT(sliced_string->parent()->IsSeqString());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternalStringFromAscii(
|
|
ExternalAsciiString::Resource* resource) {
|
|
size_t length = resource->length();
|
|
if (length > static_cast<size_t>(String::kMaxLength)) {
|
|
isolate()->context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
|
|
Map* map = external_ascii_string_map();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
|
|
external_string->set_length(static_cast<int>(length));
|
|
external_string->set_hash_field(String::kEmptyHashField);
|
|
external_string->set_resource(resource);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternalStringFromTwoByte(
|
|
ExternalTwoByteString::Resource* resource) {
|
|
size_t length = resource->length();
|
|
if (length > static_cast<size_t>(String::kMaxLength)) {
|
|
isolate()->context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
|
|
// For small strings we check whether the resource contains only
|
|
// ASCII characters. If yes, we use a different string map.
|
|
static const size_t kAsciiCheckLengthLimit = 32;
|
|
bool is_ascii = length <= kAsciiCheckLengthLimit &&
|
|
String::IsAscii(resource->data(), static_cast<int>(length));
|
|
Map* map = is_ascii ?
|
|
external_string_with_ascii_data_map() : external_string_map();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
|
|
external_string->set_length(static_cast<int>(length));
|
|
external_string->set_hash_field(String::kEmptyHashField);
|
|
external_string->set_resource(resource);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
|
|
if (code <= String::kMaxAsciiCharCode) {
|
|
Object* value = single_character_string_cache()->get(code);
|
|
if (value != undefined_value()) return value;
|
|
|
|
char buffer[1];
|
|
buffer[0] = static_cast<char>(code);
|
|
Object* result;
|
|
MaybeObject* maybe_result = LookupSymbol(Vector<const char>(buffer, 1));
|
|
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
single_character_string_cache()->set(code, result);
|
|
return result;
|
|
}
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawTwoByteString(1);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
String* answer = String::cast(result);
|
|
answer->Set(0, code);
|
|
return answer;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
|
|
if (length < 0 || length > ByteArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
if (pretenure == NOT_TENURED) {
|
|
return AllocateByteArray(length);
|
|
}
|
|
int size = ByteArray::SizeFor(length);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = (size <= MaxObjectSizeInPagedSpace())
|
|
? old_data_space_->AllocateRaw(size)
|
|
: lo_space_->AllocateRaw(size);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map());
|
|
reinterpret_cast<ByteArray*>(result)->set_length(length);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateByteArray(int length) {
|
|
if (length < 0 || length > ByteArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
int size = ByteArray::SizeFor(length);
|
|
AllocationSpace space =
|
|
(size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map());
|
|
reinterpret_cast<ByteArray*>(result)->set_length(length);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Heap::CreateFillerObjectAt(Address addr, int size) {
|
|
if (size == 0) return;
|
|
HeapObject* filler = HeapObject::FromAddress(addr);
|
|
if (size == kPointerSize) {
|
|
filler->set_map(one_pointer_filler_map());
|
|
} else if (size == 2 * kPointerSize) {
|
|
filler->set_map(two_pointer_filler_map());
|
|
} else {
|
|
filler->set_map(byte_array_map());
|
|
ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size));
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternalArray(int length,
|
|
ExternalArrayType array_type,
|
|
void* external_pointer,
|
|
PretenureFlag pretenure) {
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(ExternalArray::kAlignedSize,
|
|
space,
|
|
OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<ExternalArray*>(result)->set_map(
|
|
MapForExternalArrayType(array_type));
|
|
reinterpret_cast<ExternalArray*>(result)->set_length(length);
|
|
reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
|
|
external_pointer);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CreateCode(const CodeDesc& desc,
|
|
Code::Flags flags,
|
|
Handle<Object> self_reference,
|
|
bool immovable) {
|
|
// Allocate ByteArray before the Code object, so that we do not risk
|
|
// leaving uninitialized Code object (and breaking the heap).
|
|
Object* reloc_info;
|
|
{ MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
|
|
if (!maybe_reloc_info->ToObject(&reloc_info)) return maybe_reloc_info;
|
|
}
|
|
|
|
// Compute size.
|
|
int body_size = RoundUp(desc.instr_size, kObjectAlignment);
|
|
int obj_size = Code::SizeFor(body_size);
|
|
ASSERT(IsAligned(static_cast<intptr_t>(obj_size), kCodeAlignment));
|
|
MaybeObject* maybe_result;
|
|
// Large code objects and code objects which should stay at a fixed address
|
|
// are allocated in large object space.
|
|
if (obj_size > MaxObjectSizeInPagedSpace() || immovable) {
|
|
maybe_result = lo_space_->AllocateRawCode(obj_size);
|
|
} else {
|
|
maybe_result = code_space_->AllocateRaw(obj_size);
|
|
}
|
|
|
|
Object* result;
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Initialize the object
|
|
HeapObject::cast(result)->set_map(code_map());
|
|
Code* code = Code::cast(result);
|
|
ASSERT(!isolate_->code_range()->exists() ||
|
|
isolate_->code_range()->contains(code->address()));
|
|
code->set_instruction_size(desc.instr_size);
|
|
code->set_relocation_info(ByteArray::cast(reloc_info));
|
|
code->set_flags(flags);
|
|
if (code->is_call_stub() || code->is_keyed_call_stub()) {
|
|
code->set_check_type(RECEIVER_MAP_CHECK);
|
|
}
|
|
code->set_deoptimization_data(empty_fixed_array());
|
|
code->set_next_code_flushing_candidate(undefined_value());
|
|
// Allow self references to created code object by patching the handle to
|
|
// point to the newly allocated Code object.
|
|
if (!self_reference.is_null()) {
|
|
*(self_reference.location()) = code;
|
|
}
|
|
// Migrate generated code.
|
|
// The generated code can contain Object** values (typically from handles)
|
|
// that are dereferenced during the copy to point directly to the actual heap
|
|
// objects. These pointers can include references to the code object itself,
|
|
// through the self_reference parameter.
|
|
code->CopyFrom(desc);
|
|
|
|
#ifdef DEBUG
|
|
code->Verify();
|
|
#endif
|
|
return code;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyCode(Code* code) {
|
|
// Allocate an object the same size as the code object.
|
|
int obj_size = code->Size();
|
|
MaybeObject* maybe_result;
|
|
if (obj_size > MaxObjectSizeInPagedSpace()) {
|
|
maybe_result = lo_space_->AllocateRawCode(obj_size);
|
|
} else {
|
|
maybe_result = code_space_->AllocateRaw(obj_size);
|
|
}
|
|
|
|
Object* result;
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Copy code object.
|
|
Address old_addr = code->address();
|
|
Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
|
|
CopyBlock(new_addr, old_addr, obj_size);
|
|
// Relocate the copy.
|
|
Code* new_code = Code::cast(result);
|
|
ASSERT(!isolate_->code_range()->exists() ||
|
|
isolate_->code_range()->contains(code->address()));
|
|
new_code->Relocate(new_addr - old_addr);
|
|
return new_code;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
|
|
// Allocate ByteArray before the Code object, so that we do not risk
|
|
// leaving uninitialized Code object (and breaking the heap).
|
|
Object* reloc_info_array;
|
|
{ MaybeObject* maybe_reloc_info_array =
|
|
AllocateByteArray(reloc_info.length(), TENURED);
|
|
if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) {
|
|
return maybe_reloc_info_array;
|
|
}
|
|
}
|
|
|
|
int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
|
|
|
|
int new_obj_size = Code::SizeFor(new_body_size);
|
|
|
|
Address old_addr = code->address();
|
|
|
|
size_t relocation_offset =
|
|
static_cast<size_t>(code->instruction_end() - old_addr);
|
|
|
|
MaybeObject* maybe_result;
|
|
if (new_obj_size > MaxObjectSizeInPagedSpace()) {
|
|
maybe_result = lo_space_->AllocateRawCode(new_obj_size);
|
|
} else {
|
|
maybe_result = code_space_->AllocateRaw(new_obj_size);
|
|
}
|
|
|
|
Object* result;
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Copy code object.
|
|
Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
|
|
|
|
// Copy header and instructions.
|
|
memcpy(new_addr, old_addr, relocation_offset);
|
|
|
|
Code* new_code = Code::cast(result);
|
|
new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
|
|
|
|
// Copy patched rinfo.
|
|
memcpy(new_code->relocation_start(), reloc_info.start(), reloc_info.length());
|
|
|
|
// Relocate the copy.
|
|
ASSERT(!isolate_->code_range()->exists() ||
|
|
isolate_->code_range()->contains(code->address()));
|
|
new_code->Relocate(new_addr - old_addr);
|
|
|
|
#ifdef DEBUG
|
|
code->Verify();
|
|
#endif
|
|
return new_code;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) {
|
|
ASSERT(gc_state_ == NOT_IN_GC);
|
|
ASSERT(map->instance_type() != MAP_TYPE);
|
|
// If allocation failures are disallowed, we may allocate in a different
|
|
// space when new space is full and the object is not a large object.
|
|
AllocationSpace retry_space =
|
|
(space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(map->instance_size(), space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
HeapObject::cast(result)->set_map(map);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::InitializeFunction(JSFunction* function,
|
|
SharedFunctionInfo* shared,
|
|
Object* prototype) {
|
|
ASSERT(!prototype->IsMap());
|
|
function->initialize_properties();
|
|
function->initialize_elements();
|
|
function->set_shared(shared);
|
|
function->set_code(shared->code());
|
|
function->set_prototype_or_initial_map(prototype);
|
|
function->set_context(undefined_value());
|
|
function->set_literals(empty_fixed_array());
|
|
function->set_next_function_link(undefined_value());
|
|
return function;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFunctionPrototype(JSFunction* function) {
|
|
// Allocate the prototype. Make sure to use the object function
|
|
// from the function's context, since the function can be from a
|
|
// different context.
|
|
JSFunction* object_function =
|
|
function->context()->global_context()->object_function();
|
|
Object* prototype;
|
|
{ MaybeObject* maybe_prototype = AllocateJSObject(object_function);
|
|
if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
|
|
}
|
|
// When creating the prototype for the function we must set its
|
|
// constructor to the function.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
JSObject::cast(prototype)->SetLocalPropertyIgnoreAttributes(
|
|
constructor_symbol(), function, DONT_ENUM);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
return prototype;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFunction(Map* function_map,
|
|
SharedFunctionInfo* shared,
|
|
Object* prototype,
|
|
PretenureFlag pretenure) {
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(function_map, space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
return InitializeFunction(JSFunction::cast(result), shared, prototype);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) {
|
|
// To get fast allocation and map sharing for arguments objects we
|
|
// allocate them based on an arguments boilerplate.
|
|
|
|
JSObject* boilerplate;
|
|
int arguments_object_size;
|
|
bool strict_mode_callee = callee->IsJSFunction() &&
|
|
JSFunction::cast(callee)->shared()->strict_mode();
|
|
if (strict_mode_callee) {
|
|
boilerplate =
|
|
isolate()->context()->global_context()->
|
|
strict_mode_arguments_boilerplate();
|
|
arguments_object_size = kArgumentsObjectSizeStrict;
|
|
} else {
|
|
boilerplate =
|
|
isolate()->context()->global_context()->arguments_boilerplate();
|
|
arguments_object_size = kArgumentsObjectSize;
|
|
}
|
|
|
|
// This calls Copy directly rather than using Heap::AllocateRaw so we
|
|
// duplicate the check here.
|
|
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
|
|
|
|
// Check that the size of the boilerplate matches our
|
|
// expectations. The ArgumentsAccessStub::GenerateNewObject relies
|
|
// on the size being a known constant.
|
|
ASSERT(arguments_object_size == boilerplate->map()->instance_size());
|
|
|
|
// Do the allocation.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Copy the content. The arguments boilerplate doesn't have any
|
|
// fields that point to new space so it's safe to skip the write
|
|
// barrier here.
|
|
CopyBlock(HeapObject::cast(result)->address(),
|
|
boilerplate->address(),
|
|
JSObject::kHeaderSize);
|
|
|
|
// Set the length property.
|
|
JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex,
|
|
Smi::FromInt(length),
|
|
SKIP_WRITE_BARRIER);
|
|
// Set the callee property for non-strict mode arguments object only.
|
|
if (!strict_mode_callee) {
|
|
JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex,
|
|
callee);
|
|
}
|
|
|
|
// Check the state of the object
|
|
ASSERT(JSObject::cast(result)->HasFastProperties());
|
|
ASSERT(JSObject::cast(result)->HasFastElements());
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static bool HasDuplicates(DescriptorArray* descriptors) {
|
|
int count = descriptors->number_of_descriptors();
|
|
if (count > 1) {
|
|
String* prev_key = descriptors->GetKey(0);
|
|
for (int i = 1; i != count; i++) {
|
|
String* current_key = descriptors->GetKey(i);
|
|
if (prev_key == current_key) return true;
|
|
prev_key = current_key;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateInitialMap(JSFunction* fun) {
|
|
ASSERT(!fun->has_initial_map());
|
|
|
|
// First create a new map with the size and number of in-object properties
|
|
// suggested by the function.
|
|
int instance_size = fun->shared()->CalculateInstanceSize();
|
|
int in_object_properties = fun->shared()->CalculateInObjectProperties();
|
|
Object* map_obj;
|
|
{ MaybeObject* maybe_map_obj = AllocateMap(JS_OBJECT_TYPE, instance_size);
|
|
if (!maybe_map_obj->ToObject(&map_obj)) return maybe_map_obj;
|
|
}
|
|
|
|
// Fetch or allocate prototype.
