You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

471 lines
13 KiB

// SPDX-FileCopyrightText: 2020 Foundation Devices, Inc. <hello@foundationdevices.com>
// SPDX-License-Identifier: GPL-3.0-or-later
//
// Copyright 2020 - Foundation Devices Inc.
//
/*
* Contains support for ADC3 - Board Revision
* and ADC2 for Power Monitor
* Init functions are called by board_init()
* read_boardrev() is called as needed, currently
* used by LCD display processing to determine active high/low for
* SPI1 NSS pin.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "stm32h7xx_hal.h"
#include "adc.h"
#define MAX_ADC_16BIT 65535
#define REF_VOLTAGE_MV 3000
#define MAX_SAMPLES_CNT 0xFFFF
#define MILLIVOLTS_PER_REVISION 500
#define PWRMON_I_SENSE_RESISTOR 5
/*
* When doing single samples you cannot rely on
* the value being exact, so adding a small offset
* to the computed milli-volts resolves that issue.
*/
#define BOARD_REV_MV_OFFSET 20
/*
* The number of samples to collect for the average
* Current bounces around a lot so take more samples
* and use an average.
* Voltage may not be as bad so take fewer samples
*/
#define MAX_I_SAMPLES 20
#define MAX_V_SAMPLES 4
static ADC_HandleTypeDef hadc3;
static ADC_HandleTypeDef hadc2;
/*
* adc2_init() - Sets up ADC2 which is used for Power Monitor and Noise inputs.
*/
HAL_StatusTypeDef adc2_init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
HAL_StatusTypeDef ret = HAL_OK;
hadc2.Instance = ADC2;
ret = HAL_ADC_DeInit(&hadc2);
if(ret != HAL_OK) {
printf("Failed to DeInit ADC2\r\n");
return ret;
}
__HAL_RCC_ADC12_CLK_ENABLE();
/* ADC Periph interface clock configuration */
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);
/**ADC2 GPIO Configuration
PC0 ------> ADC2_INP10 - NOISE_OUT2
PC1 ------> ADC2_INP11 - NOISE_OUT1
PC4 ------> ADC2_INP4 - PWRMON_V
PC5 ------> ADC2_INP8 - PWRMON_I
*/
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4| GPIO_PIN_5; //
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/** Common config
*/
// The ClockPrescaler can only be modified if ALL ADC instances are disabled!!!
hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV4; // ADC_CLOCK_ASYNC_DIV1
hadc2.Init.Resolution = ADC_RESOLUTION_16B;
hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; // Needs to be ENABLE it processing more than 1 channel
hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; // ADC_EOC_SEQ_CONV If doing more than one channel
hadc2.Init.LowPowerAutoWait = ENABLE; // Says to use this with Polling was DISABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.NbrOfConversion = 1; // Number of ranks to be converted within regular group sequencer
hadc2.Init.DiscontinuousConvMode = DISABLE; // Cannot be used if continuous mode is enabled.
hadc2.Init.NbrOfDiscConversion = 1;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; // NOTE: This is common to ALL ADC instances..
hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc2.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR; // Can specify DMA for management of converted data
hadc2.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; // ADC_OVR_DATA_PRESERVED
hadc2.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
/*
* Perform oversampling to read multiple samples
* and compute the average in HW.
*/
hadc3.Init.OversamplingMode = ENABLE;
hadc3.Init.Oversampling.Ratio = 0x20; /* Bit for 32x oversampling */
hadc3.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_5;
hadc3.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
hadc3.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_CONTINUED_MODE;
ret = HAL_ADC_Init(&hadc2);
if (ret != HAL_OK)
{
printf("Failed to init ADC2\r\n");;
return ret;
}
/* Run the ADC calibration in single-ended mode */
ret = HAL_ADCEx_Calibration_Start(&hadc2, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED);
if (ret != HAL_OK)
{
printf("ADC3 calibration failed\r\n");
return ret;
}
return ret;
}
void enable_noise(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/*
* PD8 Amp2_enable
* PD9 Amp1_enable
* PD10 Noise Bias enable
*/
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, 1);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, 1);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, 1);
}
void disable_noise(void) {
/*
* PD8 Amp2_enable
* PD9 Amp1_enable
* PD10 Noise Bias enable
*/
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, 0);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, 0);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, 0);
}
/*
* read_noise_inputs() - Reads the two noise output channels and returns
* the count values read.
