mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1587 lines
62 KiB
1587 lines
62 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
|
|
#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
|
|
|
|
#include "assembler.h"
|
|
#include "mips/assembler-mips.h"
|
|
#include "v8globals.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Forward declaration.
|
|
class JumpTarget;
|
|
|
|
// Reserved Register Usage Summary.
|
|
//
|
|
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
|
|
//
|
|
// The programmer should know that the MacroAssembler may clobber these three,
|
|
// but won't touch other registers except in special cases.
|
|
//
|
|
// Per the MIPS ABI, register t9 must be used for indirect function call
|
|
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
|
|
// trying to update gp register for position-independent-code. Whenever
|
|
// MIPS generated code calls C code, it must be via t9 register.
|
|
|
|
|
|
// Flags used for the AllocateInNewSpace functions.
|
|
enum AllocationFlags {
|
|
// No special flags.
|
|
NO_ALLOCATION_FLAGS = 0,
|
|
// Return the pointer to the allocated already tagged as a heap object.
|
|
TAG_OBJECT = 1 << 0,
|
|
// The content of the result register already contains the allocation top in
|
|
// new space.
|
|
RESULT_CONTAINS_TOP = 1 << 1,
|
|
// Specify that the requested size of the space to allocate is specified in
|
|
// words instead of bytes.
|
|
SIZE_IN_WORDS = 1 << 2
|
|
};
|
|
|
|
// Flags used for AllocateHeapNumber
|
|
enum TaggingMode {
|
|
// Tag the result.
|
|
TAG_RESULT,
|
|
// Don't tag
|
|
DONT_TAG_RESULT
|
|
};
|
|
|
|
// Flags used for the ObjectToDoubleFPURegister function.
|
|
enum ObjectToDoubleFlags {
|
|
// No special flags.
|
|
NO_OBJECT_TO_DOUBLE_FLAGS = 0,
|
|
// Object is known to be a non smi.
|
|
OBJECT_NOT_SMI = 1 << 0,
|
|
// Don't load NaNs or infinities, branch to the non number case instead.
|
|
AVOID_NANS_AND_INFINITIES = 1 << 1
|
|
};
|
|
|
|
// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
|
|
enum BranchDelaySlot {
|
|
USE_DELAY_SLOT,
|
|
PROTECT
|
|
};
|
|
|
|
// Flags used for the li macro-assembler function.
|
|
enum LiFlags {
|
|
// If the constant value can be represented in just 16 bits, then
|
|
// optimize the li to use a single instruction, rather than lui/ori pair.
|
|
OPTIMIZE_SIZE = 0,
|
|
// Always use 2 instructions (lui/ori pair), even if the constant could
|
|
// be loaded with just one, so that this value is patchable later.
|
|
CONSTANT_SIZE = 1
|
|
};
|
|
|
|
|
|
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
|
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
|
enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
|
|
|
|
bool AreAliased(Register r1, Register r2, Register r3, Register r4);
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Static helper functions.
|
|
|
|
inline MemOperand ContextOperand(Register context, int index) {
|
|
return MemOperand(context, Context::SlotOffset(index));
|
|
}
|
|
|
|
|
|
inline MemOperand GlobalObjectOperand() {
|
|
return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
|
|
}
|
|
|
|
|
|
// Generate a MemOperand for loading a field from an object.
|
|
inline MemOperand FieldMemOperand(Register object, int offset) {
|
|
return MemOperand(object, offset - kHeapObjectTag);
|
|
}
|
|
|
|
|
|
// Generate a MemOperand for storing arguments 5..N on the stack
|
|
// when calling CallCFunction().
|
|
inline MemOperand CFunctionArgumentOperand(int index) {
|
|
ASSERT(index > kCArgSlotCount);
|
|
// Argument 5 takes the slot just past the four Arg-slots.
|
|
int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
|
|
return MemOperand(sp, offset);
|
|
}
|
|
|
|
|
|
// MacroAssembler implements a collection of frequently used macros.
|
|
class MacroAssembler: public Assembler {
|
|
public:
|
|
// The isolate parameter can be NULL if the macro assembler should
|
|
// not use isolate-dependent functionality. In this case, it's the
|
|
// responsibility of the caller to never invoke such function on the
|
|
// macro assembler.
|
|
MacroAssembler(Isolate* isolate, void* buffer, int size);
|
|
|
|
// Arguments macros.
|
|
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
|
|
#define COND_ARGS cond, r1, r2
|
|
|
|
// Cases when relocation is not needed.
|
|
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
|
|
void Name(target_type target, BranchDelaySlot bd = PROTECT); \
|
|
inline void Name(BranchDelaySlot bd, target_type target) { \
|
|
Name(target, bd); \
|
|
} \
|
|
void Name(target_type target, \
|
|
COND_TYPED_ARGS, \
|
|
BranchDelaySlot bd = PROTECT); \
|
|
inline void Name(BranchDelaySlot bd, \
|
|
target_type target, \
|
|
COND_TYPED_ARGS) { \
|
|
Name(target, COND_ARGS, bd); \
|
|
}
|
|
|
|
#define DECLARE_BRANCH_PROTOTYPES(Name) \
|
|
DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
|
|
DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
|
|
|
|
DECLARE_BRANCH_PROTOTYPES(Branch)
|
|
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
|
|
|
|
#undef DECLARE_BRANCH_PROTOTYPES
|
|
#undef COND_TYPED_ARGS
|
|
#undef COND_ARGS
|
|
|
|
|
|
// Jump, Call, and Ret pseudo instructions implementing inter-working.
|
|
#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
|
|
const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
|
|
|
|
void Jump(Register target, COND_ARGS);
|
|
void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
|
|
void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
|
|
void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
|
|
static int CallSize(Register target, COND_ARGS);
|
|
void Call(Register target, COND_ARGS);
|
|
static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
|
|
void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
|
|
int CallSize(Handle<Code> code,
|
|
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
COND_ARGS);
|
|
void Call(Handle<Code> code,
|
|
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
COND_ARGS);
|
|
void Ret(COND_ARGS);
|
|
inline void Ret(BranchDelaySlot bd, Condition cond = al,
|
|
Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
|
|
Ret(cond, rs, rt, bd);
|
|
}
|
|
|
|
void Branch(Label* L,
|
|
Condition cond,
|
|
Register rs,
|
|
Heap::RootListIndex index,
|
|
BranchDelaySlot bdslot = PROTECT);
|
|
|
|
#undef COND_ARGS
|
|
|
|
// Emit code to discard a non-negative number of pointer-sized elements
|
|
// from the stack, clobbering only the sp register.
|
|
void Drop(int count,
|
|
Condition cond = cc_always,
|
|
Register reg = no_reg,
|
|
const Operand& op = Operand(no_reg));
|
|
|
|
// Trivial case of DropAndRet that utilizes the delay slot and only emits
|
|
// 2 instructions.