|
|
Object* prototype;
|
|
if (fun->has_instance_prototype()) {
|
|
prototype = fun->instance_prototype();
|
|
} else {
|
|
{ MaybeObject* maybe_prototype = AllocateFunctionPrototype(fun);
|
|
if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
|
|
}
|
|
}
|
|
Map* map = Map::cast(map_obj);
|
|
map->set_inobject_properties(in_object_properties);
|
|
map->set_unused_property_fields(in_object_properties);
|
|
map->set_prototype(prototype);
|
|
ASSERT(map->has_fast_elements());
|
|
|
|
// If the function has only simple this property assignments add
|
|
// field descriptors for these to the initial map as the object
|
|
// cannot be constructed without having these properties. Guard by
|
|
// the inline_new flag so we only change the map if we generate a
|
|
// specialized construct stub.
|
|
ASSERT(in_object_properties <= Map::kMaxPreAllocatedPropertyFields);
|
|
if (fun->shared()->CanGenerateInlineConstructor(prototype)) {
|
|
int count = fun->shared()->this_property_assignments_count();
|
|
if (count > in_object_properties) {
|
|
// Inline constructor can only handle inobject properties.
|
|
fun->shared()->ForbidInlineConstructor();
|
|
} else {
|
|
Object* descriptors_obj;
|
|
{ MaybeObject* maybe_descriptors_obj = DescriptorArray::Allocate(count);
|
|
if (!maybe_descriptors_obj->ToObject(&descriptors_obj)) {
|
|
return maybe_descriptors_obj;
|
|
}
|
|
}
|
|
DescriptorArray* descriptors = DescriptorArray::cast(descriptors_obj);
|
|
for (int i = 0; i < count; i++) {
|
|
String* name = fun->shared()->GetThisPropertyAssignmentName(i);
|
|
ASSERT(name->IsSymbol());
|
|
FieldDescriptor field(name, i, NONE);
|
|
field.SetEnumerationIndex(i);
|
|
descriptors->Set(i, &field);
|
|
}
|
|
descriptors->SetNextEnumerationIndex(count);
|
|
descriptors->SortUnchecked();
|
|
|
|
// The descriptors may contain duplicates because the compiler does not
|
|
// guarantee the uniqueness of property names (it would have required
|
|
// quadratic time). Once the descriptors are sorted we can check for
|
|
// duplicates in linear time.
|
|
if (HasDuplicates(descriptors)) {
|
|
fun->shared()->ForbidInlineConstructor();
|
|
} else {
|
|
map->set_instance_descriptors(descriptors);
|
|
map->set_pre_allocated_property_fields(count);
|
|
map->set_unused_property_fields(in_object_properties - count);
|
|
}
|
|
}
|
|
}
|
|
|
|
fun->shared()->StartInobjectSlackTracking(map);
|
|
|
|
return map;
|
|
}
|
|
|
|
|
|
void Heap::InitializeJSObjectFromMap(JSObject* obj,
|
|
FixedArray* properties,
|
|
Map* map) {
|
|
obj->set_properties(properties);
|
|
obj->initialize_elements();
|
|
// TODO(1240798): Initialize the object's body using valid initial values
|
|
// according to the object's initial map. For example, if the map's
|
|
// instance type is JS_ARRAY_TYPE, the length field should be initialized
|
|
// to a number (eg, Smi::FromInt(0)) and the elements initialized to a
|
|
// fixed array (eg, Heap::empty_fixed_array()). Currently, the object
|
|
// verification code has to cope with (temporarily) invalid objects. See
|
|
// for example, JSArray::JSArrayVerify).
|
|
Object* filler;
|
|
// We cannot always fill with one_pointer_filler_map because objects
|
|
// created from API functions expect their internal fields to be initialized
|
|
// with undefined_value.
|
|
if (map->constructor()->IsJSFunction() &&
|
|
JSFunction::cast(map->constructor())->shared()->
|
|
IsInobjectSlackTrackingInProgress()) {
|
|
// We might want to shrink the object later.
|
|
ASSERT(obj->GetInternalFieldCount() == 0);
|
|
filler = Heap::one_pointer_filler_map();
|
|
} else {
|
|
filler = Heap::undefined_value();
|
|
}
|
|
obj->InitializeBody(map->instance_size(), filler);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
|
|
// JSFunctions should be allocated using AllocateFunction to be
|
|
// properly initialized.
|
|
ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
|
|
|
|
// Both types of global objects should be allocated using
|
|
// AllocateGlobalObject to be properly initialized.
|
|
ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
|
|
ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size =
|
|
map->pre_allocated_property_fields() +
|
|
map->unused_property_fields() -
|
|
map->inobject_properties();
|
|
ASSERT(prop_size >= 0);
|
|
Object* properties;
|
|
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure);
|
|
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
|
|
}
|
|
|
|
// Allocate the JSObject.
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
|
|
if (map->instance_size() > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = Allocate(map, space);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
// Initialize the JSObject.
|
|
InitializeJSObjectFromMap(JSObject::cast(obj),
|
|
FixedArray::cast(properties),
|
|
map);
|
|
ASSERT(JSObject::cast(obj)->HasFastElements());
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSObject(JSFunction* constructor,
|
|
PretenureFlag pretenure) {
|
|
// Allocate the initial map if absent.
|
|
if (!constructor->has_initial_map()) {
|
|
Object* initial_map;
|
|
{ MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
|
|
if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
|
|
}
|
|
constructor->set_initial_map(Map::cast(initial_map));
|
|
Map::cast(initial_map)->set_constructor(constructor);
|
|
}
|
|
// Allocate the object based on the constructors initial map.
|
|
MaybeObject* result =
|
|
AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
|
|
#ifdef DEBUG
|
|
// Make sure result is NOT a global object if valid.
|
|
Object* non_failure;
|
|
ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSProxy(Object* handler, Object* prototype) {
|
|
// Allocate map.
|
|
// TODO(rossberg): Once we optimize proxies, think about a scheme to share
|
|
// maps. Will probably depend on the identity of the handler object, too.
|
|
Map* map;
|
|
MaybeObject* maybe_map_obj = AllocateMap(JS_PROXY_TYPE, JSProxy::kSize);
|
|
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
|
|
map->set_prototype(prototype);
|
|
|
|
// Allocate the proxy object.
|
|
JSProxy* result;
|
|
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->To<JSProxy>(&result)) return maybe_result;
|
|
result->InitializeBody(map->instance_size(), Smi::FromInt(0));
|
|
result->set_handler(handler);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSFunctionProxy(Object* handler,
|
|
Object* call_trap,
|
|
Object* construct_trap,
|
|
Object* prototype) {
|
|
// Allocate map.
|
|
// TODO(rossberg): Once we optimize proxies, think about a scheme to share
|
|
// maps. Will probably depend on the identity of the handler object, too.
|
|
Map* map;
|
|
MaybeObject* maybe_map_obj =
|
|
AllocateMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
|
|
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
|
|
map->set_prototype(prototype);
|
|
|
|
// Allocate the proxy object.
|
|
JSFunctionProxy* result;
|
|
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->To<JSFunctionProxy>(&result)) return maybe_result;
|
|
result->InitializeBody(map->instance_size(), Smi::FromInt(0));
|
|
result->set_handler(handler);
|
|
result->set_call_trap(call_trap);
|
|
result->set_construct_trap(construct_trap);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateGlobalObject(JSFunction* constructor) {
|
|
ASSERT(constructor->has_initial_map());
|
|
Map* map = constructor->initial_map();
|
|
|
|
// Make sure no field properties are described in the initial map.
|
|
// This guarantees us that normalizing the properties does not
|
|
// require us to change property values to JSGlobalPropertyCells.
|
|
ASSERT(map->NextFreePropertyIndex() == 0);
|
|
|
|
// Make sure we don't have a ton of pre-allocated slots in the
|
|
// global objects. They will be unused once we normalize the object.
|
|
ASSERT(map->unused_property_fields() == 0);
|
|
ASSERT(map->inobject_properties() == 0);
|
|
|
|
// Initial size of the backing store to avoid resize of the storage during
|
|
// bootstrapping. The size differs between the JS global object ad the
|
|
// builtins object.
|
|
int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
|
|
|
|
// Allocate a dictionary object for backing storage.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj =
|
|
StringDictionary::Allocate(
|
|
map->NumberOfDescribedProperties() * 2 + initial_size);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
StringDictionary* dictionary = StringDictionary::cast(obj);
|
|
|
|
// The global object might be created from an object template with accessors.
|
|
// Fill these accessors into the dictionary.
|
|
DescriptorArray* descs = map->instance_descriptors();
|
|
for (int i = 0; i < descs->number_of_descriptors(); i++) {
|
|
PropertyDetails details(descs->GetDetails(i));
|
|
ASSERT(details.type() == CALLBACKS); // Only accessors are expected.
|
|
PropertyDetails d =
|
|
PropertyDetails(details.attributes(), CALLBACKS, details.index());
|
|
Object* value = descs->GetCallbacksObject(i);
|
|
{ MaybeObject* maybe_value = AllocateJSGlobalPropertyCell(value);
|
|
if (!maybe_value->ToObject(&value)) return maybe_value;
|
|
}
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
dictionary = StringDictionary::cast(result);
|
|
}
|
|
|
|
// Allocate the global object and initialize it with the backing store.
|
|
{ MaybeObject* maybe_obj = Allocate(map, OLD_POINTER_SPACE);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
JSObject* global = JSObject::cast(obj);
|
|
InitializeJSObjectFromMap(global, dictionary, map);
|
|
|
|
// Create a new map for the global object.
|
|
{ MaybeObject* maybe_obj = map->CopyDropDescriptors();
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
Map* new_map = Map::cast(obj);
|
|
|
|
// Setup the global object as a normalized object.
|
|
global->set_map(new_map);
|
|
global->map()->clear_instance_descriptors();
|
|
global->set_properties(dictionary);
|
|
|
|
// Make sure result is a global object with properties in dictionary.
|
|
ASSERT(global->IsGlobalObject());
|
|
ASSERT(!global->HasFastProperties());
|
|
return global;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyJSObject(JSObject* source) {
|
|
// Never used to copy functions. If functions need to be copied we
|
|
// have to be careful to clear the literals array.
|
|
ASSERT(!source->IsJSFunction());
|
|
|
|
// Make the clone.
|
|
Map* map = source->map();
|
|
int object_size = map->instance_size();
|
|
Object* clone;
|
|
|
|
// If we're forced to always allocate, we use the general allocation
|
|
// functions which may leave us with an object in old space.
|
|
if (always_allocate()) {
|
|
{ MaybeObject* maybe_clone =
|
|
AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
|
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
|
|
}
|
|
Address clone_address = HeapObject::cast(clone)->address();
|
|
CopyBlock(clone_address,
|
|
source->address(),
|
|
object_size);
|
|
// Update write barrier for all fields that lie beyond the header.
|
|
RecordWrites(clone_address,
|
|
JSObject::kHeaderSize,
|
|
(object_size - JSObject::kHeaderSize) / kPointerSize);
|
|
} else {
|
|
{ MaybeObject* maybe_clone = new_space_.AllocateRaw(object_size);
|
|
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
|
|
}
|
|
ASSERT(InNewSpace(clone));
|
|
// Since we know the clone is allocated in new space, we can copy
|
|
// the contents without worrying about updating the write barrier.
|
|
CopyBlock(HeapObject::cast(clone)->address(),
|
|
source->address(),
|
|
object_size);
|
|
}
|
|
|
|
FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
|
|
FixedArray* properties = FixedArray::cast(source->properties());
|
|
// Update elements if necessary.
|
|
if (elements->length() > 0) {
|
|
Object* elem;
|
|
{ MaybeObject* maybe_elem;
|
|
if (elements->map() == fixed_cow_array_map()) {
|
|
maybe_elem = FixedArray::cast(elements);
|
|
} else if (source->HasFastDoubleElements()) {
|
|
maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
|
|
} else {
|
|
maybe_elem = CopyFixedArray(FixedArray::cast(elements));
|
|
}
|
|
if (!maybe_elem->ToObject(&elem)) return maybe_elem;
|
|
}
|
|
JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem));
|
|
}
|
|
// Update properties if necessary.
|
|
if (properties->length() > 0) {
|
|
Object* prop;
|
|
{ MaybeObject* maybe_prop = CopyFixedArray(properties);
|
|
if (!maybe_prop->ToObject(&prop)) return maybe_prop;
|
|
}
|
|
JSObject::cast(clone)->set_properties(FixedArray::cast(prop));
|
|
}
|
|
// Return the new clone.
|
|
return clone;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::ReinitializeJSReceiver(
|
|
JSReceiver* object, InstanceType type, int size) {
|
|
ASSERT(type >= FIRST_JS_RECEIVER_TYPE);
|
|
|
|
// Allocate fresh map.
|
|
// TODO(rossberg): Once we optimize proxies, cache these maps.
|
|
Map* map;
|
|
MaybeObject* maybe_map_obj = AllocateMap(type, size);
|
|
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
|
|
|
|
// Check that the receiver has at least the size of the fresh object.
|
|
int size_difference = object->map()->instance_size() - map->instance_size();
|
|
ASSERT(size_difference >= 0);
|
|
|
|
map->set_prototype(object->map()->prototype());
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size = map->unused_property_fields() - map->inobject_properties();
|
|
Object* properties;
|
|
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
|
|
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
|
|
}
|
|
|
|
// Reset the map for the object.
|
|
object->set_map(map);
|
|
|
|
// Reinitialize the object from the constructor map.
|
|
InitializeJSObjectFromMap(JSObject::cast(object),
|
|
FixedArray::cast(properties), map);
|
|
|
|
// Functions require some minimal initialization.
|
|
if (type == JS_FUNCTION_TYPE) {
|
|
String* name;
|
|
MaybeObject* maybe_name = LookupAsciiSymbol("<freezing call trap>");
|
|
if (!maybe_name->To<String>(&name)) return maybe_name;
|
|
SharedFunctionInfo* shared;
|
|
MaybeObject* maybe_shared = AllocateSharedFunctionInfo(name);
|
|
if (!maybe_shared->To<SharedFunctionInfo>(&shared)) return maybe_shared;
|
|
JSFunction* func;
|
|
MaybeObject* maybe_func =
|
|
InitializeFunction(JSFunction::cast(object), shared, the_hole_value());
|
|
if (!maybe_func->To<JSFunction>(&func)) return maybe_func;
|
|
func->set_context(isolate()->context()->global_context());
|
|
}
|
|
|
|
// Put in filler if the new object is smaller than the old.