*/
HAL_StatusTypeDef read_noise_inputs(uint32_t * noise1, uint32_t * noise2) {
HAL_StatusTypeDef ret = HAL_OK;
ADC_ChannelConfTypeDef sConfig = {0};
/* Configure Noiseout 1 input Channel */
sConfig.Channel = ADC_CHANNEL_11; // Noise 1 channel 11 PC1 INP11
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetRightShift = DISABLE; /* No Right Offset Shift */
sConfig.OffsetSignedSaturation = DISABLE; /* No Signed Saturation */
ret = HAL_ADC_ConfigChannel(&hadc2, &sConfig);
if (ret != HAL_OK)
{
printf("Failed to config ADC2 channel 8\r\n");;
return ret;
}
/* Start processing for current (I) values */
ret = HAL_ADC_Start(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
ret = HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
if (ret != HAL_OK)
{
printf("ADC2 poll for conversion failed\r\n");
return ret;
}
*noise1 = HAL_ADC_GetValue(&hadc2);
ret = HAL_ADC_Stop(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
/* Configure Noiseout 2 input Channel */
/* Noise 2 channel 10 PC0 INP10 */
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
ret = HAL_ADC_ConfigChannel(&hadc2, &sConfig);
if (ret != HAL_OK)
{
printf("Failed to config ADC2 channel 4\r\n");;
return ret;
}
/* Now sample for Noise output 2 */
ret = HAL_ADC_Start(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
ret = HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
if (ret != HAL_OK)
{
printf("ADC2 poll for conversion failed\r\n");
return ret;
}
*noise2 = HAL_ADC_GetValue(&hadc2);
ret = HAL_ADC_Stop(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
return ret;
}
/*
* read_powermon() Reads the power monitor current and voltage channels
*/
HAL_StatusTypeDef read_powermon(uint16_t * current, uint16_t * voltage) {
HAL_StatusTypeDef ret = HAL_OK;
ADC_ChannelConfTypeDef sConfig = {0};
uint32_t adc_value_i;
uint32_t adc_value_v;
/* Configure Regular Power Monitor Current Channel */
sConfig.Channel = ADC_CHANNEL_8; // PWRMON_I channel PC5 INP8
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetRightShift = DISABLE; /* No Right Offset Shift */
sConfig.OffsetSignedSaturation = DISABLE; /* No Signed Saturation */
ret = HAL_ADC_ConfigChannel(&hadc2, &sConfig);
if (ret != HAL_OK)
{
printf("Failed to config ADC2 channel 8\r\n");;
return ret;
}
// Start processing for current (I) values
ret = HAL_ADC_Start(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
ret = HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
if (ret != HAL_OK)
{
printf("ADC2 poll for conversion failed\r\n");
return ret;
}
adc_value_i = HAL_ADC_GetValue(&hadc2);
/*
* Current is I sense voltage divided by
* the sense resistor value which is 5 ohms
*/
*current = ((adc_value_i * REF_VOLTAGE_MV) / MAX_SAMPLES_CNT) / PWRMON_I_SENSE_RESISTOR;
ret = HAL_ADC_Stop(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
/* Switch to the voltage channel */
/* PWRMON_V channel PC4 INP4 */
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
ret = HAL_ADC_ConfigChannel(&hadc2, &sConfig);
if (ret != HAL_OK)
{
printf("Failed to config ADC2 channel 4\r\n");;
return ret;
}
/* Now sample for voltage (V) */
ret = HAL_ADC_Start(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
ret = HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
if (ret != HAL_OK)
{
printf("ADC2 poll for conversion failed\r\n");