|
|
void DropAndRet(int drop);
|
|
|
|
void DropAndRet(int drop,
|
|
Condition cond,
|
|
Register reg,
|
|
const Operand& op);
|
|
|
|
// Swap two registers. If the scratch register is omitted then a slightly
|
|
// less efficient form using xor instead of mov is emitted.
|
|
void Swap(Register reg1, Register reg2, Register scratch = no_reg);
|
|
|
|
void Call(Label* target);
|
|
|
|
inline void Move(Register dst, Register src) {
|
|
if (!dst.is(src)) {
|
|
mov(dst, src);
|
|
}
|
|
}
|
|
|
|
inline void Move(FPURegister dst, FPURegister src) {
|
|
if (!dst.is(src)) {
|
|
mov_d(dst, src);
|
|
}
|
|
}
|
|
|
|
inline void Move(Register dst_low, Register dst_high, FPURegister src) {
|
|
mfc1(dst_low, src);
|
|
mfc1(dst_high, FPURegister::from_code(src.code() + 1));
|
|
}
|
|
|
|
inline void Move(FPURegister dst, Register src_low, Register src_high) {
|
|
mtc1(src_low, dst);
|
|
mtc1(src_high, FPURegister::from_code(dst.code() + 1));
|
|
}
|
|
|
|
// Conditional move.
|
|
void Move(FPURegister dst, double imm);
|
|
void Movz(Register rd, Register rs, Register rt);
|
|
void Movn(Register rd, Register rs, Register rt);
|
|
void Movt(Register rd, Register rs, uint16_t cc = 0);
|
|
void Movf(Register rd, Register rs, uint16_t cc = 0);
|
|
|
|
void Clz(Register rd, Register rs);
|
|
|
|
// Jump unconditionally to given label.
|
|
// We NEED a nop in the branch delay slot, as it used by v8, for example in
|
|
// CodeGenerator::ProcessDeferred().
|
|
// Currently the branch delay slot is filled by the MacroAssembler.
|
|
// Use rather b(Label) for code generation.
|
|
void jmp(Label* L) {
|
|
Branch(L);
|
|
}
|
|
|
|
// Load an object from the root table.
|
|
void LoadRoot(Register destination,
|
|
Heap::RootListIndex index);
|
|
void LoadRoot(Register destination,
|
|
Heap::RootListIndex index,
|
|
Condition cond, Register src1, const Operand& src2);
|
|
|
|
// Store an object to the root table.
|
|
void StoreRoot(Register source,
|
|
Heap::RootListIndex index);
|
|
void StoreRoot(Register source,
|
|
Heap::RootListIndex index,
|
|
Condition cond, Register src1, const Operand& src2);
|
|
|
|
void LoadHeapObject(Register dst, Handle<HeapObject> object);
|
|
|
|
void LoadObject(Register result, Handle<Object> object) {
|
|
ALLOW_HANDLE_DEREF(isolate(), "heap object check");
|
|
if (object->IsHeapObject()) {
|
|
LoadHeapObject(result, Handle<HeapObject>::cast(object));
|
|
} else {
|
|
li(result, object);
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// GC Support
|
|
|
|
void IncrementalMarkingRecordWriteHelper(Register object,
|
|
Register value,
|
|
Register address);
|
|
|
|
enum RememberedSetFinalAction {
|
|
kReturnAtEnd,
|
|
kFallThroughAtEnd
|
|
};
|
|
|
|
|
|
// Record in the remembered set the fact that we have a pointer to new space
|
|
// at the address pointed to by the addr register. Only works if addr is not
|
|
// in new space.
|
|
void RememberedSetHelper(Register object, // Used for debug code.
|
|
Register addr,
|
|
Register scratch,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetFinalAction and_then);
|
|
|
|
void CheckPageFlag(Register object,
|
|
Register scratch,
|
|
int mask,
|
|
Condition cc,
|
|
Label* condition_met);
|
|
|
|
// Check if object is in new space. Jumps if the object is not in new space.
|
|
// The register scratch can be object itself, but it will be clobbered.
|
|
void JumpIfNotInNewSpace(Register object,
|
|
Register scratch,
|
|
Label* branch) {
|
|
InNewSpace(object, scratch, ne, branch);
|
|
}
|
|
|
|
// Check if object is in new space. Jumps if the object is in new space.
|
|
// The register scratch can be object itself, but scratch will be clobbered.
|
|
void JumpIfInNewSpace(Register object,
|
|
Register scratch,
|
|
Label* branch) {
|
|
InNewSpace(object, scratch, eq, branch);
|
|
}
|
|
|
|
// Check if an object has a given incremental marking color.
|
|
void HasColor(Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* has_color,
|
|
int first_bit,
|
|
int second_bit);
|
|
|
|
void JumpIfBlack(Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* on_black);
|
|
|
|
// Checks the color of an object. If the object is already grey or black
|
|
// then we just fall through, since it is already live. If it is white and
|
|
// we can determine that it doesn't need to be scanned, then we just mark it
|
|
// black and fall through. For the rest we jump to the label so the
|
|
// incremental marker can fix its assumptions.
|
|
void EnsureNotWhite(Register object,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* object_is_white_and_not_data);
|
|
|
|
// Detects conservatively whether an object is data-only, i.e. it does need to
|
|
// be scanned by the garbage collector.
|
|
void JumpIfDataObject(Register value,
|
|
Register scratch,
|
|
Label* not_data_object);
|
|
|
|
// Notify the garbage collector that we wrote a pointer into an object.
|
|
// |object| is the object being stored into, |value| is the object being
|
|
// stored. value and scratch registers are clobbered by the operation.
|
|
// The offset is the offset from the start of the object, not the offset from
|
|
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
|
|
void RecordWriteField(
|
|
Register object,
|
|
int offset,
|
|
Register value,
|
|
Register scratch,
|
|
RAStatus ra_status,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK);
|
|
|
|
// As above, but the offset has the tag presubtracted. For use with
|
|
// MemOperand(reg, off).
|
|
inline void RecordWriteContextSlot(
|
|
Register context,
|
|
int offset,
|
|
Register value,
|
|
Register scratch,
|
|
RAStatus ra_status,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK) {
|
|
RecordWriteField(context,
|
|
offset + kHeapObjectTag,
|
|
value,
|
|
scratch,
|
|
ra_status,
|
|
save_fp,
|
|
remembered_set_action,
|
|
smi_check);
|
|
}
|
|
|
|
// For a given |object| notify the garbage collector that the slot |address|
|
|
// has been written. |value| is the object being stored. The value and
|
|
// address registers are clobbered by the operation.
|
|
void RecordWrite(
|
|
Register object,
|
|
Register address,
|
|
Register value,
|
|
RAStatus ra_status,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK);
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Inline caching support.
