/** * \file * * \brief SAM TC * * Copyright (C) 2014 - 2017 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ #include #include #include #include #include #include #ifndef CONF_TC0_ENABLE #define CONF_TC0_ENABLE 0 #endif #ifndef CONF_TC1_ENABLE #define CONF_TC1_ENABLE 0 #endif #ifndef CONF_TC2_ENABLE #define CONF_TC2_ENABLE 0 #endif #ifndef CONF_TC3_ENABLE #define CONF_TC3_ENABLE 0 #endif #ifndef CONF_TC4_ENABLE #define CONF_TC4_ENABLE 0 #endif #ifndef CONF_TC5_ENABLE #define CONF_TC5_ENABLE 0 #endif #ifndef CONF_TC6_ENABLE #define CONF_TC6_ENABLE 0 #endif #ifndef CONF_TC7_ENABLE #define CONF_TC7_ENABLE 0 #endif /** * \brief Macro is used to fill usart configuration structure based on its * number * * \param[in] n The number of structures */ #define TC_CONFIGURATION(n) \ { \ n, TC##n##_IRQn, \ TC_CTRLA_MODE(CONF_TC##n##_MODE) | TC_CTRLA_PRESCSYNC(CONF_TC##n##_PRESCSYNC) \ | (CONF_TC##n##_RUNSTDBY << TC_CTRLA_RUNSTDBY_Pos) | (CONF_TC##n##_ONDEMAND << TC_CTRLA_ONDEMAND_Pos) \ | TC_CTRLA_PRESCALER(CONF_TC##n##_PRESCALER) | (CONF_TC##n##_ALOCK << TC_CTRLA_ALOCK_Pos), \ (CONF_TC##n##_OVFEO << TC_EVCTRL_OVFEO_Pos) | (CONF_TC##n##_TCEI << TC_EVCTRL_TCEI_Pos) \ | (CONF_TC##n##_TCINV << TC_EVCTRL_TCINV_Pos) | (CONF_TC##n##_EVACT << TC_EVCTRL_EVACT_Pos) \ | (CONF_TC##n##_MCEO0 << TC_EVCTRL_MCEO0_Pos) | (CONF_TC##n##_MCEO1 << TC_EVCTRL_MCEO1_Pos), \ (CONF_TC##n##_DBGRUN << TC_DBGCTRL_DBGRUN_Pos), CONF_TC##n##_PER, CONF_TC##n##_CC0, CONF_TC##n##_CC1, \ } /** * \brief TC configuration type */ struct tc_configuration { uint8_t number; IRQn_Type irq; hri_tc_ctrla_reg_t ctrl_a; hri_tc_evctrl_reg_t event_ctrl; hri_tc_dbgctrl_reg_t dbg_ctrl; hri_tc_per_reg_t per; hri_tc_cc32_reg_t cc0; hri_tc_cc32_reg_t cc1; }; /** * \brief Array of TC configurations */ static struct tc_configuration _tcs[] = { #if CONF_TC0_ENABLE == 1 TC_CONFIGURATION(0), #endif #if CONF_TC1_ENABLE == 1 TC_CONFIGURATION(1), #endif #if CONF_TC2_ENABLE == 1 TC_CONFIGURATION(2), #endif #if CONF_TC3_ENABLE == 1 TC_CONFIGURATION(3), #endif #if CONF_TC4_ENABLE == 1 TC_CONFIGURATION(4), #endif #if CONF_TC5_ENABLE == 1 TC_CONFIGURATION(5), #endif #if CONF_TC6_ENABLE == 1 TC_CONFIGURATION(6), #endif #if CONF_TC7_ENABLE == 1 TC_CONFIGURATION(7), #endif }; static struct _pwm_device *_tc0_dev = NULL; static int8_t get_tc_index(const void *const hw); static void _tc_init_irq_param(const void *const hw, void *dev); static inline uint8_t _get_hardware_offset(const void *const hw); /** * \brief Initialize TC for PWM mode */ int32_t _pwm_init(struct _pwm_device *const device, void *const hw) { int8_t i = get_tc_index(hw); device->hw = hw; hri_tc_wait_for_sync(hw, TC_SYNCBUSY_SWRST); if (hri_tc_get_CTRLA_ENABLE_bit(hw)) { return ERR_DENIED; } hri_tc_set_CTRLA_SWRST_bit(hw); hri_tc_wait_for_sync(hw, TC_SYNCBUSY_SWRST); hri_tc_write_CTRLA_reg(hw, _tcs[i].ctrl_a); hri_tc_write_DBGCTRL_reg(hw, _tcs[i].dbg_ctrl); hri_tc_write_EVCTRL_reg(hw, _tcs[i].event_ctrl); hri_tc_write_WAVE_reg(hw, TC_WAVE_WAVEGEN_MPWM_Val); if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) { hri_tccount32_write_CC_reg(hw, 0, _tcs[i].cc0); hri_tccount32_write_CC_reg(hw, 1, _tcs[i].cc1); } else if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT16) { hri_tccount16_write_CC_reg(hw, 0, (uint16_t)_tcs[i].cc0); hri_tccount16_write_CC_reg(hw, 1, (uint16_t)_tcs[i].cc1); } else { /* 8-bit resolution is not accepted by duty cycle control */ return -1; } _tc_init_irq_param(hw, (void *)device); NVIC_DisableIRQ(_tcs[i].irq); NVIC_ClearPendingIRQ(_tcs[i].irq); NVIC_EnableIRQ(_tcs[i].irq); return 0; } /** * \brief De-initialize TC for PWM mode */ void _pwm_deinit(struct _pwm_device *const device) { void *const hw = device->hw; int8_t i = get_tc_index(hw); ASSERT(ARRAY_SIZE(_tcs)); NVIC_DisableIRQ(_tcs[i].irq); hri_tc_clear_CTRLA_ENABLE_bit(hw); hri_tc_set_CTRLA_SWRST_bit(hw); } /** * \brief Start PWM */ void _pwm_enable(struct _pwm_device *const device) { hri_tc_set_CTRLA_ENABLE_bit(device->hw); } /** * \brief Stop PWM */ void _pwm_disable(struct _pwm_device *const device) { hri_tc_clear_CTRLA_ENABLE_bit(device->hw); } /** * \brief Set PWM parameter */ void _pwm_set_param(struct _pwm_device *const device, const pwm_period_t period, const pwm_period_t duty_cycle) { void *const hw = device->hw; int8_t i = get_tc_index(hw); _tcs[i].cc0 = period; _tcs[i].cc1 = duty_cycle; if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) { hri_tccount32_write_CC_reg(hw, 0, _tcs[i].cc0); hri_tccount32_write_CC_reg(hw, 1, _tcs[i].cc1); } else { hri_tccount16_write_CC_reg(hw, 0, _tcs[i].cc0); hri_tccount16_write_CC_reg(hw, 1, _tcs[i].cc1); } } /** * \brief Get pwm waveform period value */ pwm_period_t _pwm_get_period(const struct _pwm_device *const device) { void *const hw = device->hw; int8_t i = get_tc_index(hw); if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) { return (pwm_period_t)(hri_tccount32_read_CC_reg(hw, 0)); } else { return (pwm_period_t)(hri_tccount16_read_CC_reg(hw, 0)); } } /** * \brief Get pwm waveform duty cycle */ uint32_t _pwm_get_duty(const struct _pwm_device *const device) { void *const hw = device->hw; int8_t i = get_tc_index(hw); uint32_t per; uint32_t duty_cycle; if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) { per = hri_tccount32_read_CC_reg(hw, 0); duty_cycle = hri_tccount32_read_CC_reg(hw, 1); } else { per = hri_tccount16_read_CC_reg(hw, 0); duty_cycle = hri_tccount16_read_CC_reg(hw, 1); } return ((duty_cycle * 1000) / per); } /** * \brief Check if PWM is running */ bool _pwm_is_enabled(const struct _pwm_device *const device) { return hri_tc_get_CTRLA_ENABLE_bit(device->hw); } /** * \brief Enable/disable PWM interrupt */ void _pwm_set_irq_state(struct _pwm_device *const device, const enum _pwm_callback_type type, const bool disable) { ASSERT(device); if (PWM_DEVICE_PERIOD_CB == type) { hri_tc_write_INTEN_OVF_bit(device->hw, disable); } else if (PWM_DEVICE_ERROR_CB == type) { hri_tc_write_INTEN_ERR_bit(device->hw, disable); } } /** * \brief Retrieve timer helper functions */ struct _timer_hpl_interface *_tc_get_timer(void) { return NULL; } /** * \brief Retrieve pwm helper functions */ struct _pwm_hpl_interface *_tc_get_pwm(void) { return NULL; } /** * \internal TC interrupt handler for PWM * * \param[in] instance TC instance number */ static void tc_pwm_interrupt_handler(struct _pwm_device *device) { void *const hw = device->hw; if (hri_tc_get_interrupt_OVF_bit(hw)) { hri_tc_clear_interrupt_OVF_bit(hw); if (NULL != device->callback.pwm_period_cb) { device->callback.pwm_period_cb(device); } } if (hri_tc_get_INTEN_ERR_bit(hw)) { hri_tc_clear_interrupt_ERR_bit(hw); if (NULL != device->callback.pwm_error_cb) { device->callback.pwm_error_cb(device); } } } /** * \brief TC interrupt handler */ void TC0_Handler(void) { tc_pwm_interrupt_handler(_tc0_dev); } /** * \internal Retrieve TC index * * \param[in] hw The pointer to hardware instance * * \return The index of TC configuration */ static int8_t get_tc_index(const void *const hw) { uint8_t index = _get_hardware_offset(hw); uint8_t i; for (i = 0; i < ARRAY_SIZE(_tcs); i++) { if (_tcs[i].number == index) { return i; } } ASSERT(false); return -1; } /** * \brief Init irq param with the given tc hardware instance */ static void _tc_init_irq_param(const void *const hw, void *dev) { if (hw == TC0) { _tc0_dev = (struct _pwm_device *)dev; } } /** * \internal Retrieve TC hardware index * * \param[in] hw The pointer to hardware instance */ static inline uint8_t _get_hardware_offset(const void *const hw) { /* List of available TC modules. */ Tc *const tc_modules[TC_INST_NUM] = TC_INSTS; /* Find index for TC instance. */ for (uint32_t i = 0; i < TC_INST_NUM; i++) { if ((uint32_t)hw == (uint32_t)tc_modules[i]) { return i; } } return 0; }