mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
660 lines
24 KiB
660 lines
24 KiB
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_MIPS_CODE_STUBS_ARM_H_
|
|
#define V8_MIPS_CODE_STUBS_ARM_H_
|
|
|
|
#include "ic-inl.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// Compute a transcendental math function natively, or call the
|
|
// TranscendentalCache runtime function.
|
|
class TranscendentalCacheStub: public CodeStub {
|
|
public:
|
|
enum ArgumentType {
|
|
TAGGED = 0 << TranscendentalCache::kTranscendentalTypeBits,
|
|
UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
|
|
};
|
|
|
|
TranscendentalCacheStub(TranscendentalCache::Type type,
|
|
ArgumentType argument_type)
|
|
: type_(type), argument_type_(argument_type) { }
|
|
void Generate(MacroAssembler* masm);
|
|
private:
|
|
TranscendentalCache::Type type_;
|
|
ArgumentType argument_type_;
|
|
void GenerateCallCFunction(MacroAssembler* masm, Register scratch);
|
|
|
|
Major MajorKey() { return TranscendentalCache; }
|
|
int MinorKey() { return type_ | argument_type_; }
|
|
Runtime::FunctionId RuntimeFunction();
|
|
};
|
|
|
|
|
|
class UnaryOpStub: public CodeStub {
|
|
public:
|
|
UnaryOpStub(Token::Value op,
|
|
UnaryOverwriteMode mode,
|
|
UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
|
|
: op_(op),
|
|
mode_(mode),
|
|
operand_type_(operand_type),
|
|
name_(NULL) {
|
|
}
|
|
|
|
private:
|
|
Token::Value op_;
|
|
UnaryOverwriteMode mode_;
|
|
|
|
// Operand type information determined at runtime.
|
|
UnaryOpIC::TypeInfo operand_type_;
|
|
|
|
char* name_;
|
|
|
|
const char* GetName();
|
|
|
|
#ifdef DEBUG
|
|
void Print() {
|
|
PrintF("UnaryOpStub %d (op %s), (mode %d, runtime_type_info %s)\n",
|
|
MinorKey(),
|
|
Token::String(op_),
|
|
static_cast<int>(mode_),
|
|
UnaryOpIC::GetName(operand_type_));
|
|
}
|
|
#endif
|
|
|
|
class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
|
|
class OpBits: public BitField<Token::Value, 1, 7> {};
|
|
class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};
|
|
|
|
Major MajorKey() { return UnaryOp; }
|
|
int MinorKey() {
|
|
return ModeBits::encode(mode_)
|
|
| OpBits::encode(op_)
|
|
| OperandTypeInfoBits::encode(operand_type_);
|
|
}
|
|
|
|
// Note: A lot of the helper functions below will vanish when we use virtual
|
|
// function instead of switch more often.
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
void GenerateTypeTransition(MacroAssembler* masm);
|
|
|
|
void GenerateSmiStub(MacroAssembler* masm);
|
|
void GenerateSmiStubSub(MacroAssembler* masm);
|
|
void GenerateSmiStubBitNot(MacroAssembler* masm);
|
|
void GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow);
|
|
void GenerateSmiCodeBitNot(MacroAssembler* masm, Label* slow);
|
|
|
|
void GenerateHeapNumberStub(MacroAssembler* masm);
|
|
void GenerateHeapNumberStubSub(MacroAssembler* masm);
|
|
void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
|
|
void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
|
|
void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);
|
|
|
|
void GenerateGenericStub(MacroAssembler* masm);
|
|
void GenerateGenericStubSub(MacroAssembler* masm);
|
|
void GenerateGenericStubBitNot(MacroAssembler* masm);
|
|
void GenerateGenericCodeFallback(MacroAssembler* masm);
|
|
|
|
virtual int GetCodeKind() { return Code::UNARY_OP_IC; }
|
|
|
|
virtual InlineCacheState GetICState() {
|
|
return UnaryOpIC::ToState(operand_type_);
|
|
}
|
|
|
|
virtual void FinishCode(Code* code) {
|
|
code->set_unary_op_type(operand_type_);
|
|
}
|
|
};
|
|
|
|
|
|
class BinaryOpStub: public CodeStub {
|
|
public:
|
|
BinaryOpStub(Token::Value op, OverwriteMode mode)
|
|
: op_(op),
|
|
mode_(mode),
|
|
operands_type_(BinaryOpIC::UNINITIALIZED),
|
|
result_type_(BinaryOpIC::UNINITIALIZED),
|
|
name_(NULL) {
|
|
use_fpu_ = CpuFeatures::IsSupported(FPU);
|
|
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
|
|
}
|
|
|
|
BinaryOpStub(
|
|
int key,
|
|
BinaryOpIC::TypeInfo operands_type,
|
|
BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED)
|
|
: op_(OpBits::decode(key)),
|
|
mode_(ModeBits::decode(key)),
|
|
use_fpu_(FPUBits::decode(key)),
|
|
operands_type_(operands_type),
|
|
result_type_(result_type),
|
|
name_(NULL) { }
|
|
|
|
private:
|
|
enum SmiCodeGenerateHeapNumberResults {
|
|
ALLOW_HEAPNUMBER_RESULTS,
|
|
NO_HEAPNUMBER_RESULTS
|
|
};
|
|
|
|
Token::Value op_;
|
|
OverwriteMode mode_;
|
|
bool use_fpu_;
|
|
|
|
// Operand type information determined at runtime.