|
|
|
|
// Generate code for checking access rights - used for security checks
|
|
// on access to global objects across environments. The holder register
|
|
// is left untouched, whereas both scratch registers are clobbered.
|
|
void CheckAccessGlobalProxy(Register holder_reg,
|
|
Register scratch,
|
|
Label* miss);
|
|
|
|
void GetNumberHash(Register reg0, Register scratch);
|
|
|
|
void LoadFromNumberDictionary(Label* miss,
|
|
Register elements,
|
|
Register key,
|
|
Register result,
|
|
Register reg0,
|
|
Register reg1,
|
|
Register reg2);
|
|
|
|
|
|
inline void MarkCode(NopMarkerTypes type) {
|
|
nop(type);
|
|
}
|
|
|
|
// Check if the given instruction is a 'type' marker.
|
|
// i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
|
|
// nop(type)). These instructions are generated to mark special location in
|
|
// the code, like some special IC code.
|
|
static inline bool IsMarkedCode(Instr instr, int type) {
|
|
ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
|
|
return IsNop(instr, type);
|
|
}
|
|
|
|
|
|
static inline int GetCodeMarker(Instr instr) {
|
|
uint32_t opcode = ((instr & kOpcodeMask));
|
|
uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
|
|
uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
|
|
uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
|
|
|
|
// Return <n> if we have a sll zero_reg, zero_reg, n
|
|
// else return -1.
|
|
bool sllzz = (opcode == SLL &&
|
|
rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
|
|
rs == static_cast<uint32_t>(ToNumber(zero_reg)));
|
|
int type =
|
|
(sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
|
|
ASSERT((type == -1) ||
|
|
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
|
|
return type;
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Allocation support.
|
|
|
|
// Allocate an object in new space or old pointer space. The object_size is
|
|
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
|
|
// is passed. If the space is exhausted control continues at the gc_required
|
|
// label. The allocated object is returned in result. If the flag
|
|
// tag_allocated_object is true the result is tagged as as a heap object.
|
|
// All registers are clobbered also when control continues at the gc_required
|
|
// label.
|
|
void Allocate(int object_size,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required,
|
|
AllocationFlags flags);
|
|
|
|
void Allocate(Register object_size,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required,
|
|
AllocationFlags flags);
|
|
|
|
// Undo allocation in new space. The object passed and objects allocated after
|
|
// it will no longer be allocated. The caller must make sure that no pointers
|
|
// are left to the object(s) no longer allocated as they would be invalid when
|
|
// allocation is undone.
|
|
void UndoAllocationInNewSpace(Register object, Register scratch);
|
|
|
|
|
|
void AllocateTwoByteString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required);
|
|
void AllocateAsciiString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required);
|
|
void AllocateTwoByteConsString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateAsciiConsString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateTwoByteSlicedString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateAsciiSlicedString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
|
|
// Allocates a heap number or jumps to the gc_required label if the young
|
|
// space is full and a scavenge is needed. All registers are clobbered also
|
|
// when control continues at the gc_required label.
|
|
void AllocateHeapNumber(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register heap_number_map,
|
|
Label* gc_required,
|
|
TaggingMode tagging_mode = TAG_RESULT);
|
|
void AllocateHeapNumberWithValue(Register result,
|
|
FPURegister value,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Instruction macros.
|
|
|
|
#define DEFINE_INSTRUCTION(instr) \
|
|
void instr(Register rd, Register rs, const Operand& rt); \
|
|
void instr(Register rd, Register rs, Register rt) { \
|
|
instr(rd, rs, Operand(rt)); \
|
|
} \
|
|
void instr(Register rs, Register rt, int32_t j) { \
|
|
instr(rs, rt, Operand(j)); \
|
|
}
|
|
|
|
#define DEFINE_INSTRUCTION2(instr) \
|
|
void instr(Register rs, const Operand& rt); \
|
|
void instr(Register rs, Register rt) { \
|
|
instr(rs, Operand(rt)); \
|
|
} \
|
|
void instr(Register rs, int32_t j) { \
|
|
instr(rs, Operand(j)); \
|
|
}
|
|
|
|
DEFINE_INSTRUCTION(Addu);
|
|
DEFINE_INSTRUCTION(Subu);
|
|
DEFINE_INSTRUCTION(Mul);
|
|
DEFINE_INSTRUCTION2(Mult);
|
|
DEFINE_INSTRUCTION2(Multu);
|
|
DEFINE_INSTRUCTION2(Div);
|
|
DEFINE_INSTRUCTION2(Divu);
|
|
|
|
DEFINE_INSTRUCTION(And);
|
|
DEFINE_INSTRUCTION(Or);
|
|
DEFINE_INSTRUCTION(Xor);
|
|
DEFINE_INSTRUCTION(Nor);
|
|
DEFINE_INSTRUCTION2(Neg);
|
|
|
|
DEFINE_INSTRUCTION(Slt);
|
|
DEFINE_INSTRUCTION(Sltu);
|
|
|
|
// MIPS32 R2 instruction macro.
|
|
DEFINE_INSTRUCTION(Ror);
|
|
|
|
#undef DEFINE_INSTRUCTION
|
|
#undef DEFINE_INSTRUCTION2
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Pseudo-instructions.
|
|
|
|
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
|
|
|
|
// Load int32 in the rd register.
|
|
void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
|
|
inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
|
|
li(rd, Operand(j), mode);
|
|
}
|
|
inline void li(Register dst, Handle<Object> value,
|
|
LiFlags mode = OPTIMIZE_SIZE) {
|
|
li(dst, Operand(value), mode);
|
|
}
|
|
|
|
// Push multiple registers on the stack.
|
|
// Registers are saved in numerical order, with higher numbered registers
|
|
// saved in higher memory addresses.
|
|
void MultiPush(RegList regs);
|
|
void MultiPushReversed(RegList regs);
|
|
|
|
void MultiPushFPU(RegList regs);
|
|
void MultiPushReversedFPU(RegList regs);
|
|
|
|
// Lower case push() for compatibility with arch-independent code.
|
|
void push(Register src) {
|
|
Addu(sp, sp, Operand(-kPointerSize));
|
|
sw(src, MemOperand(sp, 0));
|
|
}
|
|
|
|
// Push a handle.