|
|
if (size_difference > 0) {
|
|
CreateFillerObjectAt(
|
|
object->address() + map->instance_size(), size_difference);
|
|
}
|
|
|
|
return object;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
|
|
JSGlobalProxy* object) {
|
|
ASSERT(constructor->has_initial_map());
|
|
Map* map = constructor->initial_map();
|
|
|
|
// Check that the already allocated object has the same size and type as
|
|
// objects allocated using the constructor.
|
|
ASSERT(map->instance_size() == object->map()->instance_size());
|
|
ASSERT(map->instance_type() == object->map()->instance_type());
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size = map->unused_property_fields() - map->inobject_properties();
|
|
Object* properties;
|
|
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
|
|
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
|
|
}
|
|
|
|
// Reset the map for the object.
|
|
object->set_map(constructor->initial_map());
|
|
|
|
// Reinitialize the object from the constructor map.
|
|
InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
|
|
return object;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStringFromAscii(Vector<const char> string,
|
|
PretenureFlag pretenure) {
|
|
if (string.length() == 1) {
|
|
return Heap::LookupSingleCharacterStringFromCode(string[0]);
|
|
}
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRawAsciiString(string.length(), pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Copy the characters into the new object.
|
|
SeqAsciiString* string_result = SeqAsciiString::cast(result);
|
|
for (int i = 0; i < string.length(); i++) {
|
|
string_result->SeqAsciiStringSet(i, string[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector<const char> string,
|
|
PretenureFlag pretenure) {
|
|
// V8 only supports characters in the Basic Multilingual Plane.
|
|
const uc32 kMaxSupportedChar = 0xFFFF;
|
|
// Count the number of characters in the UTF-8 string and check if
|
|
// it is an ASCII string.
|
|
Access<UnicodeCache::Utf8Decoder>
|
|
decoder(isolate_->unicode_cache()->utf8_decoder());
|
|
decoder->Reset(string.start(), string.length());
|
|
int chars = 0;
|
|
while (decoder->has_more()) {
|
|
decoder->GetNext();
|
|
chars++;
|
|
}
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Convert and copy the characters into the new object.
|
|
String* string_result = String::cast(result);
|
|
decoder->Reset(string.start(), string.length());
|
|
for (int i = 0; i < chars; i++) {
|
|
uc32 r = decoder->GetNext();
|
|
if (r > kMaxSupportedChar) { r = unibrow::Utf8::kBadChar; }
|
|
string_result->Set(i, r);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
|
|
PretenureFlag pretenure) {
|
|
// Check if the string is an ASCII string.
|
|
MaybeObject* maybe_result;
|
|
if (String::IsAscii(string.start(), string.length())) {
|
|
maybe_result = AllocateRawAsciiString(string.length(), pretenure);
|
|
} else { // It's not an ASCII string.
|
|
maybe_result = AllocateRawTwoByteString(string.length(), pretenure);
|
|
}
|
|
Object* result;
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Copy the characters into the new object, which may be either ASCII or
|
|
// UTF-16.
|
|
String* string_result = String::cast(result);
|
|
for (int i = 0; i < string.length(); i++) {
|
|
string_result->Set(i, string[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Map* Heap::SymbolMapForString(String* string) {
|
|
// If the string is in new space it cannot be used as a symbol.
|
|
if (InNewSpace(string)) return NULL;
|
|
|
|
// Find the corresponding symbol map for strings.
|
|
Map* map = string->map();
|
|
if (map == ascii_string_map()) {
|
|
return ascii_symbol_map();
|
|
}
|
|
if (map == string_map()) {
|
|
return symbol_map();
|
|
}
|
|
if (map == cons_string_map()) {
|
|
return cons_symbol_map();
|
|
}
|
|
if (map == cons_ascii_string_map()) {
|
|
return cons_ascii_symbol_map();
|
|
}
|
|
if (map == external_string_map()) {
|
|
return external_symbol_map();
|
|
}
|
|
if (map == external_ascii_string_map()) {
|
|
return external_ascii_symbol_map();
|
|
}
|
|
if (map == external_string_with_ascii_data_map()) {
|
|
return external_symbol_with_ascii_data_map();
|
|
}
|
|
|
|
// No match found.
|
|
return NULL;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
|
|
int chars,
|
|
uint32_t hash_field) {
|
|
ASSERT(chars >= 0);
|
|
// Ensure the chars matches the number of characters in the buffer.
|
|
ASSERT(static_cast<unsigned>(chars) == buffer->Length());
|
|
// Determine whether the string is ascii.
|
|
bool is_ascii = true;
|
|
while (buffer->has_more()) {
|
|
if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) {
|
|
is_ascii = false;
|
|
break;
|
|
}
|
|
}
|
|
buffer->Rewind();
|
|
|
|
// Compute map and object size.
|
|
int size;
|
|
Map* map;
|
|
|
|
if (is_ascii) {
|
|
if (chars > SeqAsciiString::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
map = ascii_symbol_map();
|
|
size = SeqAsciiString::SizeFor(chars);
|
|
} else {
|
|
if (chars > SeqTwoByteString::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
map = symbol_map();
|
|
size = SeqTwoByteString::SizeFor(chars);
|
|
}
|
|
|
|
// Allocate string.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
|
|
? lo_space_->AllocateRaw(size)
|
|
: old_data_space_->AllocateRaw(size);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<HeapObject*>(result)->set_map(map);
|
|
// Set length and hash fields of the allocated string.
|
|
String* answer = String::cast(result);
|
|
answer->set_length(chars);
|
|
answer->set_hash_field(hash_field);
|
|
|
|
ASSERT_EQ(size, answer->Size());
|
|
|
|
// Fill in the characters.
|
|
for (int i = 0; i < chars; i++) {
|
|
answer->Set(i, buffer->GetNext());
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
|
|
if (length < 0 || length > SeqAsciiString::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
|
|
int size = SeqAsciiString::SizeFor(length);
|
|
ASSERT(size <= SeqAsciiString::kMaxSize);
|
|
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
AllocationSpace retry_space = OLD_DATA_SPACE;
|
|
|
|
if (space == NEW_SPACE) {
|
|
if (size > kMaxObjectSizeInNewSpace) {
|
|
// Allocate in large object space, retry space will be ignored.
|
|
space = LO_SPACE;
|
|
} else if (size > MaxObjectSizeInPagedSpace()) {
|
|
// Allocate in new space, retry in large object space.
|
|
retry_space = LO_SPACE;
|
|
}
|
|
} else if (space == OLD_DATA_SPACE && size > MaxObjectSizeInPagedSpace()) {
|
|
space = LO_SPACE;
|
|
}
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Partially initialize the object.
|
|
HeapObject::cast(result)->set_map(ascii_string_map());
|
|
String::cast(result)->set_length(length);
|
|
String::cast(result)->set_hash_field(String::kEmptyHashField);
|
|
ASSERT_EQ(size, HeapObject::cast(result)->Size());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawTwoByteString(int length,
|
|
PretenureFlag pretenure) {
|
|
if (length < 0 || length > SeqTwoByteString::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
int size = SeqTwoByteString::SizeFor(length);
|
|
ASSERT(size <= SeqTwoByteString::kMaxSize);
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
AllocationSpace retry_space = OLD_DATA_SPACE;
|
|
|
|
if (space == NEW_SPACE) {
|
|
if (size > kMaxObjectSizeInNewSpace) {
|
|
// Allocate in large object space, retry space will be ignored.
|
|
space = LO_SPACE;
|
|
} else if (size > MaxObjectSizeInPagedSpace()) {
|
|
// Allocate in new space, retry in large object space.
|
|
retry_space = LO_SPACE;
|
|
}
|
|
} else if (space == OLD_DATA_SPACE && size > MaxObjectSizeInPagedSpace()) {
|
|
space = LO_SPACE;
|
|
}
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Partially initialize the object.
|
|
HeapObject::cast(result)->set_map(string_map());
|
|
String::cast(result)->set_length(length);
|
|
String::cast(result)->set_hash_field(String::kEmptyHashField);
|
|
ASSERT_EQ(size, HeapObject::cast(result)->Size());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateEmptyFixedArray() {
|
|
int size = FixedArray::SizeFor(0);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Initialize the object.
|
|
reinterpret_cast<FixedArray*>(result)->set_map(fixed_array_map());
|
|
reinterpret_cast<FixedArray*>(result)->set_length(0);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawFixedArray(int length) {
|
|
if (length < 0 || length > FixedArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
ASSERT(length > 0);
|
|
// Use the general function if we're forced to always allocate.
|
|
if (always_allocate()) return AllocateFixedArray(length, TENURED);
|
|
// Allocate the raw data for a fixed array.
|
|
int size = FixedArray::SizeFor(length);
|
|
return size <= kMaxObjectSizeInNewSpace
|
|
? new_space_.AllocateRaw(size)
|
|
: lo_space_->AllocateRawFixedArray(size);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
|
|
int len = src->length();
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedArray(len);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
if (InNewSpace(obj)) {
|
|
HeapObject* dst = HeapObject::cast(obj);
|
|
dst->set_map(map);
|
|
CopyBlock(dst->address() + kPointerSize,
|
|
src->address() + kPointerSize,
|
|
FixedArray::SizeFor(len) - kPointerSize);
|
|
return obj;
|
|
}
|
|
HeapObject::cast(obj)->set_map(map);
|
|
FixedArray* result = FixedArray::cast(obj);
|
|
result->set_length(len);
|
|
|
|
// Copy the content
|
|
AssertNoAllocation no_gc;
|
|
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
|
|
for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
|
|
Map* map) {
|
|
int len = src->length();
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(len, NOT_TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
HeapObject* dst = HeapObject::cast(obj);
|
|
dst->set_map(map);
|
|
CopyBlock(
|
|
dst->address() + FixedDoubleArray::kLengthOffset,
|
|
src->address() + FixedDoubleArray::kLengthOffset,
|
|
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedArray(int length) {
|
|
ASSERT(length >= 0);
|
|
if (length == 0) return empty_fixed_array();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawFixedArray(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Initialize header.
|
|
FixedArray* array = reinterpret_cast<FixedArray*>(result);
|
|
array->set_map(fixed_array_map());
|
|
array->set_length(length);
|
|
// Initialize body.
|
|
ASSERT(!InNewSpace(undefined_value()));
|
|
MemsetPointer(array->data_start(), undefined_value(), length);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
|
|
if (length < 0 || length > FixedArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
|
|
int size = FixedArray::SizeFor(length);
|
|
if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
|
|
// Too big for new space.
|
|
space = LO_SPACE;
|
|
} else if (space == OLD_POINTER_SPACE &&
|
|
size > MaxObjectSizeInPagedSpace()) {
|
|
// Too big for old pointer space.
|
|
space = LO_SPACE;
|
|
}
|
|
|
|
AllocationSpace retry_space =
|
|
(size <= MaxObjectSizeInPagedSpace()) ? OLD_POINTER_SPACE : LO_SPACE;
|
|
|
|
return AllocateRaw(size, space, retry_space);
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithFiller(
|
|
Heap* heap,
|
|
int length,
|
|
PretenureFlag pretenure,
|
|
Object* filler) {
|
|
ASSERT(length >= 0);
|
|
ASSERT(heap->empty_fixed_array()->IsFixedArray());
|
|
if (length == 0) return heap->empty_fixed_array();
|
|
|
|
ASSERT(!heap->InNewSpace(filler));
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->AllocateRawFixedArray(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
HeapObject::cast(result)->set_map(heap->fixed_array_map());
|
|
FixedArray* array = FixedArray::cast(result);
|
|
array->set_length(length);
|
|
MemsetPointer(array->data_start(), filler, length);
|
|
return array;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
|
|
return AllocateFixedArrayWithFiller(this,
|
|
length,
|
|
pretenure,
|
|
undefined_value());
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedArrayWithHoles(int length,
|
|
PretenureFlag pretenure) {
|
|
return AllocateFixedArrayWithFiller(this,
|
|
length,
|
|
pretenure,
|
|
the_hole_value());
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateUninitializedFixedArray(int length) {
|
|
if (length == 0) return empty_fixed_array();
|
|
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedArray(length);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
reinterpret_cast<FixedArray*>(obj)->set_map(fixed_array_map());
|
|
FixedArray::cast(obj)->set_length(length);
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateEmptyFixedDoubleArray() {
|
|
int size = FixedDoubleArray::SizeFor(0);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Initialize the object.
|
|
reinterpret_cast<FixedDoubleArray*>(result)->set_map(
|
|
fixed_double_array_map());
|
|
reinterpret_cast<FixedDoubleArray*>(result)->set_length(0);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateUninitializedFixedDoubleArray(
|
|
int length,
|
|
PretenureFlag pretenure) {
|
|
if (length == 0) return empty_fixed_double_array();
|
|
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
reinterpret_cast<FixedDoubleArray*>(obj)->set_map(fixed_double_array_map());
|
|
FixedDoubleArray::cast(obj)->set_length(length);
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawFixedDoubleArray(int length,
|
|
PretenureFlag pretenure) {
|
|
if (length < 0 || length > FixedDoubleArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
int size = FixedDoubleArray::SizeFor(length);
|
|
if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
|
|
// Too big for new space.
|
|
space = LO_SPACE;
|
|
} else if (space == OLD_DATA_SPACE &&
|
|
size > MaxObjectSizeInPagedSpace()) {
|
|
// Too big for old data space.