|
|
BinaryOpIC::TypeInfo operands_type_;
|
|
BinaryOpIC::TypeInfo result_type_;
|
|
|
|
char* name_;
|
|
|
|
const char* GetName();
|
|
|
|
#ifdef DEBUG
|
|
void Print() {
|
|
PrintF("BinaryOpStub %d (op %s), "
|
|
"(mode %d, runtime_type_info %s)\n",
|
|
MinorKey(),
|
|
Token::String(op_),
|
|
static_cast<int>(mode_),
|
|
BinaryOpIC::GetName(operands_type_));
|
|
}
|
|
#endif
|
|
|
|
// Minor key encoding in 16 bits RRRTTTVOOOOOOOMM.
|
|
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
|
class OpBits: public BitField<Token::Value, 2, 7> {};
|
|
class FPUBits: public BitField<bool, 9, 1> {};
|
|
class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 10, 3> {};
|
|
class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 13, 3> {};
|
|
|
|
Major MajorKey() { return BinaryOp; }
|
|
int MinorKey() {
|
|
return OpBits::encode(op_)
|
|
| ModeBits::encode(mode_)
|
|
| FPUBits::encode(use_fpu_)
|
|
| OperandTypeInfoBits::encode(operands_type_)
|
|
| ResultTypeInfoBits::encode(result_type_);
|
|
}
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
void GenerateGeneric(MacroAssembler* masm);
|
|
void GenerateSmiSmiOperation(MacroAssembler* masm);
|
|
void GenerateFPOperation(MacroAssembler* masm,
|
|
bool smi_operands,
|
|
Label* not_numbers,
|
|
Label* gc_required);
|
|
void GenerateSmiCode(MacroAssembler* masm,
|
|
Label* use_runtime,
|
|
Label* gc_required,
|
|
SmiCodeGenerateHeapNumberResults heapnumber_results);
|
|
void GenerateLoadArguments(MacroAssembler* masm);
|
|
void GenerateReturn(MacroAssembler* masm);
|
|
void GenerateUninitializedStub(MacroAssembler* masm);
|
|
void GenerateSmiStub(MacroAssembler* masm);
|
|
void GenerateInt32Stub(MacroAssembler* masm);
|
|
void GenerateHeapNumberStub(MacroAssembler* masm);
|
|
void GenerateOddballStub(MacroAssembler* masm);
|
|
void GenerateStringStub(MacroAssembler* masm);
|
|
void GenerateBothStringStub(MacroAssembler* masm);
|
|
void GenerateGenericStub(MacroAssembler* masm);
|
|
void GenerateAddStrings(MacroAssembler* masm);
|
|
void GenerateCallRuntime(MacroAssembler* masm);
|
|
|
|
void GenerateHeapResultAllocation(MacroAssembler* masm,
|
|
Register result,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
void GenerateRegisterArgsPush(MacroAssembler* masm);
|
|
void GenerateTypeTransition(MacroAssembler* masm);
|
|
void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);
|
|
|
|
virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
|
|
|
|
virtual InlineCacheState GetICState() {
|
|
return BinaryOpIC::ToState(operands_type_);
|
|
}
|
|
|
|
virtual void FinishCode(Code* code) {
|
|
code->set_binary_op_type(operands_type_);
|
|
code->set_binary_op_result_type(result_type_);
|
|
}
|
|
|
|
friend class CodeGenerator;
|
|
};
|
|
|
|
|
|
// Flag that indicates how to generate code for the stub StringAddStub.
