|
|
|
/**************************************************************************
|
|
|
|
* Implementation of crypt(3) using routines in libcrypto from openssl for
|
|
|
|
* use on Android in Termux.
|
|
|
|
*
|
|
|
|
* https://www.freebsd.org/cgi/man.cgi?crypt(3)
|
|
|
|
* http://man7.org/linux/man-pages/man3/crypt.3.html
|
|
|
|
*
|
|
|
|
* Relevant code is from FreeBSD with license given below.
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2011 The FreeBSD Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <arpa/inet.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <openssl/sha.h>
|
|
|
|
#include <openssl/md5.h>
|
|
|
|
|
|
|
|
/* START: Freebsd compat */
|
|
|
|
typedef unsigned long u_long;
|
|
|
|
#define MIN(a,b) (((a)<(b))?(a):(b))
|
|
|
|
#define MAX(a,b) (((a)>(b))?(a):(b))
|
|
|
|
#define MD5_SIZE 16
|
|
|
|
#define _PASSWORD_EFMT1 '_'
|
|
|
|
#define DES_SALT_ALPHABET \
|
|
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
|
|
|
#define MD5Init MD5_Init
|
|
|
|
#define MD5Update MD5_Update
|
|
|
|
#define MD5Final MD5_Final
|
|
|
|
/* END: Freebsd compat */
|
|
|
|
|
|
|
|
|
|
|
|
/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/misc.c */
|
|
|
|
static char itoa64[] = /* 0 ... 63 => ascii - 64 */
|
|
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
|
|
|
void
|
|
|
|
_crypt_to64(char *s, u_long v, int n)
|
|
|
|
{
|
|
|
|
while (--n >= 0) {
|
|
|
|
*s++ = itoa64[v&0x3f];
|
|
|
|
v >>= 6;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
b64_from_24bit(uint8_t B2, uint8_t B1, uint8_t B0, int n, int *buflen, char **cp)
|
|
|
|
{
|
|
|
|
uint32_t w;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
w = (B2 << 16) | (B1 << 8) | B0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
**cp = itoa64[w&0x3f];
|
|
|
|
(*cp)++;
|
|
|
|
if ((*buflen)-- < 0)
|
|
|
|
break;
|
|
|
|
w >>= 6;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/misc.c */
|
|
|
|
|
|
|
|
|
|
|
|
/* START: https://github.com/freebsd/freebsd/blob/master/secure/lib/libcrypt/crypt-des.c */
|
|
|
|
#if defined(__GNUC__) && !defined(lint)
|
|
|
|
#define INLINE inline
|
|
|
|
#else
|
|
|
|
#define INLINE
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static u_char IP[64] = {
|
|
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
|
|
};
|
|
|
|
|
|
|
|
static u_char inv_key_perm[64];
|
|
|
|
static u_char key_perm[56] = {
|
|
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
|
|
};
|
|
|
|
|
|
|
|
static u_char key_shifts[16] = {
|
|
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
|
|
};
|
|
|
|
|
|
|
|
static u_char inv_comp_perm[56];
|
|
|
|
static u_char comp_perm[48] = {
|
|
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static u_char u_sbox[8][64];
|
|
|
|
static u_char sbox[8][64] = {
|
|
|
|
{
|
|
|
|
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
|
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
|
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
|
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
|
|
|
|
},
|
|
|
|
{
|
|
|
|
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
|
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
|
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
|
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
|
|
|
|
},
|
|
|
|
{
|
|
|
|
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
|
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
|
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
|
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
|
|
|
|
},
|
|
|
|
{
|
|
|
|
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
|
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
|
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
|
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
|
|
|
|
},
|
|
|
|
{
|
|
|
|
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
|
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
|
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
|
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
|
|
|
|
},
|
|
|
|
{
|
|
|
|
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
|
