You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

320 lines
10 KiB

// Copyright 2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_REGISTER_ALLOCATOR_H_
#define V8_REGISTER_ALLOCATOR_H_
#include "macro-assembler.h"
#include "type-info.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/register-allocator-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/register-allocator-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/register-allocator-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/register-allocator-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// Results
//
// Results encapsulate the compile-time values manipulated by the code
// generator. They can represent registers or constants.
class Result BASE_EMBEDDED {
public:
enum Type {
INVALID,
REGISTER,
CONSTANT
};
// Construct an invalid result.
Result() { invalidate(); }
// Construct a register Result.
explicit Result(Register reg, TypeInfo info = TypeInfo::Unknown());
// Construct a Result whose value is a compile-time constant.
explicit Result(Handle<Object> value) {
TypeInfo info = TypeInfo::TypeFromValue(value);
value_ = TypeField::encode(CONSTANT)
| TypeInfoField::encode(info.ToInt())
| IsUntaggedInt32Field::encode(false)
| DataField::encode(ConstantList()->length());
ConstantList()->Add(value);
}
// The copy constructor and assignment operators could each create a new
// register reference.
inline Result(const Result& other);
inline Result& operator=(const Result& other);
inline ~Result();
// Static indirection table for handles to constants. If a Result
// represents a constant, the data contains an index into this table
// of handles to the actual constants.
typedef ZoneList<Handle<Object> > ZoneObjectList;
static ZoneObjectList* ConstantList();
// Clear the constants indirection table.
static void ClearConstantList() {
ConstantList()->Clear();
}
inline void Unuse();
Type type() const { return TypeField::decode(value_); }
void invalidate() { value_ = TypeField::encode(INVALID); }
inline TypeInfo type_info() const;
inline void set_type_info(TypeInfo info);
inline bool is_number() const;
inline bool is_smi() const;
inline bool is_integer32() const;
inline bool is_double() const;
bool is_valid() const { return type() != INVALID; }
bool is_register() const { return type() == REGISTER; }
bool is_constant() const { return type() == CONSTANT; }
// An untagged int32 Result contains a signed int32 in a register
// or as a constant. These are only allowed in a side-effect-free
// int32 calculation, and if a non-int32 input shows up or an overflow
// occurs, we bail out and drop all the int32 values. Constants are
// not converted to int32 until they are loaded into a register.
bool is_untagged_int32() const {
return IsUntaggedInt32Field::decode(value_);
}
void set_untagged_int32(bool value) {
value_ &= ~IsUntaggedInt32Field::mask();
value_ |= IsUntaggedInt32Field::encode(value);
}
Register reg() const {
ASSERT(is_register());
uint32_t reg = DataField::decode(value_);
Register result;
result.code_ = reg;
return result;
}
Handle<Object> handle() const {
ASSERT(type() == CONSTANT);
return ConstantList()->at(DataField::decode(value_));
}
// Move this result to an arbitrary register. The register is not
// necessarily spilled from the frame or even singly-referenced outside
// it.
void ToRegister();
// Move this result to a specified register. The register is spilled from
// the frame, and the register is singly-referenced (by this result)
// outside the frame.
void ToRegister(Register reg);
private:
uint32_t value_;
// Declare BitFields with template parameters <type, start, size>.
class TypeField: public BitField<Type, 0, 2> {};
class TypeInfoField : public BitField<int, 2, 6> {};
class IsUntaggedInt32Field : public BitField<bool, 8, 1> {};
class DataField: public BitField<uint32_t, 9, 32 - 9> {};
inline void CopyTo(Result* destination) const;
friend class CodeGeneratorScope;
};
// -------------------------------------------------------------------------
// Register file
//
// The register file tracks reference counts for the processor registers.