|
|
space = LO_SPACE;
|
|
}
|
|
|
|
AllocationSpace retry_space =
|
|
(size <= MaxObjectSizeInPagedSpace()) ? OLD_DATA_SPACE : LO_SPACE;
|
|
|
|
return AllocateRaw(size, space, retry_space);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
reinterpret_cast<HeapObject*>(result)->set_map(hash_table_map());
|
|
ASSERT(result->IsHashTable());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateGlobalContext() {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map(global_context_map());
|
|
ASSERT(context->IsGlobalContext());
|
|
ASSERT(result->IsContext());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) {
|
|
ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map(function_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(function->context());
|
|
context->set_extension(NULL);
|
|
context->set_global(function->context()->global());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateCatchContext(JSFunction* function,
|
|
Context* previous,
|
|
String* name,
|
|
Object* thrown_object) {
|
|
STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map(catch_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(previous);
|
|
context->set_extension(name);
|
|
context->set_global(previous->global());
|
|
context->set(Context::THROWN_OBJECT_INDEX, thrown_object);
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateWithContext(JSFunction* function,
|
|
Context* previous,
|
|
JSObject* extension) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map(with_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(previous);
|
|
context->set_extension(extension);
|
|
context->set_global(previous->global());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateBlockContext(JSFunction* function,
|
|
Context* previous,
|
|
SerializedScopeInfo* scope_info) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArrayWithHoles(scope_info->NumberOfContextSlots());
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map(block_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(previous);
|
|
context->set_extension(scope_info);
|
|
context->set_global(previous->global());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateSerializedScopeInfo(int length) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(length, TENURED);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
SerializedScopeInfo* scope_info =
|
|
reinterpret_cast<SerializedScopeInfo*>(result);
|
|
scope_info->set_map(serialized_scope_info_map());
|
|
return scope_info;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStruct(InstanceType type) {
|
|
Map* map;
|
|
switch (type) {
|
|
#define MAKE_CASE(NAME, Name, name) \
|
|
case NAME##_TYPE: map = name##_map(); break;
|
|
STRUCT_LIST(MAKE_CASE)
|
|
#undef MAKE_CASE
|
|
default:
|
|
UNREACHABLE();
|
|
return Failure::InternalError();
|
|
}
|
|
int size = map->instance_size();
|
|
AllocationSpace space =
|
|
(size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_POINTER_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Struct::cast(result)->InitializeBody(size);
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Heap::IdleNotification() {
|
|
static const int kIdlesBeforeScavenge = 4;
|
|
static const int kIdlesBeforeMarkSweep = 7;
|
|
static const int kIdlesBeforeMarkCompact = 8;
|
|
static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
|
|
static const unsigned int kGCsBetweenCleanup = 4;
|
|
|
|
if (!last_idle_notification_gc_count_init_) {
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
last_idle_notification_gc_count_init_ = true;
|
|
}
|
|
|
|
bool uncommit = true;
|
|
bool finished = false;
|
|
|
|
// Reset the number of idle notifications received when a number of
|
|
// GCs have taken place. This allows another round of cleanup based
|
|
// on idle notifications if enough work has been carried out to
|
|
// provoke a number of garbage collections.
|
|
if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
|
|
number_idle_notifications_ =
|
|
Min(number_idle_notifications_ + 1, kMaxIdleCount);
|
|
} else {
|
|
number_idle_notifications_ = 0;
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
}
|
|
|
|
if (number_idle_notifications_ == kIdlesBeforeScavenge) {
|
|
if (contexts_disposed_ > 0) {
|
|
HistogramTimerScope scope(isolate_->counters()->gc_context());
|
|
CollectAllGarbage(false);
|
|
} else {
|
|
CollectGarbage(NEW_SPACE);
|
|
}
|
|
new_space_.Shrink();
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
} else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
|
|
// Before doing the mark-sweep collections we clear the
|
|
// compilation cache to avoid hanging on to source code and
|
|
// generated code for cached functions.
|
|
isolate_->compilation_cache()->Clear();
|
|
|
|
CollectAllGarbage(false);
|
|
new_space_.Shrink();
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
|
|
} else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
|
|
CollectAllGarbage(true);
|
|
new_space_.Shrink();
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
number_idle_notifications_ = 0;
|
|
finished = true;
|
|
} else if (contexts_disposed_ > 0) {
|
|
if (FLAG_expose_gc) {
|
|
contexts_disposed_ = 0;
|
|
} else {
|
|
HistogramTimerScope scope(isolate_->counters()->gc_context());
|
|
CollectAllGarbage(false);
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
}
|
|
// If this is the first idle notification, we reset the
|
|
// notification count to avoid letting idle notifications for
|
|
// context disposal garbage collections start a potentially too
|
|
// aggressive idle GC cycle.
|
|
if (number_idle_notifications_ <= 1) {
|
|
number_idle_notifications_ = 0;
|
|
uncommit = false;
|
|
}
|
|
} else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
|
|
// If we have received more than kIdlesBeforeMarkCompact idle
|
|
// notifications we do not perform any cleanup because we don't
|
|
// expect to gain much by doing so.
|
|
finished = true;
|
|
}
|
|
|
|
// Make sure that we have no pending context disposals and
|
|
// conditionally uncommit from space.
|
|
ASSERT(contexts_disposed_ == 0);
|
|
if (uncommit) UncommitFromSpace();
|
|
return finished;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void Heap::Print() {
|
|
if (!HasBeenSetup()) return;
|
|
isolate()->PrintStack();
|
|
AllSpaces spaces;
|
|
for (Space* space = spaces.next(); space != NULL; space = spaces.next())
|
|
space->Print();
|
|
}
|
|
|
|
|
|
void Heap::ReportCodeStatistics(const char* title) {
|
|
PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
|
|
PagedSpace::ResetCodeStatistics();
|
|
// We do not look for code in new space, map space, or old space. If code
|
|
// somehow ends up in those spaces, we would miss it here.
|
|
code_space_->CollectCodeStatistics();
|
|
lo_space_->CollectCodeStatistics();
|
|
PagedSpace::ReportCodeStatistics();
|
|
}
|
|
|
|
|
|
// This function expects that NewSpace's allocated objects histogram is
|
|
// populated (via a call to CollectStatistics or else as a side effect of a
|
|
// just-completed scavenge collection).
|
|
void Heap::ReportHeapStatistics(const char* title) {
|
|
USE(title);
|
|
PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
|
|
title, gc_count_);
|
|
PrintF("mark-compact GC : %d\n", mc_count_);
|
|
PrintF("old_gen_promotion_limit_ %" V8_PTR_PREFIX "d\n",
|
|
old_gen_promotion_limit_);
|
|
PrintF("old_gen_allocation_limit_ %" V8_PTR_PREFIX "d\n",
|
|
old_gen_allocation_limit_);
|
|
|
|
PrintF("\n");
|
|
PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
|
|
isolate_->global_handles()->PrintStats();
|
|
PrintF("\n");
|
|
|
|
PrintF("Heap statistics : ");
|
|
isolate_->memory_allocator()->ReportStatistics();
|
|
PrintF("To space : ");
|
|
new_space_.ReportStatistics();
|
|
PrintF("Old pointer space : ");
|
|
old_pointer_space_->ReportStatistics();
|
|
PrintF("Old data space : ");
|
|
old_data_space_->ReportStatistics();
|
|
PrintF("Code space : ");
|
|
code_space_->ReportStatistics();
|
|
PrintF("Map space : ");
|
|
map_space_->ReportStatistics();
|
|
PrintF("Cell space : ");
|
|
cell_space_->ReportStatistics();
|
|
PrintF("Large object space : ");
|
|
lo_space_->ReportStatistics();
|
|
PrintF(">>>>>> ========================================= >>>>>>\n");
|
|
}
|
|
|
|
#endif // DEBUG
|
|
|
|
bool Heap::Contains(HeapObject* value) {
|
|
return Contains(value->address());
|
|
}
|
|
|
|
|
|
bool Heap::Contains(Address addr) {
|
|
if (OS::IsOutsideAllocatedSpace(addr)) return false;
|
|
return HasBeenSetup() &&
|
|
(new_space_.ToSpaceContains(addr) ||
|
|
old_pointer_space_->Contains(addr) ||
|
|
old_data_space_->Contains(addr) ||
|
|
code_space_->Contains(addr) ||
|
|
map_space_->Contains(addr) ||
|
|
cell_space_->Contains(addr) ||
|
|
lo_space_->SlowContains(addr));
|
|
}
|
|
|
|
|
|
bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
|
|
return InSpace(value->address(), space);
|
|
}
|
|
|
|
|
|
bool Heap::InSpace(Address addr, AllocationSpace space) {
|
|
if (OS::IsOutsideAllocatedSpace(addr)) return false;
|
|
if (!HasBeenSetup()) return false;
|
|
|
|
switch (space) {
|
|
case NEW_SPACE:
|
|
return new_space_.ToSpaceContains(addr);
|
|
case OLD_POINTER_SPACE:
|
|
return old_pointer_space_->Contains(addr);
|
|
case OLD_DATA_SPACE:
|
|
return old_data_space_->Contains(addr);
|
|
case CODE_SPACE:
|
|
return code_space_->Contains(addr);
|
|
case MAP_SPACE:
|
|
return map_space_->Contains(addr);
|
|
case CELL_SPACE:
|
|
return cell_space_->Contains(addr);
|
|
case LO_SPACE:
|
|
return lo_space_->SlowContains(addr);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
static void DummyScavengePointer(HeapObject** p) {
|
|
}
|
|
|
|
|
|
static void VerifyPointersUnderWatermark(
|
|
PagedSpace* space,
|
|
DirtyRegionCallback visit_dirty_region) {
|
|
PageIterator it(space, PageIterator::PAGES_IN_USE);
|
|
|
|
while (it.has_next()) {
|
|
Page* page = it.next();
|
|
Address start = page->ObjectAreaStart();
|
|
Address end = page->AllocationWatermark();
|
|
|
|
HEAP->IterateDirtyRegions(Page::kAllRegionsDirtyMarks,
|
|
start,
|
|
end,
|
|
visit_dirty_region,
|
|
&DummyScavengePointer);
|
|
}
|
|
}
|
|
|
|
|
|
static void VerifyPointersUnderWatermark(LargeObjectSpace* space) {
|
|
LargeObjectIterator it(space);
|
|
for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
|
|
if (object->IsFixedArray()) {
|
|
Address slot_address = object->address();
|
|
Address end = object->address() + object->Size();
|
|
|
|
while (slot_address < end) {
|
|
HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
|
|
// When we are not in GC the Heap::InNewSpace() predicate
|
|
// checks that pointers which satisfy predicate point into
|
|
// the active semispace.
|
|
HEAP->InNewSpace(*slot);
|
|
slot_address += kPointerSize;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::Verify() {
|
|
ASSERT(HasBeenSetup());
|
|
|
|
VerifyPointersVisitor visitor;
|
|
IterateRoots(&visitor, VISIT_ONLY_STRONG);
|
|
|
|
new_space_.Verify();
|
|
|
|
VerifyPointersAndDirtyRegionsVisitor dirty_regions_visitor;
|
|
old_pointer_space_->Verify(&dirty_regions_visitor);
|
|
map_space_->Verify(&dirty_regions_visitor);
|
|
|
|
VerifyPointersUnderWatermark(old_pointer_space_,
|
|
&IteratePointersInDirtyRegion);
|
|
VerifyPointersUnderWatermark(map_space_,
|
|
&IteratePointersInDirtyMapsRegion);
|
|
VerifyPointersUnderWatermark(lo_space_);
|
|
|
|
VerifyPageWatermarkValidity(old_pointer_space_, ALL_INVALID);
|
|
VerifyPageWatermarkValidity(map_space_, ALL_INVALID);
|
|
|
|
VerifyPointersVisitor no_dirty_regions_visitor;
|
|
old_data_space_->Verify(&no_dirty_regions_visitor);
|
|
code_space_->Verify(&no_dirty_regions_visitor);
|
|
cell_space_->Verify(&no_dirty_regions_visitor);
|
|
|
|
lo_space_->Verify();
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
MaybeObject* Heap::LookupSymbol(Vector<const char> string) {
|
|
Object* symbol = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
symbol_table()->LookupSymbol(string, &symbol);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_symbol_table because SymbolTable::cast knows that
|
|
// SymbolTable is a singleton and checks for identity.
|
|
roots_[kSymbolTableRootIndex] = new_table;
|
|
ASSERT(symbol != NULL);
|
|
return symbol;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::LookupAsciiSymbol(Vector<const char> string) {
|
|
Object* symbol = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
symbol_table()->LookupAsciiSymbol(string, &symbol);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_symbol_table because SymbolTable::cast knows that
|
|
// SymbolTable is a singleton and checks for identity.
|
|
roots_[kSymbolTableRootIndex] = new_table;
|
|
ASSERT(symbol != NULL);
|
|
return symbol;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::LookupAsciiSymbol(Handle<SeqAsciiString> string,
|
|
int from,
|
|
int length) {
|
|
Object* symbol = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
symbol_table()->LookupSubStringAsciiSymbol(string,
|
|
from,
|
|
length,
|
|
&symbol);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_symbol_table because SymbolTable::cast knows that
|
|
// SymbolTable is a singleton and checks for identity.
|
|
roots_[kSymbolTableRootIndex] = new_table;
|
|
ASSERT(symbol != NULL);
|
|
return symbol;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::LookupTwoByteSymbol(Vector<const uc16> string) {
|
|
Object* symbol = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
symbol_table()->LookupTwoByteSymbol(string, &symbol);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_symbol_table because SymbolTable::cast knows that
|
|
// SymbolTable is a singleton and checks for identity.
|
|
roots_[kSymbolTableRootIndex] = new_table;
|
|
ASSERT(symbol != NULL);
|
|
return symbol;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::LookupSymbol(String* string) {
|
|
if (string->IsSymbol()) return string;
|
|
Object* symbol = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
symbol_table()->LookupString(string, &symbol);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_symbol_table because SymbolTable::cast knows that
|
|
// SymbolTable is a singleton and checks for identity.