|
|
void Push(Handle<Object> handle);
|
|
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
|
|
|
|
// Push two registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2) {
|
|
Subu(sp, sp, Operand(2 * kPointerSize));
|
|
sw(src1, MemOperand(sp, 1 * kPointerSize));
|
|
sw(src2, MemOperand(sp, 0 * kPointerSize));
|
|
}
|
|
|
|
// Push three registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Register src3) {
|
|
Subu(sp, sp, Operand(3 * kPointerSize));
|
|
sw(src1, MemOperand(sp, 2 * kPointerSize));
|
|
sw(src2, MemOperand(sp, 1 * kPointerSize));
|
|
sw(src3, MemOperand(sp, 0 * kPointerSize));
|
|
}
|
|
|
|
// Push four registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Register src3, Register src4) {
|
|
Subu(sp, sp, Operand(4 * kPointerSize));
|
|
sw(src1, MemOperand(sp, 3 * kPointerSize));
|
|
sw(src2, MemOperand(sp, 2 * kPointerSize));
|
|
sw(src3, MemOperand(sp, 1 * kPointerSize));
|
|
sw(src4, MemOperand(sp, 0 * kPointerSize));
|
|
}
|
|
|
|
void Push(Register src, Condition cond, Register tst1, Register tst2) {
|
|
// Since we don't have conditional execution we use a Branch.
|
|
Branch(3, cond, tst1, Operand(tst2));
|
|
Subu(sp, sp, Operand(kPointerSize));
|
|
sw(src, MemOperand(sp, 0));
|
|
}
|
|
|
|
// Pops multiple values from the stack and load them in the
|
|
// registers specified in regs. Pop order is the opposite as in MultiPush.
|
|
void MultiPop(RegList regs);
|
|
void MultiPopReversed(RegList regs);
|
|
|
|
void MultiPopFPU(RegList regs);
|
|
void MultiPopReversedFPU(RegList regs);
|
|
|
|
// Lower case pop() for compatibility with arch-independent code.
|
|
void pop(Register dst) {
|
|
lw(dst, MemOperand(sp, 0));
|
|
Addu(sp, sp, Operand(kPointerSize));
|
|
}
|
|
|
|
// Pop two registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2) {
|
|
ASSERT(!src1.is(src2));
|
|
lw(src2, MemOperand(sp, 0 * kPointerSize));
|
|
lw(src1, MemOperand(sp, 1 * kPointerSize));
|
|
Addu(sp, sp, 2 * kPointerSize);
|
|
}
|
|
|
|
// Pop three registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2, Register src3) {
|
|
lw(src3, MemOperand(sp, 0 * kPointerSize));
|
|
lw(src2, MemOperand(sp, 1 * kPointerSize));
|
|
lw(src1, MemOperand(sp, 2 * kPointerSize));
|
|
Addu(sp, sp, 3 * kPointerSize);
|
|
}
|
|
|
|
void Pop(uint32_t count = 1) {
|
|
Addu(sp, sp, Operand(count * kPointerSize));
|
|
}
|
|
|
|
// Push and pop the registers that can hold pointers, as defined by the
|
|
// RegList constant kSafepointSavedRegisters.
|
|
void PushSafepointRegisters();
|
|
void PopSafepointRegisters();
|
|
void PushSafepointRegistersAndDoubles();
|
|
void PopSafepointRegistersAndDoubles();
|
|
// Store value in register src in the safepoint stack slot for
|
|
// register dst.
|
|
void StoreToSafepointRegisterSlot(Register src, Register dst);
|
|
void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
|
|
// Load the value of the src register from its safepoint stack slot
|
|
// into register dst.
|
|
void LoadFromSafepointRegisterSlot(Register dst, Register src);
|
|
|
|
// Flush the I-cache from asm code. You should use CPU::FlushICache from C.
|
|
// Does not handle errors.
|
|
void FlushICache(Register address, unsigned instructions);
|
|
|
|
// MIPS32 R2 instruction macro.
|
|
void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
|
|
void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// FPU macros. These do not handle special cases like NaN or +- inf.
|
|
|
|
// Convert unsigned word to double.
|
|
void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
|
|
void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
|
|
|
|
// Convert double to unsigned word.
|
|
void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
|
|
void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
|
|
|
|
void Trunc_w_d(FPURegister fd, FPURegister fs);
|
|
void Round_w_d(FPURegister fd, FPURegister fs);
|
|
void Floor_w_d(FPURegister fd, FPURegister fs);
|
|
void Ceil_w_d(FPURegister fd, FPURegister fs);
|
|
// Wrapper function for the different cmp/branch types.
|
|
void BranchF(Label* target,
|
|
Label* nan,
|
|
Condition cc,
|
|
FPURegister cmp1,
|
|
FPURegister cmp2,
|
|
BranchDelaySlot bd = PROTECT);
|
|
|
|
// Alternate (inline) version for better readability with USE_DELAY_SLOT.
|
|
inline void BranchF(BranchDelaySlot bd,
|
|
Label* target,
|
|
Label* nan,
|
|
Condition cc,
|
|
FPURegister cmp1,
|
|
FPURegister cmp2) {
|
|
BranchF(target, nan, cc, cmp1, cmp2, bd);
|
|
};
|
|
|
|
// Convert the HeapNumber pointed to by source to a 32bits signed integer
|
|
// dest. If the HeapNumber does not fit into a 32bits signed integer branch
|
|
// to not_int32 label. If FPU is available double_scratch is used but not
|
|
// scratch2.
|
|
void ConvertToInt32(Register source,
|
|
Register dest,
|
|
Register scratch,
|
|
Register scratch2,
|
|
FPURegister double_scratch,
|
|
Label *not_int32);
|
|
|
|
// Truncates a double using a specific rounding mode, and writes the value
|
|
// to the result register.
|
|
// The except_flag will contain any exceptions caused by the instruction.
|
|
// If check_inexact is kDontCheckForInexactConversion, then the inexact
|
|
// exception is masked.
|
|
void EmitFPUTruncate(FPURoundingMode rounding_mode,
|
|
Register result,
|
|
DoubleRegister double_input,
|
|
Register scratch,
|
|
DoubleRegister double_scratch,
|
|
Register except_flag,
|
|
CheckForInexactConversion check_inexact
|
|
= kDontCheckForInexactConversion);
|
|
|
|
// Helper for EmitECMATruncate.
|
|
// This will truncate a floating-point value outside of the singed 32bit
|
|
// integer range to a 32bit signed integer.
|
|
// Expects the double value loaded in input_high and input_low.
|
|
// Exits with the answer in 'result'.
|
|
// Note that this code does not work for values in the 32bit range!
|
|
void EmitOutOfInt32RangeTruncate(Register result,
|
|
Register input_high,
|
|
Register input_low,
|
|
Register scratch);
|
|
|
|
// Performs a truncating conversion of a floating point number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
|
|
// Exits with 'result' holding the answer and all other registers clobbered.
|
|
void EmitECMATruncate(Register result,
|
|
FPURegister double_input,
|
|
FPURegister single_scratch,
|
|
Register scratch,
|
|
Register scratch2,
|
|
Register scratch3);
|
|
|
|
// Enter exit frame.
|
|
// argc - argument count to be dropped by LeaveExitFrame.
|
|
// save_doubles - saves FPU registers on stack, currently disabled.
|
|
// stack_space - extra stack space.
|
|
void EnterExitFrame(bool save_doubles,
|
|
int stack_space = 0);
|
|
|
|
// Leave the current exit frame.