|
|
enum StringAddFlags {
|
|
NO_STRING_ADD_FLAGS = 0,
|
|
// Omit left string check in stub (left is definitely a string).
|
|
NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
|
|
// Omit right string check in stub (right is definitely a string).
|
|
NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
|
|
// Omit both string checks in stub.
|
|
NO_STRING_CHECK_IN_STUB =
|
|
NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
|
|
};
|
|
|
|
|
|
class StringAddStub: public CodeStub {
|
|
public:
|
|
explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
|
|
|
|
private:
|
|
Major MajorKey() { return StringAdd; }
|
|
int MinorKey() { return flags_; }
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
void GenerateConvertArgument(MacroAssembler* masm,
|
|
int stack_offset,
|
|
Register arg,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Register scratch4,
|
|
Label* slow);
|
|
|
|
const StringAddFlags flags_;
|
|
};
|
|
|
|
|
|
class SubStringStub: public CodeStub {
|
|
public:
|
|
SubStringStub() {}
|
|
|
|
private:
|
|
Major MajorKey() { return SubString; }
|
|
int MinorKey() { return 0; }
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
};
|
|
|
|
|
|
class StringCompareStub: public CodeStub {
|
|
public:
|
|
StringCompareStub() { }
|
|
|
|
// Compare two flat ASCII strings and returns result in v0.
|
|
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Register scratch4);
|
|
|
|
// Compares two flat ASCII strings for equality and returns result
|
|
// in v0.
|
|
static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3);
|
|
|
|
private:
|
|
virtual Major MajorKey() { return StringCompare; }
|
|
virtual int MinorKey() { return 0; }
|
|
virtual void Generate(MacroAssembler* masm);
|
|
|
|
static void GenerateAsciiCharsCompareLoop(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* chars_not_equal);
|
|
};
|
|
|
|
|
|
// This stub can convert a signed int32 to a heap number (double). It does
|
|
// not work for int32s that are in Smi range! No GC occurs during this stub
|
|
// so you don't have to set up the frame.
|
|
class WriteInt32ToHeapNumberStub : public CodeStub {
|
|
public:
|
|
WriteInt32ToHeapNumberStub(Register the_int,
|
|
Register the_heap_number,
|
|
Register scratch,
|
|
Register scratch2)
|
|
: the_int_(the_int),
|
|
the_heap_number_(the_heap_number),
|
|
scratch_(scratch),
|
|
sign_(scratch2) { }
|
|
|
|
private:
|
|
Register the_int_;
|
|
Register the_heap_number_;
|
|
Register scratch_;
|
|
Register sign_;
|
|
|
|
// Minor key encoding in 16 bits.
|
|
class IntRegisterBits: public BitField<int, 0, 4> {};
|
|
class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
|
|
class ScratchRegisterBits: public BitField<int, 8, 4> {};
|
|
|
|
Major MajorKey() { return WriteInt32ToHeapNumber; }
|
|
int MinorKey() {
|
|
// Encode the parameters in a unique 16 bit value.
|
|
return IntRegisterBits::encode(the_int_.code())
|
|
| HeapNumberRegisterBits::encode(the_heap_number_.code())
|
|
| ScratchRegisterBits::encode(scratch_.code());
|
|
}
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
const char* GetName() { return "WriteInt32ToHeapNumberStub"; }
|
|
|
|
#ifdef DEBUG
|
|
void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); }
|
|
#endif
|
|
};
|
|
|
|
|
|
class NumberToStringStub: public CodeStub {
|
|
public:
|
|
NumberToStringStub() { }
|
|
|
|
// Generate code to do a lookup in the number string cache. If the number in
|
|
// the register object is found in the cache the generated code falls through
|
|
// with the result in the result register. The object and the result register
|
|
// can be the same. If the number is not found in the cache the code jumps to
|
|
// the label not_found with only the content of register object unchanged.
|
|
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
|
|
Register object,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
bool object_is_smi,
|
|
Label* not_found);
|
|
|
|
private:
|
|
Major MajorKey() { return NumberToString; }
|
|
int MinorKey() { return 0; }
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
const char* GetName() { return "NumberToStringStub"; }
|
|
|
|
#ifdef DEBUG
|
|
void Print() {
|
|
PrintF("NumberToStringStub\n");
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
// Enter C code from generated RegExp code in a way that allows
|
|
// the C code to fix the return address in case of a GC.