|
|
roots_[kSymbolTableRootIndex] = new_table;
|
|
ASSERT(symbol != NULL);
|
|
return symbol;
|
|
}
|
|
|
|
|
|
bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
|
|
if (string->IsSymbol()) {
|
|
*symbol = string;
|
|
return true;
|
|
}
|
|
return symbol_table()->LookupSymbolIfExists(string, symbol);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void Heap::ZapFromSpace() {
|
|
ASSERT(reinterpret_cast<Object*>(kFromSpaceZapValue)->IsFailure());
|
|
for (Address a = new_space_.FromSpaceLow();
|
|
a < new_space_.FromSpaceHigh();
|
|
a += kPointerSize) {
|
|
Memory::Address_at(a) = kFromSpaceZapValue;
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
bool Heap::IteratePointersInDirtyRegion(Heap* heap,
|
|
Address start,
|
|
Address end,
|
|
ObjectSlotCallback copy_object_func) {
|
|
Address slot_address = start;
|
|
bool pointers_to_new_space_found = false;
|
|
|
|
while (slot_address < end) {
|
|
Object** slot = reinterpret_cast<Object**>(slot_address);
|
|
if (heap->InNewSpace(*slot)) {
|
|
ASSERT((*slot)->IsHeapObject());
|
|
copy_object_func(reinterpret_cast<HeapObject**>(slot));
|
|
if (heap->InNewSpace(*slot)) {
|
|
ASSERT((*slot)->IsHeapObject());
|
|
pointers_to_new_space_found = true;
|
|
}
|
|
}
|
|
slot_address += kPointerSize;
|
|
}
|
|
return pointers_to_new_space_found;
|
|
}
|
|
|
|
|
|
// Compute start address of the first map following given addr.
|
|
static inline Address MapStartAlign(Address addr) {
|
|
Address page = Page::FromAddress(addr)->ObjectAreaStart();
|
|
return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
|
|
}
|
|
|
|
|
|
// Compute end address of the first map preceding given addr.
|
|
static inline Address MapEndAlign(Address addr) {
|
|
Address page = Page::FromAllocationTop(addr)->ObjectAreaStart();
|
|
return page + ((addr - page) / Map::kSize * Map::kSize);
|
|
}
|
|
|
|
|
|
static bool IteratePointersInDirtyMaps(Address start,
|
|
Address end,
|
|
ObjectSlotCallback copy_object_func) {
|
|
ASSERT(MapStartAlign(start) == start);
|
|
ASSERT(MapEndAlign(end) == end);
|
|
|
|
Address map_address = start;
|
|
bool pointers_to_new_space_found = false;
|
|
|
|
Heap* heap = HEAP;
|
|
while (map_address < end) {
|
|
ASSERT(!heap->InNewSpace(Memory::Object_at(map_address)));
|
|
ASSERT(Memory::Object_at(map_address)->IsMap());
|
|
|
|
Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
|
|
Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
|
|
|
|
if (Heap::IteratePointersInDirtyRegion(heap,
|
|
pointer_fields_start,
|
|
pointer_fields_end,
|
|
copy_object_func)) {
|
|
pointers_to_new_space_found = true;
|
|
}
|
|
|
|
map_address += Map::kSize;
|
|
}
|
|
|
|
return pointers_to_new_space_found;
|
|
}
|
|
|
|
|
|
bool Heap::IteratePointersInDirtyMapsRegion(
|
|
Heap* heap,
|
|
Address start,
|
|
Address end,
|
|
ObjectSlotCallback copy_object_func) {
|
|
Address map_aligned_start = MapStartAlign(start);
|
|
Address map_aligned_end = MapEndAlign(end);
|
|
|
|
bool contains_pointers_to_new_space = false;
|
|
|
|
if (map_aligned_start != start) {
|
|
Address prev_map = map_aligned_start - Map::kSize;
|
|
ASSERT(Memory::Object_at(prev_map)->IsMap());
|
|
|
|
Address pointer_fields_start =
|
|
Max(start, prev_map + Map::kPointerFieldsBeginOffset);
|
|
|
|
Address pointer_fields_end =
|
|
Min(prev_map + Map::kPointerFieldsEndOffset, end);
|
|
|
|
contains_pointers_to_new_space =
|
|
IteratePointersInDirtyRegion(heap,
|
|
pointer_fields_start,
|
|
pointer_fields_end,
|
|
copy_object_func)
|
|
|| contains_pointers_to_new_space;
|
|
}
|
|
|
|
contains_pointers_to_new_space =
|
|
IteratePointersInDirtyMaps(map_aligned_start,
|
|
map_aligned_end,
|
|
copy_object_func)
|
|
|| contains_pointers_to_new_space;
|
|
|
|
if (map_aligned_end != end) {
|
|
ASSERT(Memory::Object_at(map_aligned_end)->IsMap());
|
|
|
|
Address pointer_fields_start =
|
|
map_aligned_end + Map::kPointerFieldsBeginOffset;
|
|
|
|
Address pointer_fields_end =
|
|
Min(end, map_aligned_end + Map::kPointerFieldsEndOffset);
|
|
|
|
contains_pointers_to_new_space =
|
|
IteratePointersInDirtyRegion(heap,
|
|
pointer_fields_start,
|
|
pointer_fields_end,
|
|
copy_object_func)
|
|
|| contains_pointers_to_new_space;
|
|
}
|
|
|
|
return contains_pointers_to_new_space;
|
|
}
|
|
|
|
|
|
void Heap::IterateAndMarkPointersToFromSpace(Address start,
|
|
Address end,
|
|
ObjectSlotCallback callback) {
|
|
Address slot_address = start;
|
|
Page* page = Page::FromAddress(start);
|
|
|
|
uint32_t marks = page->GetRegionMarks();
|
|
|
|
while (slot_address < end) {
|
|
Object** slot = reinterpret_cast<Object**>(slot_address);
|
|
if (InFromSpace(*slot)) {
|
|
ASSERT((*slot)->IsHeapObject());
|
|
callback(reinterpret_cast<HeapObject**>(slot));
|
|
if (InNewSpace(*slot)) {
|
|
ASSERT((*slot)->IsHeapObject());
|
|
marks |= page->GetRegionMaskForAddress(slot_address);
|
|
}
|
|
}
|
|
slot_address += kPointerSize;
|
|
}
|
|
|
|
page->SetRegionMarks(marks);
|
|
}
|
|
|
|
|
|
uint32_t Heap::IterateDirtyRegions(
|
|
uint32_t marks,
|
|
Address area_start,
|
|
Address area_end,
|
|
DirtyRegionCallback visit_dirty_region,
|
|
ObjectSlotCallback copy_object_func) {
|
|
uint32_t newmarks = 0;
|
|
uint32_t mask = 1;
|
|
|
|
if (area_start >= area_end) {
|
|
return newmarks;
|
|
}
|
|
|
|
Address region_start = area_start;
|
|
|
|
// area_start does not necessarily coincide with start of the first region.
|
|
// Thus to calculate the beginning of the next region we have to align
|
|
// area_start by Page::kRegionSize.
|
|
Address second_region =
|
|
reinterpret_cast<Address>(
|
|
reinterpret_cast<intptr_t>(area_start + Page::kRegionSize) &
|
|
~Page::kRegionAlignmentMask);
|
|
|
|
// Next region might be beyond area_end.
|
|
Address region_end = Min(second_region, area_end);
|
|
|
|
if (marks & mask) {
|
|
if (visit_dirty_region(this, region_start, region_end, copy_object_func)) {
|
|
newmarks |= mask;
|
|
}
|
|
}
|
|
mask <<= 1;
|
|
|
|
// Iterate subsequent regions which fully lay inside [area_start, area_end[.
|
|
region_start = region_end;
|
|
region_end = region_start + Page::kRegionSize;
|
|
|
|
while (region_end <= area_end) {
|
|
if (marks & mask) {
|
|
if (visit_dirty_region(this,
|
|
region_start,
|
|
region_end,
|
|
copy_object_func)) {
|
|
newmarks |= mask;
|
|
}
|
|
}
|
|
|
|
region_start = region_end;
|
|
region_end = region_start + Page::kRegionSize;
|
|
|
|
mask <<= 1;
|
|
}
|
|
|
|
if (region_start != area_end) {
|
|
// A small piece of area left uniterated because area_end does not coincide
|
|
// with region end. Check whether region covering last part of area is
|
|
// dirty.
|
|
if (marks & mask) {
|
|
if (visit_dirty_region(this, region_start, area_end, copy_object_func)) {
|
|
newmarks |= mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
return newmarks;
|
|
}
|
|
|
|
|
|
|
|
void Heap::IterateDirtyRegions(
|
|
PagedSpace* space,
|
|
DirtyRegionCallback visit_dirty_region,
|
|
ObjectSlotCallback copy_object_func,
|
|
ExpectedPageWatermarkState expected_page_watermark_state) {
|
|
|
|
PageIterator it(space, PageIterator::PAGES_IN_USE);
|
|
|
|
while (it.has_next()) {
|
|
Page* page = it.next();
|
|
uint32_t marks = page->GetRegionMarks();
|
|
|
|
if (marks != Page::kAllRegionsCleanMarks) {
|
|
Address start = page->ObjectAreaStart();
|
|
|
|
// Do not try to visit pointers beyond page allocation watermark.
|
|
// Page can contain garbage pointers there.
|
|
Address end;
|
|
|
|
if ((expected_page_watermark_state == WATERMARK_SHOULD_BE_VALID) ||
|
|
page->IsWatermarkValid()) {
|
|
end = page->AllocationWatermark();
|
|
} else {
|
|
end = page->CachedAllocationWatermark();
|
|
}
|
|
|
|
ASSERT(space == old_pointer_space_ ||
|
|
(space == map_space_ &&
|
|
((page->ObjectAreaStart() - end) % Map::kSize == 0)));
|
|
|
|
page->SetRegionMarks(IterateDirtyRegions(marks,
|
|
start,
|
|
end,
|
|
visit_dirty_region,
|
|
copy_object_func));
|
|
}
|
|
|
|
// Mark page watermark as invalid to maintain watermark validity invariant.
|
|
// See Page::FlipMeaningOfInvalidatedWatermarkFlag() for details.
|
|
page->InvalidateWatermark(true);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
|
|
IterateStrongRoots(v, mode);
|
|
IterateWeakRoots(v, mode);
|
|
}
|
|
|
|
|
|
void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
|
|
v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex]));
|
|
v->Synchronize("symbol_table");
|
|
if (mode != VISIT_ALL_IN_SCAVENGE &&
|
|
mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
|
|
// Scavenge collections have special processing for this.
|
|
external_string_table_.Iterate(v);
|
|
}
|
|
v->Synchronize("external_string_table");
|
|
}
|
|
|
|
|
|
void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
|
|
v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
|
|
v->Synchronize("strong_root_list");
|
|
|
|
v->VisitPointer(BitCast<Object**>(&hidden_symbol_));
|
|
v->Synchronize("symbol");
|
|
|
|
isolate_->bootstrapper()->Iterate(v);
|
|
v->Synchronize("bootstrapper");
|
|
isolate_->Iterate(v);
|
|
v->Synchronize("top");
|
|
Relocatable::Iterate(v);
|
|
v->Synchronize("relocatable");
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
isolate_->debug()->Iterate(v);
|
|
if (isolate_->deoptimizer_data() != NULL) {
|
|
isolate_->deoptimizer_data()->Iterate(v);
|
|
}
|
|
#endif
|
|
v->Synchronize("debug");
|
|
isolate_->compilation_cache()->Iterate(v);
|
|
v->Synchronize("compilationcache");
|
|
|
|
// Iterate over local handles in handle scopes.
|
|
isolate_->handle_scope_implementer()->Iterate(v);
|
|
v->Synchronize("handlescope");
|
|
|
|
// Iterate over the builtin code objects and code stubs in the
|
|
// heap. Note that it is not necessary to iterate over code objects
|
|
// on scavenge collections.
|
|
if (mode != VISIT_ALL_IN_SCAVENGE &&
|
|
mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
|
|
isolate_->builtins()->IterateBuiltins(v);
|
|
}
|
|
v->Synchronize("builtins");
|
|
|
|
// Iterate over global handles.
|
|
switch (mode) {
|
|
case VISIT_ONLY_STRONG:
|
|
isolate_->global_handles()->IterateStrongRoots(v);
|
|
break;
|
|
case VISIT_ALL_IN_SCAVENGE:
|
|
isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
|
|
break;
|
|
case VISIT_ALL_IN_SWEEP_NEWSPACE:
|
|
case VISIT_ALL:
|
|
isolate_->global_handles()->IterateAllRoots(v);
|
|
break;
|
|
}
|
|
v->Synchronize("globalhandles");
|
|
|
|
// Iterate over pointers being held by inactive threads.
|
|
isolate_->thread_manager()->Iterate(v);
|
|
v->Synchronize("threadmanager");
|
|
|
|
// Iterate over the pointers the Serialization/Deserialization code is
|
|
// holding.
|
|
// During garbage collection this keeps the partial snapshot cache alive.
|
|
// During deserialization of the startup snapshot this creates the partial
|
|
// snapshot cache and deserializes the objects it refers to. During
|
|
// serialization this does nothing, since the partial snapshot cache is
|
|
// empty. However the next thing we do is create the partial snapshot,
|
|
// filling up the partial snapshot cache with objects it needs as we go.
|
|
SerializerDeserializer::Iterate(v);
|
|
// We don't do a v->Synchronize call here, because in debug mode that will
|
|
// output a flag to the snapshot. However at this point the serializer and
|
|
// deserializer are deliberately a little unsynchronized (see above) so the
|
|
// checking of the sync flag in the snapshot would fail.
|
|
}
|
|
|
|
|
|
// TODO(1236194): Since the heap size is configurable on the command line
|
|
// and through the API, we should gracefully handle the case that the heap
|
|
// size is not big enough to fit all the initial objects.