// It is used by both the register allocator and the virtual frame.
class RegisterFile BASE_EMBEDDED {
public:
RegisterFile() { Reset(); }
void Reset() {
for (int i = 0; i < kNumRegisters; i++) {
ref_counts_[i] = 0;
}
}
// Predicates and accessors for the reference counts.
bool is_used(int num) {
ASSERT(0 <= num && num < kNumRegisters);
return ref_counts_[num] > 0;
}
int count(int num) {
ASSERT(0 <= num && num < kNumRegisters);
return ref_counts_[num];
}
// Record a use of a register by incrementing its reference count.
void Use(int num) {
ASSERT(0 <= num && num < kNumRegisters);
ref_counts_[num]++;
}
// Record that a register will no longer be used by decrementing its
// reference count.
void Unuse(int num) {
ASSERT(is_used(num));
ref_counts_[num]--;
}
// Copy the reference counts from this register file to the other.
void CopyTo(RegisterFile* other) {
for (int i = 0; i < kNumRegisters; i++) {
other->ref_counts_[i] = ref_counts_[i];
}
}
private:
// C++ doesn't like zero length arrays, so we make the array length 1 even if
// we don't need it.
static const int kNumRegisters =
(RegisterAllocatorConstants::kNumRegisters == 0) ?
1 : RegisterAllocatorConstants::kNumRegisters;
int ref_counts_[kNumRegisters];
// Very fast inlined loop to find a free register. Used in
// RegisterAllocator::AllocateWithoutSpilling. Returns
// kInvalidRegister if no free register found.
int ScanForFreeRegister() {
for (int i = 0; i < RegisterAllocatorConstants::kNumRegisters; i++) {
if (!is_used(i)) return i;
}
return RegisterAllocatorConstants::kInvalidRegister;
}
friend class RegisterAllocator;
};
// -------------------------------------------------------------------------
// Register allocator
//
class RegisterAllocator BASE_EMBEDDED {
public:
static const int kNumRegisters =
RegisterAllocatorConstants::kNumRegisters;
static const int kInvalidRegister =
RegisterAllocatorConstants::kInvalidRegister;
explicit RegisterAllocator(CodeGenerator* cgen) : cgen_(cgen) {}
// True if the register is reserved by the code generator, false if it
// can be freely used by the allocator Defined in the
// platform-specific XXX-inl.h files..
static inline bool IsReserved(Register reg);
// Convert between (unreserved) assembler registers and allocator
// numbers. Defined in the platform-specific XXX-inl.h files.
static inline int ToNumber(Register reg);
static inline Register ToRegister(int num);
// Predicates and accessors for the registers' reference counts.
bool is_used(int num) { return registers_.is_used(num); }
inline bool is_used(Register reg);
int count(int num) { return registers_.count(num); }
inline int count(Register reg);
// Explicitly record a reference to a register.
void Use(int num) { registers_.Use(num); }
inline void Use(Register reg);
// Explicitly record that a register will no longer be used.
void Unuse(int num) { registers_.Unuse(num); }
inline void Unuse(Register reg);
// Reset the register reference counts to free all non-reserved registers.
void Reset() { registers_.Reset(); }
// Initialize the register allocator for entry to a JS function. On
// entry, the (non-reserved) registers used by the JS calling
// convention are referenced and the other (non-reserved) registers
// are free.
inline void Initialize();
// Allocate a free register and return a register result if possible or
// fail and return an invalid result.
Result Allocate();
// Allocate a specific register if possible, spilling it from the
// current frame if necessary, or else fail and return an invalid
// result.
Result Allocate(Register target);
// Allocate a free register without spilling any from the current
// frame or fail and return an invalid result.
Result AllocateWithoutSpilling();
// Allocate a free byte register without spilling any from the current
// frame or fail and return an invalid result.
Result AllocateByteRegisterWithoutSpilling();
// Copy the internal state to a register file, to be restored later by
// RestoreFrom.
void SaveTo(RegisterFile* register_file) {
registers_.CopyTo(register_file);
}
// Restore the internal state.
void RestoreFrom(RegisterFile* register_file) {
register_file->CopyTo(&registers_);
}
private:
CodeGenerator* cgen_;
RegisterFile registers_;
};
} } // namespace v8::internal
#endif // V8_REGISTER_ALLOCATOR_H_