|
|
void LeaveExitFrame(bool save_doubles,
|
|
Register arg_count,
|
|
bool do_return = false);
|
|
|
|
// Get the actual activation frame alignment for target environment.
|
|
static int ActivationFrameAlignment();
|
|
|
|
// Make sure the stack is aligned. Only emits code in debug mode.
|
|
void AssertStackIsAligned();
|
|
|
|
void LoadContext(Register dst, int context_chain_length);
|
|
|
|
// Conditionally load the cached Array transitioned map of type
|
|
// transitioned_kind from the native context if the map in register
|
|
// map_in_out is the cached Array map in the native context of
|
|
// expected_kind.
|
|
void LoadTransitionedArrayMapConditional(
|
|
ElementsKind expected_kind,
|
|
ElementsKind transitioned_kind,
|
|
Register map_in_out,
|
|
Register scratch,
|
|
Label* no_map_match);
|
|
|
|
// Load the initial map for new Arrays from a JSFunction.
|
|
void LoadInitialArrayMap(Register function_in,
|
|
Register scratch,
|
|
Register map_out,
|
|
bool can_have_holes);
|
|
|
|
void LoadGlobalFunction(int index, Register function);
|
|
void LoadArrayFunction(Register function);
|
|
|
|
// Load the initial map from the global function. The registers
|
|
// function and map can be the same, function is then overwritten.
|
|
void LoadGlobalFunctionInitialMap(Register function,
|
|
Register map,
|
|
Register scratch);
|
|
|
|
void InitializeRootRegister() {
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
li(kRootRegister, Operand(roots_array_start));
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
// JavaScript invokes.
|
|
|
|
// Set up call kind marking in t1. The method takes t1 as an
|
|
// explicit first parameter to make the code more readable at the
|
|
// call sites.
|
|
void SetCallKind(Register dst, CallKind kind);
|
|
|
|
// Invoke the JavaScript function code by either calling or jumping.
|
|
void InvokeCode(Register code,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper,
|
|
CallKind call_kind);
|
|
|
|
void InvokeCode(Handle<Code> code,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
RelocInfo::Mode rmode,
|
|
InvokeFlag flag,
|
|
CallKind call_kind);
|
|
|
|
// Invoke the JavaScript function in the given register. Changes the
|
|
// current context to the context in the function before invoking.
|
|
void InvokeFunction(Register function,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper,
|
|
CallKind call_kind);
|
|
|
|
void InvokeFunction(Handle<JSFunction> function,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper,
|
|
CallKind call_kind);
|
|
|
|
|
|
void IsObjectJSObjectType(Register heap_object,
|
|
Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
void IsInstanceJSObjectType(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
void IsObjectJSStringType(Register object,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
void IsObjectNameType(Register object,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// -------------------------------------------------------------------------
|
|
// Debugger Support.
|
|
|
|
void DebugBreak();
|
|
#endif
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Exception handling.
|
|
|
|
// Push a new try handler and link into try handler chain.
|
|
void PushTryHandler(StackHandler::Kind kind, int handler_index);
|
|
|
|
// Unlink the stack handler on top of the stack from the try handler chain.
|
|
// Must preserve the result register.
|
|
void PopTryHandler();
|
|
|
|
// Passes thrown value to the handler of top of the try handler chain.
|
|
void Throw(Register value);
|
|
|
|
// Propagates an uncatchable exception to the top of the current JS stack's
|
|
// handler chain.
|
|
void ThrowUncatchable(Register value);
|
|
|
|
// Copies a fixed number of fields of heap objects from src to dst.
|
|
void CopyFields(Register dst, Register src, RegList temps, int field_count);
|
|
|
|
// Copies a number of bytes from src to dst. All registers are clobbered. On
|
|
// exit src and dst will point to the place just after where the last byte was
|
|
// read or written and length will be zero.
|
|
void CopyBytes(Register src,
|
|
Register dst,
|
|
Register length,
|
|
Register scratch);
|
|
|
|
// Initialize fields with filler values. Fields starting at |start_offset|
|
|
// not including end_offset are overwritten with the value in |filler|. At
|
|
// the end the loop, |start_offset| takes the value of |end_offset|.
|
|
void InitializeFieldsWithFiller(Register start_offset,
|
|
Register end_offset,
|
|
Register filler);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Support functions.
|
|
|
|
// Try to get function prototype of a function and puts the value in
|
|
// the result register. Checks that the function really is a
|
|
// function and jumps to the miss label if the fast checks fail. The
|
|
// function register will be untouched; the other registers may be
|
|
// clobbered.
|
|
void TryGetFunctionPrototype(Register function,
|
|
Register result,
|
|
Register scratch,
|
|
Label* miss,
|
|
bool miss_on_bound_function = false);
|
|
|
|
void GetObjectType(Register function,
|
|
Register map,
|
|
Register type_reg);
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast elements.
|
|
// Jump to the specified label if it does not.
|
|
void CheckFastElements(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// Check if a map for a JSObject indicates that the object can have both smi
|
|
// and HeapObject elements. Jump to the specified label if it does not.
|
|
void CheckFastObjectElements(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast smi only
|
|
// elements. Jump to the specified label if it does not.
|
|
void CheckFastSmiElements(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// Check to see if maybe_number can be stored as a double in
|
|
// FastDoubleElements. If it can, store it at the index specified by key in
|
|
// the FastDoubleElements array elements. Otherwise jump to fail, in which
|
|
// case scratch2, scratch3 and scratch4 are unmodified.
|
|
void StoreNumberToDoubleElements(Register value_reg,
|
|
Register key_reg,
|
|
// All regs below here overwritten.
|
|
Register elements_reg,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Register scratch4,
|
|
Label* fail,
|
|
int elements_offset = 0);
|
|
|
|
// Compare an object's map with the specified map and its transitioned
|
|
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
|
|
// "branch_to" if the result of the comparison is "cond". If multiple map
|
|
// compares are required, the compare sequences branches to early_success.
|
|
void CompareMapAndBranch(Register obj,
|
|
Register scratch,
|
|
Handle<Map> map,
|
|
Label* early_success,
|
|
Condition cond,
|
|
Label* branch_to,
|
|
CompareMapMode mode = REQUIRE_EXACT_MAP);
|
|
|
|
// As above, but the map of the object is already loaded into the register
|
|
// which is preserved by the code generated.
|
|
void CompareMapAndBranch(Register obj_map,
|
|
Handle<Map> map,
|
|
Label* early_success,
|
|
Condition cond,
|
|
Label* branch_to,
|
|
CompareMapMode mode = REQUIRE_EXACT_MAP);
|
|
|
|
// Check if the map of an object is equal to a specified map and branch to
|
|
// label if not. Skip the smi check if not required (object is known to be a
|
|
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
|
|
// against maps that are ElementsKind transition maps of the specificed map.