|
|
bool Heap::ConfigureHeap(int max_semispace_size,
|
|
int max_old_gen_size,
|
|
int max_executable_size) {
|
|
if (HasBeenSetup()) return false;
|
|
|
|
if (max_semispace_size > 0) max_semispace_size_ = max_semispace_size;
|
|
|
|
if (Snapshot::IsEnabled()) {
|
|
// If we are using a snapshot we always reserve the default amount
|
|
// of memory for each semispace because code in the snapshot has
|
|
// write-barrier code that relies on the size and alignment of new
|
|
// space. We therefore cannot use a larger max semispace size
|
|
// than the default reserved semispace size.
|
|
if (max_semispace_size_ > reserved_semispace_size_) {
|
|
max_semispace_size_ = reserved_semispace_size_;
|
|
}
|
|
} else {
|
|
// If we are not using snapshots we reserve space for the actual
|
|
// max semispace size.
|
|
reserved_semispace_size_ = max_semispace_size_;
|
|
}
|
|
|
|
if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
|
|
if (max_executable_size > 0) {
|
|
max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
|
|
}
|
|
|
|
// The max executable size must be less than or equal to the max old
|
|
// generation size.
|
|
if (max_executable_size_ > max_old_generation_size_) {
|
|
max_executable_size_ = max_old_generation_size_;
|
|
}
|
|
|
|
// The new space size must be a power of two to support single-bit testing
|
|
// for containment.
|
|
max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
|
|
reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
|
|
initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
|
|
external_allocation_limit_ = 10 * max_semispace_size_;
|
|
|
|
// The old generation is paged.
|
|
max_old_generation_size_ = RoundUp(max_old_generation_size_, Page::kPageSize);
|
|
|
|
configured_ = true;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Heap::ConfigureHeapDefault() {
|
|
return ConfigureHeap(FLAG_max_new_space_size / 2 * KB,
|
|
FLAG_max_old_space_size * MB,
|
|
FLAG_max_executable_size * MB);
|
|
}
|
|
|
|
|
|
void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
|
|
*stats->start_marker = HeapStats::kStartMarker;
|
|
*stats->end_marker = HeapStats::kEndMarker;
|
|
*stats->new_space_size = new_space_.SizeAsInt();
|
|
*stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
|
|
*stats->old_pointer_space_size = old_pointer_space_->Size();
|
|
*stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
|
|
*stats->old_data_space_size = old_data_space_->Size();
|
|
*stats->old_data_space_capacity = old_data_space_->Capacity();
|
|
*stats->code_space_size = code_space_->Size();
|
|
*stats->code_space_capacity = code_space_->Capacity();
|
|
*stats->map_space_size = map_space_->Size();
|
|
*stats->map_space_capacity = map_space_->Capacity();
|
|
*stats->cell_space_size = cell_space_->Size();
|
|
*stats->cell_space_capacity = cell_space_->Capacity();
|
|
*stats->lo_space_size = lo_space_->Size();
|
|
isolate_->global_handles()->RecordStats(stats);
|
|
*stats->memory_allocator_size = isolate()->memory_allocator()->Size();
|
|
*stats->memory_allocator_capacity =
|
|
isolate()->memory_allocator()->Size() +
|
|
isolate()->memory_allocator()->Available();
|
|
*stats->os_error = OS::GetLastError();
|
|
isolate()->memory_allocator()->Available();
|
|
if (take_snapshot) {
|
|
HeapIterator iterator(HeapIterator::kFilterFreeListNodes);
|
|
for (HeapObject* obj = iterator.next();
|
|
obj != NULL;
|
|
obj = iterator.next()) {
|
|
InstanceType type = obj->map()->instance_type();
|
|
ASSERT(0 <= type && type <= LAST_TYPE);
|
|
stats->objects_per_type[type]++;
|
|
stats->size_per_type[type] += obj->Size();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
intptr_t Heap::PromotedSpaceSize() {
|
|
return old_pointer_space_->Size()
|
|
+ old_data_space_->Size()
|
|
+ code_space_->Size()
|
|
+ map_space_->Size()
|
|
+ cell_space_->Size()
|
|
+ lo_space_->Size();
|
|
}
|
|
|
|
|
|
int Heap::PromotedExternalMemorySize() {
|
|
if (amount_of_external_allocated_memory_
|
|
<= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
|
|
return amount_of_external_allocated_memory_
|
|
- amount_of_external_allocated_memory_at_last_global_gc_;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
|
|
// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
|
|
static const int kMarkTag = 2;
|
|
|
|
|
|
class HeapDebugUtils {
|
|
public:
|
|
explicit HeapDebugUtils(Heap* heap)
|
|
: search_for_any_global_(false),
|
|
search_target_(NULL),
|
|
found_target_(false),
|
|
object_stack_(20),
|
|
heap_(heap) {
|
|
}
|
|
|
|
class MarkObjectVisitor : public ObjectVisitor {
|
|
public:
|
|
explicit MarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Copy all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject())
|
|
utils_->MarkObjectRecursively(p);
|
|
}
|
|
}
|
|
|
|
HeapDebugUtils* utils_;
|
|
};
|
|
|
|
void MarkObjectRecursively(Object** p) {
|
|
if (!(*p)->IsHeapObject()) return;
|
|
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
|
|
Object* map = obj->map();
|
|
|
|
if (!map->IsHeapObject()) return; // visited before
|
|
|
|
if (found_target_) return; // stop if target found
|
|
object_stack_.Add(obj);
|
|
if ((search_for_any_global_ && obj->IsJSGlobalObject()) ||
|
|
(!search_for_any_global_ && (obj == search_target_))) {
|
|
found_target_ = true;
|
|
return;
|
|
}
|
|
|
|
// not visited yet
|
|
Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
|
|
|
|
Address map_addr = map_p->address();
|
|
|
|
obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
|
|
|
|
MarkObjectRecursively(&map);
|
|
|
|
MarkObjectVisitor mark_visitor(this);
|
|
|
|
obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
|
|
&mark_visitor);
|
|
|
|
if (!found_target_) // don't pop if found the target
|
|
object_stack_.RemoveLast();
|
|
}
|
|
|
|
|
|
class UnmarkObjectVisitor : public ObjectVisitor {
|
|
public:
|
|
explicit UnmarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Copy all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject())
|
|
utils_->UnmarkObjectRecursively(p);
|
|
}
|
|
}
|
|
|
|
HeapDebugUtils* utils_;
|
|
};
|
|
|
|
|
|
void UnmarkObjectRecursively(Object** p) {
|
|
if (!(*p)->IsHeapObject()) return;
|
|
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
|
|
Object* map = obj->map();
|
|
|
|
if (map->IsHeapObject()) return; // unmarked already
|
|
|
|
Address map_addr = reinterpret_cast<Address>(map);
|
|
|
|
map_addr -= kMarkTag;
|
|
|
|
ASSERT_TAG_ALIGNED(map_addr);
|
|
|
|
HeapObject* map_p = HeapObject::FromAddress(map_addr);
|
|
|
|
obj->set_map(reinterpret_cast<Map*>(map_p));
|
|
|
|
UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
|
|
|
|
UnmarkObjectVisitor unmark_visitor(this);
|
|
|
|
obj->IterateBody(Map::cast(map_p)->instance_type(),
|
|
obj->SizeFromMap(Map::cast(map_p)),
|
|
&unmark_visitor);
|
|
}
|
|
|
|
|
|
void MarkRootObjectRecursively(Object** root) {
|
|
if (search_for_any_global_) {
|
|
ASSERT(search_target_ == NULL);
|
|
} else {
|
|
ASSERT(search_target_->IsHeapObject());
|
|
}
|
|
found_target_ = false;
|
|
object_stack_.Clear();
|
|
|
|
MarkObjectRecursively(root);
|
|
UnmarkObjectRecursively(root);
|
|
|
|
if (found_target_) {
|
|
PrintF("=====================================\n");
|
|
PrintF("==== Path to object ====\n");
|
|
PrintF("=====================================\n\n");
|
|
|
|
ASSERT(!object_stack_.is_empty());
|
|
for (int i = 0; i < object_stack_.length(); i++) {
|
|
if (i > 0) PrintF("\n |\n |\n V\n\n");
|
|
Object* obj = object_stack_[i];
|
|
obj->Print();
|
|
}
|
|
PrintF("=====================================\n");
|
|
}
|
|
}
|
|
|
|
// Helper class for visiting HeapObjects recursively.
|
|
class MarkRootVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit MarkRootVisitor(HeapDebugUtils* utils) : utils_(utils) { }
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Visit all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject())
|
|
utils_->MarkRootObjectRecursively(p);
|
|
}
|
|
}
|
|
|
|
HeapDebugUtils* utils_;
|
|
};
|
|
|
|
bool search_for_any_global_;
|
|
Object* search_target_;
|
|
bool found_target_;
|
|
List<Object*> object_stack_;
|
|
Heap* heap_;
|
|
|
|
friend class Heap;
|
|
};
|
|
|
|
#endif
|
|
|
|
bool Heap::Setup(bool create_heap_objects) {
|
|
#ifdef DEBUG
|
|
debug_utils_ = new HeapDebugUtils(this);
|
|
#endif
|
|
|
|
// Initialize heap spaces and initial maps and objects. Whenever something
|
|
// goes wrong, just return false. The caller should check the results and
|
|
// call Heap::TearDown() to release allocated memory.
|
|
//
|
|
// If the heap is not yet configured (eg, through the API), configure it.
|
|
// Configuration is based on the flags new-space-size (really the semispace
|
|
// size) and old-space-size if set or the initial values of semispace_size_
|
|
// and old_generation_size_ otherwise.
|
|
if (!configured_) {
|
|
if (!ConfigureHeapDefault()) return false;
|
|
}
|
|
|
|
gc_initializer_mutex->Lock();
|
|
static bool initialized_gc = false;
|
|
if (!initialized_gc) {
|
|
initialized_gc = true;
|
|
InitializeScavengingVisitorsTables();
|
|
NewSpaceScavenger::Initialize();
|
|
MarkCompactCollector::Initialize();
|
|
}
|
|
gc_initializer_mutex->Unlock();
|
|
|
|
MarkMapPointersAsEncoded(false);
|
|
|
|
// Setup memory allocator and reserve a chunk of memory for new
|
|
// space. The chunk is double the size of the requested reserved
|
|
// new space size to ensure that we can find a pair of semispaces that
|
|
// are contiguous and aligned to their size.
|
|
if (!isolate_->memory_allocator()->Setup(MaxReserved(), MaxExecutableSize()))
|
|
return false;
|
|
void* chunk =
|
|
isolate_->memory_allocator()->ReserveInitialChunk(
|
|
4 * reserved_semispace_size_);
|
|
if (chunk == NULL) return false;
|
|
|
|
// Align the pair of semispaces to their size, which must be a power
|
|
// of 2.
|
|
Address new_space_start =
|
|
RoundUp(reinterpret_cast<byte*>(chunk), 2 * reserved_semispace_size_);
|
|
if (!new_space_.Setup(new_space_start, 2 * reserved_semispace_size_)) {
|
|
return false;
|
|
}
|
|
|
|
// Initialize old pointer space.
|
|
old_pointer_space_ =
|
|
new OldSpace(this,
|
|
max_old_generation_size_,
|
|
OLD_POINTER_SPACE,
|
|
NOT_EXECUTABLE);
|
|
if (old_pointer_space_ == NULL) return false;
|
|
if (!old_pointer_space_->Setup(NULL, 0)) return false;
|
|
|
|
// Initialize old data space.
|
|
old_data_space_ =
|
|
new OldSpace(this,
|
|
max_old_generation_size_,
|
|
OLD_DATA_SPACE,
|
|
NOT_EXECUTABLE);
|
|
if (old_data_space_ == NULL) return false;
|
|
if (!old_data_space_->Setup(NULL, 0)) return false;
|
|
|
|
// Initialize the code space, set its maximum capacity to the old
|
|
// generation size. It needs executable memory.
|
|
// On 64-bit platform(s), we put all code objects in a 2 GB range of
|
|
// virtual address space, so that they can call each other with near calls.
|
|
if (code_range_size_ > 0) {
|
|
if (!isolate_->code_range()->Setup(code_range_size_)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
code_space_ =
|
|
new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
|
|
if (code_space_ == NULL) return false;
|
|
if (!code_space_->Setup(NULL, 0)) return false;
|
|
|
|
// Initialize map space.
|
|
map_space_ = new MapSpace(this, FLAG_use_big_map_space
|
|
? max_old_generation_size_
|
|
: MapSpace::kMaxMapPageIndex * Page::kPageSize,
|
|
FLAG_max_map_space_pages,
|
|
MAP_SPACE);
|
|
if (map_space_ == NULL) return false;
|
|
if (!map_space_->Setup(NULL, 0)) return false;
|
|
|
|
// Initialize global property cell space.
|
|
cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
|
|
if (cell_space_ == NULL) return false;
|
|
if (!cell_space_->Setup(NULL, 0)) return false;
|
|
|
|
// The large object code space may contain code or data. We set the memory
|
|
// to be non-executable here for safety, but this means we need to enable it
|
|
// explicitly when allocating large code objects.
|
|
lo_space_ = new LargeObjectSpace(this, LO_SPACE);
|
|
if (lo_space_ == NULL) return false;
|
|
if (!lo_space_->Setup()) return false;
|
|
|
|
if (create_heap_objects) {
|
|
// Create initial maps.
|
|
if (!CreateInitialMaps()) return false;
|
|
if (!CreateApiObjects()) return false;
|
|
|
|
// Create initial objects
|
|
if (!CreateInitialObjects()) return false;
|
|
|
|
global_contexts_list_ = undefined_value();
|
|
}
|
|
|
|
LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
|
|
LOG(isolate_, IntPtrTEvent("heap-available", Available()));
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Heap::SetStackLimits() {
|
|
ASSERT(isolate_ != NULL);
|
|
ASSERT(isolate_ == isolate());
|
|
// On 64 bit machines, pointers are generally out of range of Smis. We write
|
|
// something that looks like an out of range Smi to the GC.
|
|
|
|
// Set up the special root array entries containing the stack limits.
|
|
// These are actually addresses, but the tag makes the GC ignore it.