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
|
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
|
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
|
|
|
|
},
|
|
|
|
{
|
|
|
|
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
|
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
|
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
|
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
|
|
|
|
},
|
|
|
|
{
|
|
|
|
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
|
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
|
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
|
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static u_char un_pbox[32];
|
|
|
|
static u_char pbox[32] = {
|
|
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
|
|
};
|
|
|
|
|
|
|
|
static u_int32_t bits32[32] =
|
|
|
|
{
|
|
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
|
|
};
|
|
|
|
|
|
|
|
static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
|
|
|
|
|
|
|
|
static u_int32_t saltbits;
|
|
|
|
static u_int32_t old_salt;
|
|
|
|
static u_int32_t *bits28, *bits24;
|
|
|
|
static u_char init_perm[64], final_perm[64];
|
|
|
|
static u_int32_t en_keysl[16], en_keysr[16];
|
|
|
|
static u_int32_t de_keysl[16], de_keysr[16];
|
|
|
|
static int des_initialised = 0;
|
|
|
|
static u_char m_sbox[4][4096];
|
|
|
|
static u_int32_t psbox[4][256];
|
|
|
|
static u_int32_t ip_maskl[8][256], ip_maskr[8][256];
|
|
|
|
static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
|
|
|
|
static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
|
|
|
|
static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
|
|
|
|
static u_int32_t old_rawkey0, old_rawkey1;
|
|
|
|
|
|
|
|
static u_char ascii64[] =
|
|
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
/* 0000000000111111111122222222223333333333444444444455555555556666 */
|
|
|
|
/* 0123456789012345678901234567890123456789012345678901234567890123 */
|
|
|
|
|
|
|
|
static INLINE int
|
|
|
|
ascii_to_bin(char ch)
|
|
|
|
{
|
|
|
|
if (ch > 'z')
|
|
|
|
return(0);
|
|
|
|
if (ch >= 'a')
|
|
|
|
return(ch - 'a' + 38);
|
|
|
|
if (ch > 'Z')
|
|
|
|
return(0);
|
|
|
|
if (ch >= 'A')
|
|
|
|
return(ch - 'A' + 12);
|
|
|
|
if (ch > '9')
|
|
|
|
return(0);
|
|
|
|
if (ch >= '.')
|
|
|
|
return(ch - '.');
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
des_init(void)
|
|
|
|
{
|
|
|
|
int i, j, b, k, inbit, obit;
|
|
|
|
u_int32_t *p, *il, *ir, *fl, *fr;
|
|
|
|
|
|
|
|
old_rawkey0 = old_rawkey1 = 0L;
|
|
|
|
saltbits = 0L;
|
|
|
|
old_salt = 0L;
|
|
|
|
bits24 = (bits28 = bits32 + 4) + 4;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invert the S-boxes, reordering the input bits.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
for (j = 0; j < 64; j++) {
|
|
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
|
|
u_sbox[i][j] = sbox[i][b];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits.
|
|
|
|
* Each will handle 12 bits of the S-box input.
|
|
|
|
*/
|
|
|
|
for (b = 0; b < 4; b++)
|
|
|
|
for (i = 0; i < 64; i++)
|
|
|
|
for (j = 0; j < 64; j++)
|
|
|
|
m_sbox[b][(i << 6) | j] =
|
|
|
|
(u_char)((u_sbox[(b << 1)][i] << 4) |
|
|
|
|
u_sbox[(b << 1) + 1][j]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up the initial & final permutations into a useful form, and
|
|
|
|
* initialise the inverted key permutation.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
|
|
init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
|
|
|
|
inv_key_perm[i] = 255;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invert the key permutation and initialise the inverted key
|
|
|
|
* compression permutation.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 56; i++) {
|
|
|
|
inv_key_perm[key_perm[i] - 1] = (u_char)i;
|
|
|
|
inv_comp_perm[i] = 255;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invert the key compression permutation.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 48; i++) {
|
|
|
|
inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up the OR-mask arrays for the initial and final permutations,
|
|
|
|
* and for the key initial and compression permutations.