return ret;
}
adc_value_v = HAL_ADC_GetValue(&hadc2);
*voltage = (adc_value_v * REF_VOLTAGE_MV) / MAX_SAMPLES_CNT;
ret = HAL_ADC_Stop(&hadc2);
if (ret != HAL_OK)
{
printf("ADC2 start failed\r\n");
return ret;
}
return ret;
}
/*
* adc3_init() - Set up ADC3 which is used for the board revision
*/
HAL_StatusTypeDef adc3_init(void)
{
HAL_StatusTypeDef ret = HAL_OK;
ADC_ChannelConfTypeDef sConfig = {0};
hadc3.Instance = ADC3;
ret = HAL_ADC_DeInit(&hadc3);
if (ret != HAL_OK)
{
printf("Failed to deinit ADC3\r\n");
return ret;
}
/*
* PC3 ----> ADC3 INP1
*/
__HAL_RCC_ADC3_CLK_ENABLE();
/**ADC3 GPIO Configuration
PC3_C ------> ADC3_INP1
*/
HAL_SYSCFG_AnalogSwitchConfig(SYSCFG_SWITCH_PC3, SYSCFG_SWITCH_PC3_OPEN);
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2; // 4
hadc3.Init.Resolution = ADC_RESOLUTION_16B;
hadc3.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc3.Init.LowPowerAutoWait = DISABLE;
hadc3.Init.ContinuousConvMode = ENABLE; // DIS
hadc3.Init.NbrOfConversion = 1;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc3.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc3.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc3.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
/*
* Perform oversampling to read multiple samples
* and compute the average in HW.
*/
hadc3.Init.OversamplingMode = ENABLE;
hadc3.Init.Oversampling.Ratio = 0x20; /* Bit for 32x oversampling */
hadc3.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_5;
hadc3.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
hadc3.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_CONTINUED_MODE;
ret = HAL_ADC_Init(&hadc3);
if (ret != HAL_OK)
{
printf("ADC3 init failed\r\n");
return ret;
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
ret = HAL_ADC_ConfigChannel(&hadc3, &sConfig);
if (ret != HAL_OK)
{
printf("Failed to config ADC3 channel\r\n");
}
/* Run the ADC calibration in single-ended mode */
ret = HAL_ADCEx_Calibration_Start(&hadc3, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED);
if (ret != HAL_OK)
{
printf("ADC3 calibration failed\r\n");
}
return ret;
}
/*
* read_boardrev() - Reads the board revision channel
* and returns a numeric value based on the milli-volts
* read divided by the number of milli-volts per revision.
*/
HAL_StatusTypeDef read_boardrev(uint16_t * board_rev)
{
HAL_StatusTypeDef ret = HAL_OK;
uint32_t adc_value;
uint16_t millivolts;
ret = HAL_ADC_Start(&hadc3);
if (ret != HAL_OK)
{
printf("ADC3 start failed\r\n");
return ret;
}
ret = HAL_ADC_PollForConversion(&hadc3, HAL_MAX_DELAY);
if (ret != HAL_OK)
{
printf("ADC3 poll for conversion failed\r\n");
return ret;
}
adc_value = HAL_ADC_GetValue(&hadc3);
HAL_ADC_Stop(&hadc3);
/*
* The ADC consistently reads low when taking a single sample.
* For now add an offset to make sure that we can properly compute the board rev number
* TODO: This will need to be tested with the next board revision to make sure that it tracks properly.
*/
millivolts = (((adc_value) * REF_VOLTAGE_MV) / MAX_SAMPLES_CNT); // + BOARD_REV_MV_OFFSET;
/*
* Determine the board revision based on the milli-volts, probably will
* need a tolerance for example if we are looking for 100 mv increments
* then maybe have a +/- 6 mv window.
*
*/
*board_rev = millivolts / MILLIVOLTS_PER_REVISION;
return ret;
}