|
|
roots_[kStackLimitRootIndex] =
|
|
reinterpret_cast<Object*>(
|
|
(isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
|
|
roots_[kRealStackLimitRootIndex] =
|
|
reinterpret_cast<Object*>(
|
|
(isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
|
|
}
|
|
|
|
|
|
void Heap::TearDown() {
|
|
if (FLAG_print_cumulative_gc_stat) {
|
|
PrintF("\n\n");
|
|
PrintF("gc_count=%d ", gc_count_);
|
|
PrintF("mark_sweep_count=%d ", ms_count_);
|
|
PrintF("mark_compact_count=%d ", mc_count_);
|
|
PrintF("max_gc_pause=%d ", get_max_gc_pause());
|
|
PrintF("min_in_mutator=%d ", get_min_in_mutator());
|
|
PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
|
|
get_max_alive_after_gc());
|
|
PrintF("\n\n");
|
|
}
|
|
|
|
isolate_->global_handles()->TearDown();
|
|
|
|
external_string_table_.TearDown();
|
|
|
|
new_space_.TearDown();
|
|
|
|
if (old_pointer_space_ != NULL) {
|
|
old_pointer_space_->TearDown();
|
|
delete old_pointer_space_;
|
|
old_pointer_space_ = NULL;
|
|
}
|
|
|
|
if (old_data_space_ != NULL) {
|
|
old_data_space_->TearDown();
|
|
delete old_data_space_;
|
|
old_data_space_ = NULL;
|
|
}
|
|
|
|
if (code_space_ != NULL) {
|
|
code_space_->TearDown();
|
|
delete code_space_;
|
|
code_space_ = NULL;
|
|
}
|
|
|
|
if (map_space_ != NULL) {
|
|
map_space_->TearDown();
|
|
delete map_space_;
|
|
map_space_ = NULL;
|
|
}
|
|
|
|
if (cell_space_ != NULL) {
|
|
cell_space_->TearDown();
|
|
delete cell_space_;
|
|
cell_space_ = NULL;
|
|
}
|
|
|
|
if (lo_space_ != NULL) {
|
|
lo_space_->TearDown();
|
|
delete lo_space_;
|
|
lo_space_ = NULL;
|
|
}
|
|
|
|
isolate_->memory_allocator()->TearDown();
|
|
|
|
#ifdef DEBUG
|
|
delete debug_utils_;
|
|
debug_utils_ = NULL;
|
|
#endif
|
|
}
|
|
|
|
|
|
void Heap::Shrink() {
|
|
// Try to shrink all paged spaces.
|
|
PagedSpaces spaces;
|
|
for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next())
|
|
space->Shrink();
|
|
}
|
|
|
|
|
|
void Heap::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
|
|
ASSERT(callback != NULL);
|
|
GCPrologueCallbackPair pair(callback, gc_type);
|
|
ASSERT(!gc_prologue_callbacks_.Contains(pair));
|
|
return gc_prologue_callbacks_.Add(pair);
|
|
}
|
|
|
|
|
|
void Heap::RemoveGCPrologueCallback(GCPrologueCallback callback) {
|
|
ASSERT(callback != NULL);
|
|
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
|
|
if (gc_prologue_callbacks_[i].callback == callback) {
|
|
gc_prologue_callbacks_.Remove(i);
|
|
return;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void Heap::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
|
|
ASSERT(callback != NULL);
|
|
GCEpilogueCallbackPair pair(callback, gc_type);
|
|
ASSERT(!gc_epilogue_callbacks_.Contains(pair));
|
|
return gc_epilogue_callbacks_.Add(pair);
|
|
}
|
|
|
|
|
|
void Heap::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
|
|
ASSERT(callback != NULL);
|
|
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
|
|
if (gc_epilogue_callbacks_[i].callback == callback) {
|
|
gc_epilogue_callbacks_.Remove(i);
|
|
return;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
class PrintHandleVisitor: public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object** end) {
|
|
for (Object** p = start; p < end; p++)
|
|
PrintF(" handle %p to %p\n",
|
|
reinterpret_cast<void*>(p),
|
|
reinterpret_cast<void*>(*p));
|
|
}
|
|
};
|
|
|
|
void Heap::PrintHandles() {
|
|
PrintF("Handles:\n");
|
|
PrintHandleVisitor v;
|
|
isolate_->handle_scope_implementer()->Iterate(&v);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
Space* AllSpaces::next() {
|
|
switch (counter_++) {
|
|
case NEW_SPACE:
|
|
return HEAP->new_space();
|
|
case OLD_POINTER_SPACE:
|
|
return HEAP->old_pointer_space();
|
|
case OLD_DATA_SPACE:
|
|
return HEAP->old_data_space();
|
|
case CODE_SPACE:
|
|
return HEAP->code_space();
|
|
case MAP_SPACE:
|
|
return HEAP->map_space();
|
|
case CELL_SPACE:
|
|
return HEAP->cell_space();
|
|
case LO_SPACE:
|
|
return HEAP->lo_space();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
PagedSpace* PagedSpaces::next() {
|
|
switch (counter_++) {
|
|
case OLD_POINTER_SPACE:
|
|
return HEAP->old_pointer_space();
|
|
case OLD_DATA_SPACE:
|
|
return HEAP->old_data_space();
|
|
case CODE_SPACE:
|
|
return HEAP->code_space();
|
|
case MAP_SPACE:
|
|
return HEAP->map_space();
|
|
case CELL_SPACE:
|
|
return HEAP->cell_space();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
OldSpace* OldSpaces::next() {
|
|
switch (counter_++) {
|
|
case OLD_POINTER_SPACE:
|
|
return HEAP->old_pointer_space();
|
|
case OLD_DATA_SPACE:
|
|
return HEAP->old_data_space();
|
|
case CODE_SPACE:
|
|
return HEAP->code_space();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
SpaceIterator::SpaceIterator()
|
|
: current_space_(FIRST_SPACE),
|
|
iterator_(NULL),
|
|
size_func_(NULL) {
|
|
}
|
|
|
|
|
|
SpaceIterator::SpaceIterator(HeapObjectCallback size_func)
|
|
: current_space_(FIRST_SPACE),
|
|
iterator_(NULL),
|
|
size_func_(size_func) {
|
|
}
|
|
|
|
|
|
SpaceIterator::~SpaceIterator() {
|
|
// Delete active iterator if any.
|
|
delete iterator_;
|
|
}
|
|
|
|
|
|
bool SpaceIterator::has_next() {
|
|
// Iterate until no more spaces.
|
|
return current_space_ != LAST_SPACE;
|
|
}
|
|
|
|
|
|
ObjectIterator* SpaceIterator::next() {
|
|
if (iterator_ != NULL) {
|
|
delete iterator_;
|
|
iterator_ = NULL;
|
|
// Move to the next space
|
|
current_space_++;
|
|
if (current_space_ > LAST_SPACE) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Return iterator for the new current space.
|
|
return CreateIterator();
|
|
}
|
|
|
|
|
|
// Create an iterator for the space to iterate.
|
|
ObjectIterator* SpaceIterator::CreateIterator() {
|
|
ASSERT(iterator_ == NULL);
|
|
|
|
switch (current_space_) {
|
|
case NEW_SPACE:
|
|
iterator_ = new SemiSpaceIterator(HEAP->new_space(), size_func_);
|
|
break;
|
|
case OLD_POINTER_SPACE:
|
|
iterator_ = new HeapObjectIterator(HEAP->old_pointer_space(), size_func_);
|
|
break;
|
|
case OLD_DATA_SPACE:
|
|
iterator_ = new HeapObjectIterator(HEAP->old_data_space(), size_func_);
|
|
break;
|
|
case CODE_SPACE:
|
|
iterator_ = new HeapObjectIterator(HEAP->code_space(), size_func_);
|
|
break;
|
|
case MAP_SPACE:
|
|
iterator_ = new HeapObjectIterator(HEAP->map_space(), size_func_);
|
|
break;
|
|
case CELL_SPACE:
|
|
iterator_ = new HeapObjectIterator(HEAP->cell_space(), size_func_);
|
|
break;
|
|
case LO_SPACE:
|
|
iterator_ = new LargeObjectIterator(HEAP->lo_space(), size_func_);
|
|
break;
|
|
}
|
|
|
|
// Return the newly allocated iterator;
|
|
ASSERT(iterator_ != NULL);
|
|
return iterator_;
|
|
}
|
|
|
|
|
|
class HeapObjectsFilter {
|
|
public:
|
|
virtual ~HeapObjectsFilter() {}
|
|
virtual bool SkipObject(HeapObject* object) = 0;
|
|
};
|
|
|
|
|
|
class FreeListNodesFilter : public HeapObjectsFilter {
|
|
public:
|
|
FreeListNodesFilter() {
|
|
MarkFreeListNodes();
|
|
}
|
|
|
|
bool SkipObject(HeapObject* object) {
|
|
if (object->IsMarked()) {
|
|
object->ClearMark();
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
void MarkFreeListNodes() {
|
|
Heap* heap = HEAP;
|
|
heap->old_pointer_space()->MarkFreeListNodes();
|
|
heap->old_data_space()->MarkFreeListNodes();
|
|
MarkCodeSpaceFreeListNodes(heap);
|
|
heap->map_space()->MarkFreeListNodes();
|
|
heap->cell_space()->MarkFreeListNodes();
|
|
}
|
|
|
|
void MarkCodeSpaceFreeListNodes(Heap* heap) {
|
|
// For code space, using FreeListNode::IsFreeListNode is OK.
|
|
HeapObjectIterator iter(heap->code_space());
|
|
for (HeapObject* obj = iter.next_object();
|
|
obj != NULL;
|
|
obj = iter.next_object()) {
|
|
if (FreeListNode::IsFreeListNode(obj)) obj->SetMark();
|
|
}
|
|
}
|
|
|
|
AssertNoAllocation no_alloc;
|
|
};
|
|
|
|
|
|
class UnreachableObjectsFilter : public HeapObjectsFilter {
|
|
public:
|
|
UnreachableObjectsFilter() {
|
|
MarkUnreachableObjects();
|
|
}
|
|
|
|
bool SkipObject(HeapObject* object) {
|
|
if (object->IsMarked()) {
|
|
object->ClearMark();
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
class UnmarkingVisitor : public ObjectVisitor {
|
|
public:
|
|
UnmarkingVisitor() : list_(10) {}
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
for (Object** p = start; p < end; p++) {
|
|
if (!(*p)->IsHeapObject()) continue;
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
if (obj->IsMarked()) {
|
|
obj->ClearMark();
|
|
list_.Add(obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool can_process() { return !list_.is_empty(); }
|
|
|
|
void ProcessNext() {
|
|
HeapObject* obj = list_.RemoveLast();
|
|
obj->Iterate(this);
|
|
}
|
|
|
|
private:
|
|
List<HeapObject*> list_;
|
|
};
|
|
|
|
void MarkUnreachableObjects() {
|
|
HeapIterator iterator;
|
|
for (HeapObject* obj = iterator.next();
|
|
obj != NULL;
|
|
obj = iterator.next()) {
|
|
obj->SetMark();
|
|
}
|
|
UnmarkingVisitor visitor;
|
|
HEAP->IterateRoots(&visitor, VISIT_ALL);
|
|
while (visitor.can_process())
|
|
visitor.ProcessNext();
|
|
}
|
|
|
|
AssertNoAllocation no_alloc;
|
|
};
|
|
|
|
|
|
HeapIterator::HeapIterator()
|
|
: filtering_(HeapIterator::kNoFiltering),
|
|
filter_(NULL) {
|
|
Init();
|
|
}
|
|
|
|
|
|
HeapIterator::HeapIterator(HeapIterator::HeapObjectsFiltering filtering)
|
|
: filtering_(filtering),
|
|
filter_(NULL) {
|
|
Init();
|
|
}
|
|
|
|
|
|
HeapIterator::~HeapIterator() {
|
|
Shutdown();
|
|
}
|
|
|
|
|
|
void HeapIterator::Init() {
|
|
// Start the iteration.
|
|
space_iterator_ = filtering_ == kNoFiltering ? new SpaceIterator :
|
|
new SpaceIterator(MarkCompactCollector::SizeOfMarkedObject);
|
|
switch (filtering_) {
|
|
case kFilterFreeListNodes:
|
|
filter_ = new FreeListNodesFilter;
|
|
break;
|
|
case kFilterUnreachable:
|
|
filter_ = new UnreachableObjectsFilter;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
object_iterator_ = space_iterator_->next();
|
|
}
|
|
|
|
|
|
void HeapIterator::Shutdown() {
|
|
#ifdef DEBUG
|
|
// Assert that in filtering mode we have iterated through all
|
|
// objects. Otherwise, heap will be left in an inconsistent state.
|
|
if (filtering_ != kNoFiltering) {
|
|
ASSERT(object_iterator_ == NULL);
|
|
}
|
|
#endif
|
|
// Make sure the last iterator is deallocated.
|
|
delete space_iterator_;
|
|
space_iterator_ = NULL;
|
|
object_iterator_ = NULL;
|
|
delete filter_;
|
|
filter_ = NULL;
|
|
}
|
|
|
|
|
|
HeapObject* HeapIterator::next() {
|
|
if (filter_ == NULL) return NextObject();
|
|
|
|
HeapObject* obj = NextObject();
|
|
while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
|
|
return obj;
|
|
}
|
|
|
|
|
|
HeapObject* HeapIterator::NextObject() {
|
|
// No iterator means we are done.
|
|
if (object_iterator_ == NULL) return NULL;
|
|
|
|
if (HeapObject* obj = object_iterator_->next_object()) {
|
|
// If the current iterator has more objects we are fine.
|
|
return obj;
|
|
} else {
|
|
// Go though the spaces looking for one that has objects.
|
|
while (space_iterator_->has_next()) {
|
|
object_iterator_ = space_iterator_->next();
|
|
if (HeapObject* obj = object_iterator_->next_object()) {
|
|
return obj;
|
|
}
|
|
}
|
|
}
|
|
// Done with the last space.