|
|
|
|
*/
|
|
|
|
for (k = 0; k < 8; k++) {
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
*(il = &ip_maskl[k][i]) = 0L;
|
|
|
|
*(ir = &ip_maskr[k][i]) = 0L;
|
|
|
|
*(fl = &fp_maskl[k][i]) = 0L;
|
|
|
|
*(fr = &fp_maskr[k][i]) = 0L;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
|
inbit = 8 * k + j;
|
|
|
|
if (i & bits8[j]) {
|
|
|
|
if ((obit = init_perm[inbit]) < 32)
|
|
|
|
*il |= bits32[obit];
|
|
|
|
else
|
|
|
|
*ir |= bits32[obit-32];
|
|
|
|
if ((obit = final_perm[inbit]) < 32)
|
|
|
|
*fl |= bits32[obit];
|
|
|
|
else
|
|
|
|
*fr |= bits32[obit - 32];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
|
|
*(il = &key_perm_maskl[k][i]) = 0L;
|
|
|
|
*(ir = &key_perm_maskr[k][i]) = 0L;
|
|
|
|
for (j = 0; j < 7; j++) {
|
|
|
|
inbit = 8 * k + j;
|
|
|
|
if (i & bits8[j + 1]) {
|
|
|
|
if ((obit = inv_key_perm[inbit]) == 255)
|
|
|
|
continue;
|
|
|
|
if (obit < 28)
|
|
|
|
*il |= bits28[obit];
|
|
|
|
else
|
|
|
|
*ir |= bits28[obit - 28];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*(il = &comp_maskl[k][i]) = 0L;
|
|
|
|
*(ir = &comp_maskr[k][i]) = 0L;
|
|
|
|
for (j = 0; j < 7; j++) {
|
|
|
|
inbit = 7 * k + j;
|
|
|
|
if (i & bits8[j + 1]) {
|
|
|
|
if ((obit=inv_comp_perm[inbit]) == 255)
|
|
|
|
continue;
|
|
|
|
if (obit < 24)
|
|
|
|
*il |= bits24[obit];
|
|
|
|
else
|
|
|
|
*ir |= bits24[obit - 24];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invert the P-box permutation, and convert into OR-masks for
|
|
|
|
* handling the output of the S-box arrays setup above.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 32; i++)
|
|
|
|
un_pbox[pbox[i] - 1] = (u_char)i;
|
|
|
|
|
|
|
|
for (b = 0; b < 4; b++)
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
*(p = &psbox[b][i]) = 0L;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
|
if (i & bits8[j])
|
|
|
|
*p |= bits32[un_pbox[8 * b + j]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
des_initialised = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
setup_salt(u_int32_t salt)
|
|
|
|
{
|
|
|
|
u_int32_t obit, saltbit;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (salt == old_salt)
|
|
|
|
return;
|
|
|
|
old_salt = salt;
|
|
|
|
|
|
|
|
saltbits = 0L;
|
|
|
|
saltbit = 1;
|
|
|
|
obit = 0x800000;
|
|
|
|
for (i = 0; i < 24; i++) {
|
|
|
|
if (salt & saltbit)
|
|
|
|
saltbits |= obit;
|
|
|
|
saltbit <<= 1;
|
|
|
|
obit >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
des_setkey(const char *key)
|
|
|
|
{
|
|
|
|
u_int32_t k0, k1, rawkey0, rawkey1;
|
|
|
|
int shifts, round;
|
|
|
|
|
|
|
|
if (!des_initialised)
|
|
|
|
des_init();
|
|
|
|
|
|
|
|
rawkey0 = ntohl(*(const u_int32_t *) key);
|
|
|
|
rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
|
|
|
|
|
|
|
|
if ((rawkey0 | rawkey1)
|
|
|
|
&& rawkey0 == old_rawkey0
|
|
|
|
&& rawkey1 == old_rawkey1) {
|
|
|
|
/*
|
|
|
|
* Already setup for this key.
|
|
|
|
* This optimisation fails on a zero key (which is weak and
|
|
|
|
* has bad parity anyway) in order to simplify the starting
|
|
|
|
* conditions.
|
|
|
|
*/
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
old_rawkey0 = rawkey0;
|
|
|
|
old_rawkey1 = rawkey1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do key permutation and split into two 28-bit subkeys.
|
|
|
|
*/
|
|
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
|
|
| key_perm_maskl[4][rawkey1 >> 25]
|
|
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
|
|
| key_perm_maskr[4][rawkey1 >> 25]
|
|
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
|
|
/*
|
|
|
|
* Rotate subkeys and do compression permutation.