|
|
void CheckMap(Register obj,
|
|
Register scratch,
|
|
Handle<Map> map,
|
|
Label* fail,
|
|
SmiCheckType smi_check_type,
|
|
CompareMapMode mode = REQUIRE_EXACT_MAP);
|
|
|
|
|
|
void CheckMap(Register obj,
|
|
Register scratch,
|
|
Heap::RootListIndex index,
|
|
Label* fail,
|
|
SmiCheckType smi_check_type);
|
|
|
|
// Check if the map of an object is equal to a specified map and branch to a
|
|
// specified target if equal. Skip the smi check if not required (object is
|
|
// known to be a heap object)
|
|
void DispatchMap(Register obj,
|
|
Register scratch,
|
|
Handle<Map> map,
|
|
Handle<Code> success,
|
|
SmiCheckType smi_check_type);
|
|
|
|
// Generates code for reporting that an illegal operation has
|
|
// occurred.
|
|
void IllegalOperation(int num_arguments);
|
|
|
|
|
|
// Load and check the instance type of an object for being a string.
|
|
// Loads the type into the second argument register.
|
|
// Returns a condition that will be enabled if the object was a string.
|
|
Condition IsObjectStringType(Register obj,
|
|
Register type,
|
|
Register result) {
|
|
lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
|
|
lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
|
|
And(type, type, Operand(kIsNotStringMask));
|
|
ASSERT_EQ(0, kStringTag);
|
|
return eq;
|
|
}
|
|
|
|
|
|
// Picks out an array index from the hash field.
|
|
// Register use:
|
|
// hash - holds the index's hash. Clobbered.
|
|
// index - holds the overwritten index on exit.
|
|
void IndexFromHash(Register hash, Register index);
|
|
|
|
// Get the number of least significant bits from a register.
|
|
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
|
|
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
|
|
|
|
// Load the value of a number object into a FPU double register. If the
|
|
// object is not a number a jump to the label not_number is performed
|
|
// and the FPU double register is unchanged.
|
|
void ObjectToDoubleFPURegister(
|
|
Register object,
|
|
FPURegister value,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register heap_number_map,
|
|
Label* not_number,
|
|
ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
|
|
|
|
// Load the value of a smi object into a FPU double register. The register
|
|
// scratch1 can be the same register as smi in which case smi will hold the
|
|
// untagged value afterwards.
|
|
void SmiToDoubleFPURegister(Register smi,
|
|
FPURegister value,
|
|
Register scratch1);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Overflow handling functions.
|
|
// Usage: first call the appropriate arithmetic function, then call one of the
|
|
// jump functions with the overflow_dst register as the second parameter.
|
|
|
|
void AdduAndCheckForOverflow(Register dst,
|
|
Register left,
|
|
Register right,
|
|
Register overflow_dst,
|
|
Register scratch = at);
|
|
|
|
void SubuAndCheckForOverflow(Register dst,
|
|
Register left,
|
|
Register right,
|
|
Register overflow_dst,
|
|
Register scratch = at);
|
|
|
|
void BranchOnOverflow(Label* label,
|
|
Register overflow_check,
|
|
BranchDelaySlot bd = PROTECT) {
|
|
Branch(label, lt, overflow_check, Operand(zero_reg), bd);
|
|
}
|
|
|
|
void BranchOnNoOverflow(Label* label,
|
|
Register overflow_check,
|
|
BranchDelaySlot bd = PROTECT) {
|
|
Branch(label, ge, overflow_check, Operand(zero_reg), bd);
|
|
}
|
|
|
|
void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
|
|
Ret(lt, overflow_check, Operand(zero_reg), bd);
|
|
}
|
|
|
|
void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
|
|
Ret(ge, overflow_check, Operand(zero_reg), bd);
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Runtime calls.
|
|
|
|
// See comments at the beginning of CEntryStub::Generate.
|
|
inline void PrepareCEntryArgs(int num_args) {
|
|
li(s0, num_args);
|
|
li(s1, (num_args - 1) * kPointerSize);
|
|
}
|
|
|
|
inline void PrepareCEntryFunction(const ExternalReference& ref) {
|
|
li(s2, Operand(ref));
|
|
}
|
|
|
|
// Call a code stub.
|
|
void CallStub(CodeStub* stub,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = cc_always,
|
|
Register r1 = zero_reg,
|
|
const Operand& r2 = Operand(zero_reg),
|
|
BranchDelaySlot bd = PROTECT);
|
|
|
|
// Tail call a code stub (jump).
|
|
void TailCallStub(CodeStub* stub);
|
|
|
|
void CallJSExitStub(CodeStub* stub);
|
|
|
|
// Call a runtime routine.
|
|
void CallRuntime(const Runtime::Function* f, int num_arguments);
|
|
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
void CallRuntime(Runtime::FunctionId fid, int num_arguments);
|
|
|
|
// Convenience function: call an external reference.
|
|
void CallExternalReference(const ExternalReference& ext,
|
|
int num_arguments,
|
|
BranchDelaySlot bd = PROTECT);
|
|
|
|
// Tail call of a runtime routine (jump).
|
|
// Like JumpToExternalReference, but also takes care of passing the number
|
|
// of parameters.
|
|
void TailCallExternalReference(const ExternalReference& ext,
|
|
int num_arguments,
|
|
int result_size);
|
|
|
|
// Convenience function: tail call a runtime routine (jump).
|
|
void TailCallRuntime(Runtime::FunctionId fid,
|
|
int num_arguments,
|
|
int result_size);
|
|
|
|
int CalculateStackPassedWords(int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
// Before calling a C-function from generated code, align arguments on stack
|
|
// and add space for the four mips argument slots.
|
|
// After aligning the frame, non-register arguments must be stored on the
|
|
// stack, after the argument-slots using helper: CFunctionArgumentOperand().
|
|
// The argument count assumes all arguments are word sized.
|
|
// Some compilers/platforms require the stack to be aligned when calling
|
|
// C++ code.
|
|
// Needs a scratch register to do some arithmetic. This register will be
|
|
// trashed.
|
|
void PrepareCallCFunction(int num_reg_arguments,
|
|
int num_double_registers,
|
|
Register scratch);
|
|
void PrepareCallCFunction(int num_reg_arguments,
|
|
Register scratch);
|
|
|
|
// Arguments 1-4 are placed in registers a0 thru a3 respectively.
|
|
// Arguments 5..n are stored to stack using following:
|
|
// sw(t0, CFunctionArgumentOperand(5));
|
|
|
|
// Calls a C function and cleans up the space for arguments allocated
|
|
// by PrepareCallCFunction. The called function is not allowed to trigger a
|
|
// garbage collection, since that might move the code and invalidate the
|
|
// return address (unless this is somehow accounted for by the called
|
|
// function).
