---
id: state-and-lifecycle
title: State and Lifecycle
permalink: docs/state-and-lifecycle.html
redirect_from: "docs/interactivity-and-dynamic-uis.html"
prev: components-and-props.html
next: handling-events.html
---
Consider the ticking clock example from the [one of the previous sections](/react/docs/rendering-elements.html#updating-the-rendered-element).
So far we have only learned one way to update the UI.
We call `ReactDOM.render()` to change the rendered output:
```js{8-11}
function tick() {
const element = (
Hello, world!
It is {new Date().toLocaleTimeString()}.
);
ReactDOM.render(
element,
document.getElementById('root')
);
}
setInterval(tick, 1000);
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/gwoJZk?editors=0010)
In this section, we will learn how to make the `Clock` component truly reusable and encapsulated. It will set up its own timer and update itself every second.
We can start by encapsulating how the clock looks:
```js{3-6,12}
function Clock(props) {
return (
Hello, world!
It is {props.date.toLocaleTimeString()}.
);
}
function tick() {
ReactDOM.render(
,
document.getElementById('root')
);
}
setInterval(tick, 1000);
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/dpdoYR?editors=0010)
However, it misses a crucial requirement: the fact that the `Clock` sets up a timer and updates the UI every second should be an implementation detail of the `Clock`.
Ideally we want to write this once and have the `Clock` update itself:
```js{2}
ReactDOM.render(
,
document.getElementById('root')
);
```
To implement this, we need to add "state" to the `Clock` component.
State is similar to props, but it is private and fully controlled by the component.
We [mentioned before](/react/docs/components-and-props.html#functional-and-class-components) that components defined as classes have some additional features. Local state is exactly that: a feature available only to classes.
## Converting a Function to a Class
You can convert a functional component like `Clock` to a class in five steps:
1. Create an [ES6 class](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes) with the same name that extends `React.Component`.
2. Add a single empty method to it called `render()`.
3. Move the body of the function into the `render()` method.
4. Replace `props` with `this.props` in the `render()` body.
5. Delete the remaining empty function declaration.
```js
class Clock extends React.Component {
render() {
return (
Hello, world!
It is {this.props.date.toLocaleTimeString()}.
);
}
}
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/zKRGpo?editors=0010)
`Clock` is now defined as a class rather than a function.
This lets us use additional features such as local state and lifecycle hooks.
## Adding Local State to a Class
We will move the `date` from props to state in three steps:
1) Replace `this.props.date` with `this.state.date` in the `render()` method:
```js{6}
class Clock extends React.Component {
render() {
return (
Hello, world!
It is {this.state.date.toLocaleTimeString()}.
);
}
}
```
2) Add a [class constructor](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor) that assigns the initial `this.state`:
```js{4}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
render() {
return (
Hello, world!
It is {this.state.date.toLocaleTimeString()}.
);
}
}
```
Note how we pass `props` to the base constructor:
```js{2}
constructor(props) {
super(props);
this.state = {date: new Date()};
}
```
Class components should always call the base constructor with `props`.
3) Remove the `date` prop from the `` element:
```js{2}
ReactDOM.render(
,
document.getElementById('root')
);
```
We will later add the timer code back to the component itself.
The result looks like this:
```js{2-5,11,18}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
render() {
return (
Hello, world!
It is {this.state.date.toLocaleTimeString()}.
);
}
}
ReactDOM.render(
,
document.getElementById('root')
);
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/KgQpJd?editors=0010)
Next, we'll make the `Clock` set up its own timer and update itself every second.
## Adding Lifecycle Methods to a Class
In applications with many components, it's very important to free up resources taken by the components when they are destroyed.
We want to [set up a timer](https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setInterval) whenever the `Clock` is rendered to the DOM for the first time. This is called "mounting" in React.
We also want to [clear that timer](https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/clearInterval) whenever the DOM produced by the `Clock` is removed. This is called "unmounting" in React.
We can declare special methods on the component class to run some code when a component mounts and unmounts:
```js{7-9,11-13}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
componentDidMount() {
}
componentWillUnmount() {
}
render() {
return (
Hello, world!
It is {this.state.date.toLocaleTimeString()}.
);
}
}
```
These methods are called "lifecycle hooks".