|
|
// Currently only needed on ARM and MIPS.
|
|
class RegExpCEntryStub: public CodeStub {
|
|
public:
|
|
RegExpCEntryStub() {}
|
|
virtual ~RegExpCEntryStub() {}
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
private:
|
|
Major MajorKey() { return RegExpCEntry; }
|
|
int MinorKey() { return 0; }
|
|
|
|
bool NeedsImmovableCode() { return true; }
|
|
|
|
const char* GetName() { return "RegExpCEntryStub"; }
|
|
};
|
|
|
|
// Trampoline stub to call into native code. To call safely into native code
|
|
// in the presence of compacting GC (which can move code objects) we need to
|
|
// keep the code which called into native pinned in the memory. Currently the
|
|
// simplest approach is to generate such stub early enough so it can never be
|
|
// moved by GC
|
|
class DirectCEntryStub: public CodeStub {
|
|
public:
|
|
DirectCEntryStub() {}
|
|
void Generate(MacroAssembler* masm);
|
|
void GenerateCall(MacroAssembler* masm,
|
|
ExternalReference function);
|
|
void GenerateCall(MacroAssembler* masm, Register target);
|
|
|
|
private:
|
|
Major MajorKey() { return DirectCEntry; }
|
|
int MinorKey() { return 0; }
|
|
|
|
bool NeedsImmovableCode() { return true; }
|
|
|
|
const char* GetName() { return "DirectCEntryStub"; }
|
|
};
|
|
|
|
class FloatingPointHelper : public AllStatic {
|
|
public:
|
|
enum Destination {
|
|
kFPURegisters,
|
|
kCoreRegisters
|
|
};
|
|
|
|
|
|
// Loads smis from a0 and a1 (right and left in binary operations) into
|
|
// floating point registers. Depending on the destination the values ends up
|
|
// either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination
|
|
// is floating point registers FPU must be supported. If core registers are
|
|
// requested when FPU is supported f12 and f14 will be scratched.
|
|
static void LoadSmis(MacroAssembler* masm,
|
|
Destination destination,
|
|
Register scratch1,
|
|
Register scratch2);
|
|
|
|
// Loads objects from a0 and a1 (right and left in binary operations) into
|
|
// floating point registers. Depending on the destination the values ends up
|
|
// either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination
|
|
// is floating point registers FPU must be supported. If core registers are
|
|
// requested when FPU is supported f12 and f14 will still be scratched. If
|
|
// either a0 or a1 is not a number (not smi and not heap number object) the
|
|
// not_number label is jumped to with a0 and a1 intact.
|
|
static void LoadOperands(MacroAssembler* masm,
|
|
FloatingPointHelper::Destination destination,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* not_number);
|
|
|
|
// Convert the smi or heap number in object to an int32 using the rules
|
|
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
|
|
// and brought into the range -2^31 .. +2^31 - 1.
|
|
static void ConvertNumberToInt32(MacroAssembler* masm,
|
|
Register object,
|
|
Register dst,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
FPURegister double_scratch,
|
|
Label* not_int32);
|
|
|
|
// Converts the integer (untagged smi) in |int_scratch| to a double, storing
|
|
// the result either in |double_dst| or |dst2:dst1|, depending on
|
|
// |destination|.
|
|
// Warning: The value in |int_scratch| will be changed in the process!
|
|
static void ConvertIntToDouble(MacroAssembler* masm,
|
|
Register int_scratch,
|
|
Destination destination,
|
|
FPURegister double_dst,
|
|
Register dst1,
|
|
Register dst2,
|
|
Register scratch2,
|
|
FPURegister single_scratch);
|
|
|
|
// Load the number from object into double_dst in the double format.
|
|
// Control will jump to not_int32 if the value cannot be exactly represented
|
|
// by a 32-bit integer.
|
|
// Floating point value in the 32-bit integer range that are not exact integer
|
|
// won't be loaded.
|
|
static void LoadNumberAsInt32Double(MacroAssembler* masm,
|
|
Register object,
|
|
Destination destination,
|
|
FPURegister double_dst,
|
|
Register dst1,
|
|
Register dst2,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
FPURegister single_scratch,
|
|
Label* not_int32);
|
|
|
|
// Loads the number from object into dst as a 32-bit integer.