|
|
void CallCFunction(ExternalReference function, int num_arguments);
|
|
void CallCFunction(Register function, int num_arguments);
|
|
void CallCFunction(ExternalReference function,
|
|
int num_reg_arguments,
|
|
int num_double_arguments);
|
|
void CallCFunction(Register function,
|
|
int num_reg_arguments,
|
|
int num_double_arguments);
|
|
void GetCFunctionDoubleResult(const DoubleRegister dst);
|
|
|
|
// There are two ways of passing double arguments on MIPS, depending on
|
|
// whether soft or hard floating point ABI is used. These functions
|
|
// abstract parameter passing for the three different ways we call
|
|
// C functions from generated code.
|
|
void SetCallCDoubleArguments(DoubleRegister dreg);
|
|
void SetCallCDoubleArguments(DoubleRegister dreg1, DoubleRegister dreg2);
|
|
void SetCallCDoubleArguments(DoubleRegister dreg, Register reg);
|
|
|
|
// Calls an API function. Allocates HandleScope, extracts returned value
|
|
// from handle and propagates exceptions. Restores context. stack_space
|
|
// - space to be unwound on exit (includes the call JS arguments space and
|
|
// the additional space allocated for the fast call).
|
|
void CallApiFunctionAndReturn(ExternalReference function, int stack_space);
|
|
|
|
// Jump to the builtin routine.
|
|
void JumpToExternalReference(const ExternalReference& builtin,
|
|
BranchDelaySlot bd = PROTECT);
|
|
|
|
// Invoke specified builtin JavaScript function. Adds an entry to
|
|
// the unresolved list if the name does not resolve.
|
|
void InvokeBuiltin(Builtins::JavaScript id,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper = NullCallWrapper());
|
|
|
|
// Store the code object for the given builtin in the target register and
|
|
// setup the function in a1.
|
|
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
|
|
|
|
// Store the function for the given builtin in the target register.
|
|
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
|
|
|
|
struct Unresolved {
|
|
int pc;
|
|
uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
|
|
const char* name;
|
|
};
|
|
|
|
Handle<Object> CodeObject() {
|
|
ASSERT(!code_object_.is_null());
|
|
return code_object_;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
// StatsCounter support.
|
|
|
|
void SetCounter(StatsCounter* counter, int value,
|
|
Register scratch1, Register scratch2);
|
|
void IncrementCounter(StatsCounter* counter, int value,
|
|
Register scratch1, Register scratch2);
|
|
void DecrementCounter(StatsCounter* counter, int value,
|
|
Register scratch1, Register scratch2);
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Debugging.
|
|
|
|
// Calls Abort(msg) if the condition cc is not satisfied.
|
|
// Use --debug_code to enable.
|
|
void Assert(Condition cc, const char* msg, Register rs, Operand rt);
|
|
void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
|
|
void AssertFastElements(Register elements);
|
|
|
|
// Like Assert(), but always enabled.
|
|
void Check(Condition cc, const char* msg, Register rs, Operand rt);
|
|
|
|
// Print a message to stdout and abort execution.
|
|
void Abort(const char* msg);
|
|
|
|
// Verify restrictions about code generated in stubs.
|
|
void set_generating_stub(bool value) { generating_stub_ = value; }
|
|
bool generating_stub() { return generating_stub_; }
|
|
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
|
|
bool allow_stub_calls() { return allow_stub_calls_; }
|
|
void set_has_frame(bool value) { has_frame_ = value; }
|
|
bool has_frame() { return has_frame_; }
|
|
inline bool AllowThisStubCall(CodeStub* stub);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Number utilities.
|
|
|
|
// Check whether the value of reg is a power of two and not zero. If not
|
|
// control continues at the label not_power_of_two. If reg is a power of two
|
|
// the register scratch contains the value of (reg - 1) when control falls
|
|
// through.
|
|
void JumpIfNotPowerOfTwoOrZero(Register reg,
|
|
Register scratch,
|
|
Label* not_power_of_two_or_zero);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Smi utilities.
|
|
|
|
void SmiTag(Register reg) {
|
|
Addu(reg, reg, reg);
|
|
}
|
|
|
|
// Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
|
|
void SmiTagCheckOverflow(Register reg, Register overflow);
|
|
void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
|
|
|
|
void SmiTag(Register dst, Register src) {
|
|
Addu(dst, src, src);
|
|
}
|
|
|
|
void SmiUntag(Register reg) {
|
|
sra(reg, reg, kSmiTagSize);
|
|
}
|
|
|
|
void SmiUntag(Register dst, Register src) {
|
|
sra(dst, src, kSmiTagSize);
|
|
}
|
|
|
|
// Untag the source value into destination and jump if source is a smi.
|
|
// Souce and destination can be the same register.
|
|
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
|
|
|
|
// Untag the source value into destination and jump if source is not a smi.
|
|
// Souce and destination can be the same register.
|
|
void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
|
|
|
|
// Jump the register contains a smi.
|
|
void JumpIfSmi(Register value,
|
|
Label* smi_label,
|
|
Register scratch = at,
|
|
BranchDelaySlot bd = PROTECT);
|
|
|
|
// Jump if the register contains a non-smi.
|
|
void JumpIfNotSmi(Register value,
|
|
Label* not_smi_label,
|
|
Register scratch = at,
|
|
BranchDelaySlot bd = PROTECT);
|
|
|
|
// Jump if either of the registers contain a non-smi.
|
|
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
|
|
// Jump if either of the registers contain a smi.
|
|
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
|
|
|
|
// Abort execution if argument is a smi, enabled via --debug-code.
|
|
void AssertNotSmi(Register object);
|
|
void AssertSmi(Register object);
|
|
|
|
// Abort execution if argument is not a string, enabled via --debug-code.
|
|
void AssertString(Register object);
|
|
|
|
// Abort execution if argument is not a name, enabled via --debug-code.
|
|
void AssertName(Register object);
|
|
|
|
// Abort execution if argument is not the root value with the given index,
|
|
// enabled via --debug-code.
|
|
void AssertRootValue(Register src,
|
|
Heap::RootListIndex root_value_index,
|
|
const char* message);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// HeapNumber utilities.
|
|
|
|
void JumpIfNotHeapNumber(Register object,
|
|
Register heap_number_map,
|
|
Register scratch,
|
|
Label* on_not_heap_number);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// String utilities.
|
|
|
|
// Checks if both instance types are sequential ASCII strings and jumps to
|
|
// label if either is not.
|
|
void JumpIfBothInstanceTypesAreNotSequentialAscii(
|
|
Register first_object_instance_type,
|
|
Register second_object_instance_type,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* failure);
|
|
|
|
// Check if instance type is sequential ASCII string and jump to label if
|
|
// it is not.
|
|
void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
|
|
Register scratch,
|
|
Label* failure);
|
|
|
|
// Test that both first and second are sequential ASCII strings.