The `componentDidMount()` hook runs after the component output has been rendered to the DOM. This is a good place to set up a timer:
```js{2-5}
componentDidMount() {
this.timerID = setInterval(
() => this.tick(),
1000
);
}
```
Note how we save the timer ID right on `this`.
While `this.props` is set up by React itself and `this.state` has a special meaning, you are free to add additional fields to the class manually if you need to store something that is not used for the visual output.
If you don't use something in `render()`, it shouldn't be in the state.
We will tear down the timer in the `componentWillUnmount()` lifecycle hook:
```js{2}
componentWillUnmount() {
clearInterval(this.timerID);
}
```
Finally, we will implement the `tick()` method that runs every second.
It will use `this.setState()` to schedule updates to the component local state:
```js{18-22}
class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};
}
componentDidMount() {
this.timerID = setInterval(
() => this.tick(),
1000
);
}
componentWillUnmount() {
clearInterval(this.timerID);
}
tick() {
this.setState({
date: new Date()
});
}
render() {
return (
Hello, world!
It is {this.state.date.toLocaleTimeString()}.
);
}
}
ReactDOM.render(
,
document.getElementById('root')
);
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/amqdNA?editors=0010)
Now the clock ticks every second.
## Using State Correctly
There are three things you should know about `setState()`.
### Do Not Modify State Directly
For example, this will not re-render a component:
```js
// Wrong
this.state.comment = 'Hello';
```
Instead, use `setState()`:
```js
// Correct
this.setState({comment: 'Hello'});
```
### State Updates May Be Asynchronous
React may batch multiple `setState()` calls into a single update for performance.
Because `this.props` and `this.state` may be updated asynchronously, you should not rely on their values for calculating the next state.
For example, this code may fail to update the counter:
```js
// Wrong
this.setState({
counter: this.state.counter + this.props.increment,
});
```
To fix it, use a second form of `setState()` that accepts a function rather than an object. That function will receive the previous state as the first argument, and the props at the time the update is applied as the second argument:
```js
// Correct
this.setState((prevState, props) => ({
counter: prevState.counter + props.increment
}));
```
We used an [arrow function](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions) above, but it also works with regular functions:
```js
// Correct
this.setState(function(prevState, props) {
return {
counter: prevState.counter + props.increment
};
});
```
### State Updates are Merged
When you call `setState()`, React merges the object you provide into the current state.
For example, your state may contain several independent variables:
```js{4,5}
constructor(props) {
super(props);
this.state = {
posts: [],
comments: []
};
}
```
Then you can update them independently with separate `setState()` calls:
```js{4,10}
componentDidMount() {
fetchPosts().then(response => {
this.setState({
posts: response.posts
});
});
fetchComments().then(response => {
this.setState({
comments: response.comments
});
});
}
```
The merging is shallow, so `this.setState({comments})` leaves `this.state.posts` intact, but completely replaces `this.state.comments`.
## The Data Flows Down
Neither parent nor child components can know if a certain component is stateful or stateless, and they shouldn't care whether it is defined as a function or a class.
This is why state is often called local or encapsulated. It is not accessible to any component other than the one that owns and sets it.
A component may choose to pass its state down as props to its child components:
```js
It is {this.state.date.toLocaleTimeString()}.
```
This also works for user-defined components:
```js
```
The `FormattedDate` component would receive the `date` in its props and wouldn't know whether it came from the `Clock`'s state, the props, or was typed by hand:
```js
function FormattedDate(props) {
return It is {props.date.toLocaleTimeString()}.
;
}
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/zKRqNB?editors=0010)
This is commonly called a "top-down" or "unidirectional" data flow. Any state is always owned by some specific component, and any data or UI derived from that state can only affect components "below" them in the tree.
If you imagine a component tree as a waterfall of props, each component's state is like an additional water source that joins it at an arbitrary point but also flows down.
To show that all components are truly isolated, we can create an `App` component that renders three ``s:
```js{4-6}
function App() {
return (
);
}
ReactDOM.render(
,
document.getElementById('root')
);
```
[Try it on CodePen.](http://codepen.io/gaearon/pen/vXdGmd?editors=0010)
Each `Clock` sets up its own timer and updates independently.
In React apps, whether a component is stateful or stateless is considered an implementation detail of the component that may change over time. You can use stateless components inside stateful components, and vice versa.