|
|
// Control will jump to not_int32 if the object cannot be exactly represented
|
|
// by a 32-bit integer.
|
|
// Floating point value in the 32-bit integer range that are not exact integer
|
|
// won't be converted.
|
|
// scratch3 is not used when FPU is supported.
|
|
static void LoadNumberAsInt32(MacroAssembler* masm,
|
|
Register object,
|
|
Register dst,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
FPURegister double_scratch,
|
|
Label* not_int32);
|
|
|
|
// Generate non FPU code to check if a double can be exactly represented by a
|
|
// 32-bit integer. This does not check for 0 or -0, which need
|
|
// to be checked for separately.
|
|
// Control jumps to not_int32 if the value is not a 32-bit integer, and falls
|
|
// through otherwise.
|
|
// src1 and src2 will be cloberred.
|
|
//
|
|
// Expected input:
|
|
// - src1: higher (exponent) part of the double value.
|
|
// - src2: lower (mantissa) part of the double value.
|
|
// Output status:
|
|
// - dst: 32 higher bits of the mantissa. (mantissa[51:20])
|
|
// - src2: contains 1.
|
|
// - other registers are clobbered.
|
|
static void DoubleIs32BitInteger(MacroAssembler* masm,
|
|
Register src1,
|
|
Register src2,
|
|
Register dst,
|
|
Register scratch,
|
|
Label* not_int32);
|
|
|
|
// Generates code to call a C function to do a double operation using core
|
|
// registers. (Used when FPU is not supported.)
|
|
// This code never falls through, but returns with a heap number containing
|
|
// the result in v0.
|
|
// Register heapnumber_result must be a heap number in which the
|
|
// result of the operation will be stored.
|
|
// Requires the following layout on entry:
|
|
// a0: Left value (least significant part of mantissa).
|
|
// a1: Left value (sign, exponent, top of mantissa).
|
|
// a2: Right value (least significant part of mantissa).
|
|
// a3: Right value (sign, exponent, top of mantissa).
|
|
static void CallCCodeForDoubleOperation(MacroAssembler* masm,
|
|
Token::Value op,
|
|
Register heap_number_result,
|
|
Register scratch);
|
|
|
|
private:
|
|
static void LoadNumber(MacroAssembler* masm,
|
|
FloatingPointHelper::Destination destination,
|
|
Register object,
|
|
FPURegister dst,
|
|
Register dst1,
|
|
Register dst2,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* not_number);
|
|
};
|
|
|
|
|
|
class StringDictionaryLookupStub: public CodeStub {
|
|
public:
|
|
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
|
|
|
|
explicit StringDictionaryLookupStub(LookupMode mode) : mode_(mode) { }
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
MUST_USE_RESULT static MaybeObject* GenerateNegativeLookup(
|
|
MacroAssembler* masm,
|
|
Label* miss,
|
|
Label* done,
|
|
Register receiver,
|
|
Register properties,
|
|
String* name,
|
|
Register scratch0);
|
|
|
|
static void GeneratePositiveLookup(MacroAssembler* masm,
|
|
Label* miss,
|
|
Label* done,
|
|
Register elements,
|
|
Register name,
|
|
Register r0,
|
|
Register r1);
|
|
|
|
private:
|
|
static const int kInlinedProbes = 4;
|
|
static const int kTotalProbes = 20;
|
|
|
|
static const int kCapacityOffset =
|
|
StringDictionary::kHeaderSize +
|
|
StringDictionary::kCapacityIndex * kPointerSize;
|
|
|
|
static const int kElementsStartOffset =
|
|
StringDictionary::kHeaderSize +
|
|
StringDictionary::kElementsStartIndex * kPointerSize;
|
|
|
|
|
|
#ifdef DEBUG
|
|
void Print() {
|
|
PrintF("StringDictionaryLookupStub\n");
|
|
}
|
|
#endif
|
|
|
|
Major MajorKey() { return StringDictionaryNegativeLookup; }
|
|
|
|
int MinorKey() {
|
|
return LookupModeBits::encode(mode_);
|
|
}
|
|
|
|
class LookupModeBits: public BitField<LookupMode, 0, 1> {};
|
|
|
|
LookupMode mode_;
|
|
};
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_MIPS_CODE_STUBS_ARM_H_
|
|
|