|
|
// Assume that they are non-smis.
|
|
void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
|
|
Register second,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* failure);
|
|
|
|
// Test that both first and second are sequential ASCII strings.
|
|
// Check that they are non-smis.
|
|
void JumpIfNotBothSequentialAsciiStrings(Register first,
|
|
Register second,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* failure);
|
|
|
|
void ClampUint8(Register output_reg, Register input_reg);
|
|
|
|
void ClampDoubleToUint8(Register result_reg,
|
|
DoubleRegister input_reg,
|
|
DoubleRegister temp_double_reg);
|
|
|
|
|
|
void LoadInstanceDescriptors(Register map, Register descriptors);
|
|
void EnumLength(Register dst, Register map);
|
|
void NumberOfOwnDescriptors(Register dst, Register map);
|
|
|
|
template<typename Field>
|
|
void DecodeField(Register reg) {
|
|
static const int shift = Field::kShift;
|
|
static const int mask = (Field::kMask >> shift) << kSmiTagSize;
|
|
srl(reg, reg, shift);
|
|
And(reg, reg, Operand(mask));
|
|
}
|
|
|
|
// Activation support.
|
|
void EnterFrame(StackFrame::Type type);
|
|
void LeaveFrame(StackFrame::Type type);
|
|
|
|
// Patch the relocated value (lui/ori pair).
|
|
void PatchRelocatedValue(Register li_location,
|
|
Register scratch,
|
|
Register new_value);
|
|
// Get the relocatad value (loaded data) from the lui/ori pair.
|
|
void GetRelocatedValue(Register li_location,
|
|
Register value,
|
|
Register scratch);
|
|
|
|
// Expects object in a0 and returns map with validated enum cache
|
|
// in a0. Assumes that any other register can be used as a scratch.
|
|
void CheckEnumCache(Register null_value, Label* call_runtime);
|
|
|
|
// AllocationSiteInfo support. Arrays may have an associated
|
|
// AllocationSiteInfo object that can be checked for in order to pretransition
|
|
// to another type.
|
|
// On entry, receiver_reg should point to the array object.
|
|
// scratch_reg gets clobbered.
|
|
// If allocation info is present, jump to allocation_info_present
|
|
void TestJSArrayForAllocationSiteInfo(Register receiver_reg,
|
|
Register scratch_reg,
|
|
Condition cond,
|
|
Label* allocation_info_present);
|
|
|
|
private:
|
|
void CallCFunctionHelper(Register function,
|
|
int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
void BranchShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
|
|
void BranchShort(int16_t offset, Condition cond, Register rs,
|
|
const Operand& rt,
|
|
BranchDelaySlot bdslot = PROTECT);
|
|
void BranchShort(Label* L, BranchDelaySlot bdslot = PROTECT);
|
|
void BranchShort(Label* L, Condition cond, Register rs,
|
|
const Operand& rt,
|
|
BranchDelaySlot bdslot = PROTECT);
|
|
void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
|
|
void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
|
|
const Operand& rt,
|
|
BranchDelaySlot bdslot = PROTECT);
|
|
void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
|
|
void BranchAndLinkShort(Label* L, Condition cond, Register rs,
|
|
const Operand& rt,
|
|
BranchDelaySlot bdslot = PROTECT);
|
|
void J(Label* L, BranchDelaySlot bdslot);
|
|
void Jr(Label* L, BranchDelaySlot bdslot);
|
|
void Jalr(Label* L, BranchDelaySlot bdslot);
|
|
|
|
// Helper functions for generating invokes.
|
|
void InvokePrologue(const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
Handle<Code> code_constant,
|
|
Register code_reg,
|
|
Label* done,
|
|
bool* definitely_mismatches,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper,
|
|
CallKind call_kind);
|
|
|
|
// Get the code for the given builtin. Returns if able to resolve
|
|
// the function in the 'resolved' flag.
|
|
Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
|
|
|
|
void InitializeNewString(Register string,
|
|
Register length,
|
|
Heap::RootListIndex map_index,
|
|
Register scratch1,
|
|
Register scratch2);
|
|
|
|
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
|
|
void InNewSpace(Register object,
|
|
Register scratch,
|
|
Condition cond, // eq for new space, ne otherwise.
|
|
Label* branch);
|
|
|
|
// Helper for finding the mark bits for an address. Afterwards, the
|
|
// bitmap register points at the word with the mark bits and the mask
|
|
// the position of the first bit. Leaves addr_reg unchanged.
|
|
inline void GetMarkBits(Register addr_reg,
|
|
Register bitmap_reg,
|
|
Register mask_reg);
|
|
|
|
// Helper for throwing exceptions. Compute a handler address and jump to
|
|
// it. See the implementation for register usage.
|
|
void JumpToHandlerEntry();
|
|
|
|
// Compute memory operands for safepoint stack slots.
|
|
static int SafepointRegisterStackIndex(int reg_code);
|
|
MemOperand SafepointRegisterSlot(Register reg);
|
|
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
|
|
|
|
bool generating_stub_;
|
|
bool allow_stub_calls_;
|
|
bool has_frame_;
|
|
// This handle will be patched with the code object on installation.
|
|
Handle<Object> code_object_;
|
|
|
|
// Needs access to SafepointRegisterStackIndex for compiled frame
|
|
// traversal.
|
|
friend class StandardFrame;
|
|
};
|
|
|
|
|
|
// The code patcher is used to patch (typically) small parts of code e.g. for
|
|
// debugging and other types of instrumentation. When using the code patcher
|
|
// the exact number of bytes specified must be emitted. It is not legal to emit
|
|
// relocation information. If any of these constraints are violated it causes
|
|
// an assertion to fail.
|
|
class CodePatcher {
|
|
public:
|
|
CodePatcher(byte* address, int instructions);
|
|
virtual ~CodePatcher();
|
|
|
|
// Macro assembler to emit code.
|
|
MacroAssembler* masm() { return &masm_; }
|
|
|
|
// Emit an instruction directly.
|
|
void Emit(Instr instr);
|
|
|
|
// Emit an address directly.
|
|
void Emit(Address addr);
|
|
|
|
// Change the condition part of an instruction leaving the rest of the current
|
|
// instruction unchanged.
|
|
void ChangeBranchCondition(Condition cond);
|
|
|
|
private:
|
|
byte* address_; // The address of the code being patched.
|
|
int size_; // Number of bytes of the expected patch size.
|
|
MacroAssembler masm_; // Macro assembler used to generate the code.
|
|
};
|
|
|
|
|
|
|
|
#ifdef GENERATED_CODE_COVERAGE
|
|
#define CODE_COVERAGE_STRINGIFY(x) #x
|
|
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
|
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
|
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
|
|
#else
|
|
#define ACCESS_MASM(masm) masm->
|
|
#endif
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
|
|
|