mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
6.3 KiB
230 lines
6.3 KiB
// Copyright 2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "../include/v8stdint.h"
|
|
#include "globals.h"
|
|
#include "checks.h"
|
|
#include "utils.h"
|
|
#include "allocation.h"
|
|
|
|
#include "hashmap.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
Allocator HashMap::DefaultAllocator;
|
|
|
|
|
|
HashMap::HashMap() {
|
|
allocator_ = NULL;
|
|
match_ = NULL;
|
|
}
|
|
|
|
|
|
HashMap::HashMap(MatchFun match,
|
|
Allocator* allocator,
|
|
uint32_t initial_capacity) {
|
|
allocator_ = allocator;
|
|
match_ = match;
|
|
Initialize(initial_capacity);
|
|
}
|
|
|
|
|
|
HashMap::~HashMap() {
|
|
if (allocator_) {
|
|
allocator_->Delete(map_);
|
|
}
|
|
}
|
|
|
|
|
|
HashMap::Entry* HashMap::Lookup(void* key, uint32_t hash, bool insert) {
|
|
// Find a matching entry.
|
|
Entry* p = Probe(key, hash);
|
|
if (p->key != NULL) {
|
|
return p;
|
|
}
|
|
|
|
// No entry found; insert one if necessary.
|
|
if (insert) {
|
|
p->key = key;
|
|
p->value = NULL;
|
|
p->hash = hash;
|
|
occupancy_++;
|
|
|
|
// Grow the map if we reached >= 80% occupancy.
|
|
if (occupancy_ + occupancy_/4 >= capacity_) {
|
|
Resize();
|
|
p = Probe(key, hash);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
// No entry found and none inserted.
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void HashMap::Remove(void* key, uint32_t hash) {
|
|
// Lookup the entry for the key to remove.
|
|
Entry* p = Probe(key, hash);
|
|
if (p->key == NULL) {
|
|
// Key not found nothing to remove.
|
|
return;
|
|
}
|
|
|
|
// To remove an entry we need to ensure that it does not create an empty
|
|
// entry that will cause the search for another entry to stop too soon. If all
|
|
// the entries between the entry to remove and the next empty slot have their
|
|
// initial position inside this interval, clearing the entry to remove will
|
|
// not break the search. If, while searching for the next empty entry, an
|
|
// entry is encountered which does not have its initial position between the
|
|
// entry to remove and the position looked at, then this entry can be moved to
|
|
// the place of the entry to remove without breaking the search for it. The
|
|
// entry made vacant by this move is now the entry to remove and the process
|
|
// starts over.
|
|
// Algorithm from http://en.wikipedia.org/wiki/Open_addressing.
|
|
|
|
// This guarantees loop termination as there is at least one empty entry so
|
|
// eventually the removed entry will have an empty entry after it.
|
|
ASSERT(occupancy_ < capacity_);
|
|
|
|
// p is the candidate entry to clear. q is used to scan forwards.
|
|
Entry* q = p; // Start at the entry to remove.
|
|
while (true) {
|
|
// Move q to the next entry.
|
|
q = q + 1;
|
|
if (q == map_end()) {
|
|
q = map_;
|
|
}
|
|
|
|
// All entries between p and q have their initial position between p and q
|
|
// and the entry p can be cleared without breaking the search for these
|
|
// entries.
|
|
if (q->key == NULL) {
|
|
break;
|
|
}
|
|
|
|
// Find the initial position for the entry at position q.
|
|
Entry* r = map_ + (q->hash & (capacity_ - 1));
|
|
|
|
// If the entry at position q has its initial position outside the range
|
|
// between p and q it can be moved forward to position p and will still be
|
|
// found. There is now a new candidate entry for clearing.
|
|
if ((q > p && (r <= p || r > q)) ||
|
|
(q < p && (r <= p && r > q))) {
|
|
*p = *q;
|
|
p = q;
|
|
}
|
|
}
|
|
|
|
// Clear the entry which is allowed to en emptied.
|
|
p->key = NULL;
|
|
occupancy_--;
|
|
}
|
|
|
|
|
|
void HashMap::Clear() {
|
|
// Mark all entries as empty.
|
|
const Entry* end = map_end();
|
|
for (Entry* p = map_; p < end; p++) {
|
|
p->key = NULL;
|
|
}
|
|
occupancy_ = 0;
|
|
}
|
|
|
|
|
|
HashMap::Entry* HashMap::Start() const {
|
|
return Next(map_ - 1);
|
|
}
|
|
|
|
|
|
HashMap::Entry* HashMap::Next(Entry* p) const {
|
|
const Entry* end = map_end();
|
|
ASSERT(map_ - 1 <= p && p < end);
|
|
for (p++; p < end; p++) {
|
|
if (p->key != NULL) {
|
|
return p;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
HashMap::Entry* HashMap::Probe(void* key, uint32_t hash) {
|
|
ASSERT(key != NULL);
|
|
|
|
ASSERT(IsPowerOf2(capacity_));
|
|
Entry* p = map_ + (hash & (capacity_ - 1));
|
|
const Entry* end = map_end();
|
|
ASSERT(map_ <= p && p < end);
|
|
|
|
ASSERT(occupancy_ < capacity_); // Guarantees loop termination.
|
|
while (p->key != NULL && (hash != p->hash || !match_(key, p->key))) {
|
|
p++;
|
|
if (p >= end) {
|
|
p = map_;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
void HashMap::Initialize(uint32_t capacity) {
|
|
ASSERT(IsPowerOf2(capacity));
|
|
map_ = reinterpret_cast<Entry*>(allocator_->New(capacity * sizeof(Entry)));
|
|
if (map_ == NULL) {
|
|
v8::internal::FatalProcessOutOfMemory("HashMap::Initialize");
|
|
return;
|
|
}
|
|
capacity_ = capacity;
|
|
Clear();
|
|
}
|
|
|
|
|
|
void HashMap::Resize() {
|
|
Entry* map = map_;
|
|
uint32_t n = occupancy_;
|
|
|
|
// Allocate larger map.
|
|
Initialize(capacity_ * 2);
|
|
|
|
// Rehash all current entries.
|
|
for (Entry* p = map; n > 0; p++) {
|
|
if (p->key != NULL) {
|
|
Lookup(p->key, p->hash, true)->value = p->value;
|
|
n--;
|
|
}
|
|
}
|
|
|
|
// Delete old map.
|
|
allocator_->Delete(map);
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|