|
|
object_iterator_ = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void HeapIterator::reset() {
|
|
// Restart the iterator.
|
|
Shutdown();
|
|
Init();
|
|
}
|
|
|
|
|
|
#if defined(DEBUG) || defined(LIVE_OBJECT_LIST)
|
|
|
|
Object* const PathTracer::kAnyGlobalObject = reinterpret_cast<Object*>(NULL);
|
|
|
|
class PathTracer::MarkVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Scan all HeapObject pointers in [start, end)
|
|
for (Object** p = start; !tracer_->found() && (p < end); p++) {
|
|
if ((*p)->IsHeapObject())
|
|
tracer_->MarkRecursively(p, this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
PathTracer* tracer_;
|
|
};
|
|
|
|
|
|
class PathTracer::UnmarkVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Scan all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject())
|
|
tracer_->UnmarkRecursively(p, this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
PathTracer* tracer_;
|
|
};
|
|
|
|
|
|
void PathTracer::VisitPointers(Object** start, Object** end) {
|
|
bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
|
|
// Visit all HeapObject pointers in [start, end)
|
|
for (Object** p = start; !done && (p < end); p++) {
|
|
if ((*p)->IsHeapObject()) {
|
|
TracePathFrom(p);
|
|
done = ((what_to_find_ == FIND_FIRST) && found_target_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void PathTracer::Reset() {
|
|
found_target_ = false;
|
|
object_stack_.Clear();
|
|
}
|
|
|
|
|
|
void PathTracer::TracePathFrom(Object** root) {
|
|
ASSERT((search_target_ == kAnyGlobalObject) ||
|
|
search_target_->IsHeapObject());
|
|
found_target_in_trace_ = false;
|
|
object_stack_.Clear();
|
|
|
|
MarkVisitor mark_visitor(this);
|
|
MarkRecursively(root, &mark_visitor);
|
|
|
|
UnmarkVisitor unmark_visitor(this);
|
|
UnmarkRecursively(root, &unmark_visitor);
|
|
|
|
ProcessResults();
|
|
}
|
|
|
|
|
|
void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
|
|
if (!(*p)->IsHeapObject()) return;
|
|
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
|
|
Object* map = obj->map();
|
|
|
|
if (!map->IsHeapObject()) return; // visited before
|
|
|
|
if (found_target_in_trace_) return; // stop if target found
|
|
object_stack_.Add(obj);
|
|
if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
|
|
(obj == search_target_)) {
|
|
found_target_in_trace_ = true;
|
|
found_target_ = true;
|
|
return;
|
|
}
|
|
|
|
bool is_global_context = obj->IsGlobalContext();
|
|
|
|
// not visited yet
|
|
Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
|
|
|
|
Address map_addr = map_p->address();
|
|
|
|
obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
|
|
|
|
// Scan the object body.
|
|
if (is_global_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
|
|
// This is specialized to scan Context's properly.
|
|
Object** start = reinterpret_cast<Object**>(obj->address() +
|
|
Context::kHeaderSize);
|
|
Object** end = reinterpret_cast<Object**>(obj->address() +
|
|
Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
|
|
mark_visitor->VisitPointers(start, end);
|
|
} else {
|
|
obj->IterateBody(map_p->instance_type(),
|
|
obj->SizeFromMap(map_p),
|
|
mark_visitor);
|
|
}
|
|
|
|
// Scan the map after the body because the body is a lot more interesting
|
|
// when doing leak detection.
|
|
MarkRecursively(&map, mark_visitor);
|
|
|
|
if (!found_target_in_trace_) // don't pop if found the target
|
|
object_stack_.RemoveLast();
|
|
}
|
|
|
|
|
|
void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
|
|
if (!(*p)->IsHeapObject()) return;
|
|
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
|
|
Object* map = obj->map();
|
|
|
|
if (map->IsHeapObject()) return; // unmarked already
|
|
|
|
Address map_addr = reinterpret_cast<Address>(map);
|
|
|
|
map_addr -= kMarkTag;
|
|
|
|
ASSERT_TAG_ALIGNED(map_addr);
|
|
|
|
HeapObject* map_p = HeapObject::FromAddress(map_addr);
|
|
|
|
obj->set_map(reinterpret_cast<Map*>(map_p));
|
|
|
|
UnmarkRecursively(reinterpret_cast<Object**>(&map_p), unmark_visitor);
|
|
|
|
obj->IterateBody(Map::cast(map_p)->instance_type(),
|
|
obj->SizeFromMap(Map::cast(map_p)),
|
|
unmark_visitor);
|
|
}
|
|
|
|
|
|
void PathTracer::ProcessResults() {
|
|
if (found_target_) {
|
|
PrintF("=====================================\n");
|
|
PrintF("==== Path to object ====\n");
|
|
PrintF("=====================================\n\n");
|
|
|
|
ASSERT(!object_stack_.is_empty());
|
|
for (int i = 0; i < object_stack_.length(); i++) {
|
|
if (i > 0) PrintF("\n |\n |\n V\n\n");
|
|
Object* obj = object_stack_[i];
|
|
#ifdef OBJECT_PRINT
|
|
obj->Print();
|
|
#else
|
|
obj->ShortPrint();
|
|
#endif
|
|
}
|
|
PrintF("=====================================\n");
|
|
}
|
|
}
|
|
#endif // DEBUG || LIVE_OBJECT_LIST
|
|
|
|
|
|
#ifdef DEBUG
|
|
// Triggers a depth-first traversal of reachable objects from roots
|
|
// and finds a path to a specific heap object and prints it.
|
|
void Heap::TracePathToObject(Object* target) {
|
|
PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
|
|
IterateRoots(&tracer, VISIT_ONLY_STRONG);
|
|
}
|
|
|
|
|
|
// Triggers a depth-first traversal of reachable objects from roots
|
|
// and finds a path to any global object and prints it. Useful for
|
|
// determining the source for leaks of global objects.
|
|
void Heap::TracePathToGlobal() {
|
|
PathTracer tracer(PathTracer::kAnyGlobalObject,
|
|
PathTracer::FIND_ALL,
|
|
VISIT_ALL);
|
|
IterateRoots(&tracer, VISIT_ONLY_STRONG);
|
|
}
|
|
#endif
|
|
|
|
|
|
static intptr_t CountTotalHolesSize() {
|
|
intptr_t holes_size = 0;
|
|
OldSpaces spaces;
|
|
for (OldSpace* space = spaces.next();
|
|
space != NULL;
|
|
space = spaces.next()) {
|
|
holes_size += space->Waste() + space->AvailableFree();
|
|
}
|
|
return holes_size;
|
|
}
|
|
|
|
|
|
GCTracer::GCTracer(Heap* heap)
|
|
: start_time_(0.0),
|
|
start_size_(0),
|
|
gc_count_(0),
|
|
full_gc_count_(0),
|
|
is_compacting_(false),
|
|
marked_count_(0),
|
|
allocated_since_last_gc_(0),
|
|
spent_in_mutator_(0),
|
|
promoted_objects_size_(0),
|
|
heap_(heap) {
|
|
// These two fields reflect the state of the previous full collection.
|
|
// Set them before they are changed by the collector.
|
|
previous_has_compacted_ = heap_->mark_compact_collector_.HasCompacted();
|
|
previous_marked_count_ =
|
|
heap_->mark_compact_collector_.previous_marked_count();
|
|
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
|
|
start_time_ = OS::TimeCurrentMillis();
|
|
start_size_ = heap_->SizeOfObjects();
|
|
|
|
for (int i = 0; i < Scope::kNumberOfScopes; i++) {
|
|
scopes_[i] = 0;
|
|
}
|
|
|
|
in_free_list_or_wasted_before_gc_ = CountTotalHolesSize();
|
|
|
|
allocated_since_last_gc_ =
|
|
heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
|
|
|
|
if (heap_->last_gc_end_timestamp_ > 0) {
|
|
spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
|
|
}
|
|
}
|
|
|
|
|
|
GCTracer::~GCTracer() {
|
|
// Printf ONE line iff flag is set.
|
|
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
|
|
|
|
bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
|
|
|
|
heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
|
|
heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
|
|
|
|
int time = static_cast<int>(heap_->last_gc_end_timestamp_ - start_time_);
|
|
|
|
// Update cumulative GC statistics if required.
|
|
if (FLAG_print_cumulative_gc_stat) {
|
|
heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
|
|
heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
|
|
heap_->alive_after_last_gc_);
|
|
if (!first_gc) {
|
|
heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
|
|
static_cast<int>(spent_in_mutator_));
|
|
}
|
|
}
|
|
|
|
if (!FLAG_trace_gc_nvp) {
|
|
int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
|
|
|
|
PrintF("%s %.1f -> %.1f MB, ",
|
|
CollectorString(),
|
|
static_cast<double>(start_size_) / MB,
|
|
SizeOfHeapObjects());
|
|
|
|
if (external_time > 0) PrintF("%d / ", external_time);
|
|
PrintF("%d ms.\n", time);
|
|
} else {
|
|
PrintF("pause=%d ", time);
|
|
PrintF("mutator=%d ",
|
|
static_cast<int>(spent_in_mutator_));
|
|
|
|
PrintF("gc=");
|
|
switch (collector_) {
|
|
case SCAVENGER:
|
|
PrintF("s");
|
|
break;
|
|
case MARK_COMPACTOR:
|
|
PrintF("%s",
|
|
heap_->mark_compact_collector_.HasCompacted() ? "mc" : "ms");
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
PrintF(" ");
|
|
|
|
PrintF("external=%d ", static_cast<int>(scopes_[Scope::EXTERNAL]));
|
|
PrintF("mark=%d ", static_cast<int>(scopes_[Scope::MC_MARK]));
|
|
PrintF("sweep=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP]));
|
|
PrintF("sweepns=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP_NEWSPACE]));
|
|
PrintF("compact=%d ", static_cast<int>(scopes_[Scope::MC_COMPACT]));
|
|
|
|
PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_size_);
|
|
PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
|
|
PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
|
|
in_free_list_or_wasted_before_gc_);
|
|
PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize());
|
|
|
|
PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
|
|
PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_);
|
|
|
|
PrintF("\n");
|
|
}
|
|
|
|
heap_->PrintShortHeapStatistics();
|
|
}
|
|
|
|
|
|
const char* GCTracer::CollectorString() {
|
|
switch (collector_) {
|
|
case SCAVENGER:
|
|
return "Scavenge";
|
|
case MARK_COMPACTOR:
|
|
return heap_->mark_compact_collector_.HasCompacted() ? "Mark-compact"
|
|
: "Mark-sweep";
|
|
}
|
|
return "Unknown GC";
|
|
}
|
|
|
|
|
|
int KeyedLookupCache::Hash(Map* map, String* name) {
|
|
// Uses only lower 32 bits if pointers are larger.
|
|
uintptr_t addr_hash =
|
|
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> kMapHashShift;
|
|
return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
|
|
}
|
|
|
|
|
|
int KeyedLookupCache::Lookup(Map* map, String* name) {
|
|
int index = Hash(map, name);
|
|
Key& key = keys_[index];
|
|
if ((key.map == map) && key.name->Equals(name)) {
|
|
return field_offsets_[index];
|
|
}
|
|
return kNotFound;
|
|
}
|
|
|
|
|
|
void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
|
|
String* symbol;
|
|
if (HEAP->LookupSymbolIfExists(name, &symbol)) {
|
|
int index = Hash(map, symbol);
|
|
Key& key = keys_[index];
|
|
key.map = map;
|
|
key.name = symbol;
|
|
field_offsets_[index] = field_offset;
|
|
}
|
|
}
|
|
|
|
|
|
void KeyedLookupCache::Clear() {
|
|
for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
|
|
}
|
|
|
|
|
|
void DescriptorLookupCache::Clear() {
|
|
for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void Heap::GarbageCollectionGreedyCheck() {
|
|
ASSERT(FLAG_gc_greedy);
|
|
if (isolate_->bootstrapper()->IsActive()) return;
|
|
if (disallow_allocation_failure()) return;
|
|
CollectGarbage(NEW_SPACE);
|
|
}
|
|
#endif
|
|
|
|
|
|
TranscendentalCache::SubCache::SubCache(Type t)
|
|
: type_(t),
|
|
isolate_(Isolate::Current()) {
|
|
uint32_t in0 = 0xffffffffu; // Bit-pattern for a NaN that isn't
|
|
uint32_t in1 = 0xffffffffu; // generated by the FPU.
|
|
for (int i = 0; i < kCacheSize; i++) {
|
|
elements_[i].in[0] = in0;
|
|
elements_[i].in[1] = in1;
|
|
elements_[i].output = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void TranscendentalCache::Clear() {
|
|
for (int i = 0; i < kNumberOfCaches; i++) {
|
|
if (caches_[i] != NULL) {
|
|
delete caches_[i];
|
|
caches_[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ExternalStringTable::CleanUp() {
|
|
int last = 0;
|
|
for (int i = 0; i < new_space_strings_.length(); ++i) {
|
|
if (new_space_strings_[i] == heap_->raw_unchecked_null_value()) continue;
|
|
if (heap_->InNewSpace(new_space_strings_[i])) {
|
|
new_space_strings_[last++] = new_space_strings_[i];
|
|
} else {
|
|
old_space_strings_.Add(new_space_strings_[i]);
|
|
}
|
|
}
|
|
new_space_strings_.Rewind(last);
|
|
last = 0;
|
|
for (int i = 0; i < old_space_strings_.length(); ++i) {
|
|
if (old_space_strings_[i] == heap_->raw_unchecked_null_value()) continue;
|
|
ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
|
|
old_space_strings_[last++] = old_space_strings_[i];
|
|
}
|
|
old_space_strings_.Rewind(last);
|
|
Verify();
|
|
}
|
|
|
|
|
|
void ExternalStringTable::TearDown() {
|
|
new_space_strings_.Free();
|
|
old_space_strings_.Free();
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|