This page introduces the concept of state and lifecycle in a React component. You can find a [detailed component API reference here](/docs/react-component.html).
Consider the ticking clock example from [one of the previous sections](/docs/rendering-elements.html#updating-the-rendered-element). In [Rendering Elements](/docs/rendering-elements.html#rendering-an-element-into-the-dom), we have only learned one way to update the UI. We call `ReactDOM.render()` to change the rendered output:
In this section, we will learn how to make the `Clock` component truly reusable and encapsulated. It will set up its own timer and update itself every second.
We can start by encapsulating how the clock looks:
However, it misses a crucial requirement: the fact that the `Clock` sets up a timer and updates the UI every second should be an implementation detail of the `Clock`.
Ideally we want to write this once and have the `Clock` update itself:
```js{2}
ReactDOM.render(
<Clock/>,
document.getElementById('root')
);
```
To implement this, we need to add "state" to the `Clock` component.
State is similar to props, but it is private and fully controlled by the component.
We [mentioned before](/docs/components-and-props.html#functional-and-class-components) that components defined as classes have some additional features. Local state is exactly that: a feature available only to classes.
The `render` method will be called each time an update happens, but as long as we render `<Clock />` into the same DOM node, only a single instance of the `Clock` class will be used. This lets us use additional features such as local state and lifecycle hooks.
We will move the `date` from props to state in three steps:
1) Replace `this.props.date` with `this.state.date` in the `render()` method:
```js{6}
class Clock extends React.Component {
render() {
return (
<div>
<h1>Hello, world!</h1>
<h2>It is {this.state.date.toLocaleTimeString()}.</h2>
</div>
);
}
}
```
2) Add a [class constructor](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor) that assigns the initial `this.state`:
```js{4}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
render() {
return (
<div>
<h1>Hello, world!</h1>
<h2>It is {this.state.date.toLocaleTimeString()}.</h2>
</div>
);
}
}
```
Note how we pass `props` to the base constructor:
```js{2}
constructor(props) {
super(props);
this.state = {date: new Date()};
}
```
Class components should always call the base constructor with `props`.
3) Remove the `date` prop from the `<Clock />` element:
```js{2}
ReactDOM.render(
<Clock/>,
document.getElementById('root')
);
```
We will later add the timer code back to the component itself.
The result looks like this:
```js{2-5,11,18}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
render() {
return (
<div>
<h1>Hello, world!</h1>
<h2>It is {this.state.date.toLocaleTimeString()}.</h2>
Next, we'll make the `Clock` set up its own timer and update itself every second.
## Adding Lifecycle Methods to a Class
In applications with many components, it's very important to free up resources taken by the components when they are destroyed.
We want to [set up a timer](https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setInterval) whenever the `Clock` is rendered to the DOM for the first time. This is called "mounting" in React.
We also want to [clear that timer](https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/clearInterval) whenever the DOM produced by the `Clock` is removed. This is called "unmounting" in React.
We can declare special methods on the component class to run some code when a component mounts and unmounts:
```js{7-9,11-13}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
componentDidMount() {
}
componentWillUnmount() {
}
render() {
return (
<div>
<h1>Hello, world!</h1>
<h2>It is {this.state.date.toLocaleTimeString()}.</h2>
</div>
);
}
}
```
These methods are called "lifecycle hooks".
The `componentDidMount()` hook runs after the component output has been rendered to the DOM. This is a good place to set up a timer:
While `this.props` is set up by React itself and `this.state` has a special meaning, you are free to add additional fields to the class manually if you need to store something that doesn’t participate in the data flow (like a timer ID).
1) When `<Clock />` is passed to `ReactDOM.render()`, React calls the constructor of the `Clock` component. Since `Clock` needs to display the current time, it initializes `this.state` with an object including the current time. We will later update this state.
2) React then calls the `Clock` component's `render()` method. This is how React learns what should be displayed on the screen. React then updates the DOM to match the `Clock`'s render output.
3) When the `Clock` output is inserted in the DOM, React calls the `componentDidMount()` lifecycle hook. Inside it, the `Clock` component asks the browser to set up a timer to call the component's `tick()` method once a second.
4) Every second the browser calls the `tick()` method. Inside it, the `Clock` component schedules a UI update by calling `setState()` with an object containing the current time. Thanks to the `setState()` call, React knows the state has changed, and calls the `render()` method again to learn what should be on the screen. This time, `this.state.date` in the `render()` method will be different, and so the render output will include the updated time. React updates the DOM accordingly.
To fix it, use a second form of `setState()` that accepts a function rather than an object. That function will receive the previous state as the first argument, and the props at the time the update is applied as the second argument:
```js
// Correct
this.setState((prevState, props) => ({
counter: prevState.counter + props.increment
}));
```
We used an [arrow function](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions) above, but it also works with regular functions:
```js
// Correct
this.setState(function(prevState, props) {
return {
counter: prevState.counter + props.increment
};
});
```
### State Updates are Merged
When you call `setState()`, React merges the object you provide into the current state.
For example, your state may contain several independent variables:
```js{4,5}
constructor(props) {
super(props);
this.state = {
posts: [],
comments: []
};
}
```
Then you can update them independently with separate `setState()` calls:
```js{4,10}
componentDidMount() {
fetchPosts().then(response => {
this.setState({
posts: response.posts
});
});
fetchComments().then(response => {
this.setState({
comments: response.comments
});
});
}
```
The merging is shallow, so `this.setState({comments})` leaves `this.state.posts` intact, but completely replaces `this.state.comments`.
## The Data Flows Down
Neither parent nor child components can know if a certain component is stateful or stateless, and they shouldn't care whether it is defined as a function or a class.
This is why state is often called local or encapsulated. It is not accessible to any component other than the one that owns and sets it.
A component may choose to pass its state down as props to its child components:
```js
<h2>It is {this.state.date.toLocaleTimeString()}.</h2>
The `FormattedDate` component would receive the `date` in its props and wouldn't know whether it came from the `Clock`'s state, from the `Clock`'s props, or was typed by hand:
This is commonly called a "top-down" or "unidirectional" data flow. Any state is always owned by some specific component, and any data or UI derived from that state can only affect components "below" them in the tree.
If you imagine a component tree as a waterfall of props, each component's state is like an additional water source that joins it at an arbitrary point but also flows down.
To show that all components are truly isolated, we can create an `App` component that renders three `<Clock>`s:
Each `Clock` sets up its own timer and updates independently.
In React apps, whether a component is stateful or stateless is considered an implementation detail of the component that may change over time. You can use stateless components inside stateful components, and vice versa.