|
|
|
|
*/
|
|
|
|
shifts = 0;
|
|
|
|
for (round = 0; round < 16; round++) {
|
|
|
|
u_int32_t t0, t1;
|
|
|
|
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
|
|
|
|
de_keysl[15 - round] =
|
|
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
|
|
| comp_maskl[3][t0 & 0x7f]
|
|
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f]
|
|
|
|
| comp_maskl[7][t1 & 0x7f];
|
|
|
|
|
|
|
|
de_keysr[15 - round] =
|
|
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
|
|
| comp_maskr[3][t0 & 0x7f]
|
|
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f]
|
|
|
|
| comp_maskr[7][t1 & 0x7f];
|
|
|
|
}
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
|
|
*/
|
|
|
|
u_int32_t l, r, *kl, *kr, *kl1, *kr1;
|
|
|
|
u_int32_t f, r48l, r48r;
|
|
|
|
int round;
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
return(1);
|
|
|
|
} else if (count > 0) {
|
|
|
|
/*
|
|
|
|
* Encrypting
|
|
|
|
*/
|
|
|
|
kl1 = en_keysl;
|
|
|
|
kr1 = en_keysr;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Decrypting
|
|
|
|
*/
|
|
|
|
count = -count;
|
|
|
|
kl1 = de_keysl;
|
|
|
|
kr1 = de_keysr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do initial permutation (IP).
|
|
|
|
*/
|
|
|
|
l = ip_maskl[0][l_in >> 24]
|
|
|
|
| ip_maskl[1][(l_in >> 16) & 0xff]
|
|
|
|
| ip_maskl[2][(l_in >> 8) & 0xff]
|
|
|
|
| ip_maskl[3][l_in & 0xff]
|
|
|
|
| ip_maskl[4][r_in >> 24]
|
|
|
|
| ip_maskl[5][(r_in >> 16) & 0xff]
|
|
|
|
| ip_maskl[6][(r_in >> 8) & 0xff]
|
|
|
|
| ip_maskl[7][r_in & 0xff];
|
|
|
|
r = ip_maskr[0][l_in >> 24]
|
|
|
|
| ip_maskr[1][(l_in >> 16) & 0xff]
|
|
|
|
| ip_maskr[2][(l_in >> 8) & 0xff]
|
|
|
|
| ip_maskr[3][l_in & 0xff]
|
|
|
|
| ip_maskr[4][r_in >> 24]
|
|
|
|
| ip_maskr[5][(r_in >> 16) & 0xff]
|
|
|
|
| ip_maskr[6][(r_in >> 8) & 0xff]
|
|
|
|
| ip_maskr[7][r_in & 0xff];
|
|
|
|
|
|
|
|
while (count--) {
|
|
|
|
/*
|
|
|
|
* Do each round.
|
|
|
|
*/
|
|
|
|
kl = kl1;
|
|
|
|
kr = kr1;
|
|
|
|
round = 16;
|
|
|
|
while (round--) {
|
|
|
|
/*
|
|
|
|
* Expand R to 48 bits (simulate the E-box).
|
|
|
|
*/
|
|
|
|
r48l = ((r & 0x00000001) << 23)
|
|
|
|
| ((r & 0xf8000000) >> 9)
|
|
|
|
| ((r & 0x1f800000) >> 11)
|
|
|
|
| ((r & 0x01f80000) >> 13)
|
|
|
|
| ((r & 0x001f8000) >> 15);
|
|
|
|
|
|
|
|
r48r = ((r & 0x0001f800) << 7)
|
|
|
|
| ((r & 0x00001f80) << 5)
|
|
|
|
| ((r & 0x000001f8) << 3)
|
|
|
|
| ((r & 0x0000001f) << 1)
|
|
|
|
| ((r & 0x80000000) >> 31);
|
|
|
|
/*
|
|
|
|
* Do salting for crypt() and friends, and
|
|
|
|
* XOR with the permuted key.
|
|
|
|
*/
|
|
|
|
f = (r48l ^ r48r) & saltbits;
|
|
|
|
r48l ^= f ^ *kl++;
|
|
|
|
r48r ^= f ^ *kr++;
|
|
|
|
/*
|
|
|
|
* Do sbox lookups (which shrink it back to 32 bits)
|
|
|
|
* and do the pbox permutation at the same time.
|
|
|
|
*/
|
|
|
|
f = psbox[0][m_sbox[0][r48l >> 12]]
|
|
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]]
|
|
|
|
| psbox[2][m_sbox[2][r48r >> 12]]
|
|
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]];
|
|
|
|
/*
|
|
|
|
* Now that we've permuted things, complete f().
|
|
|
|
*/
|
|
|
|
f ^= l;
|
|
|
|
l = r;
|
|
|
|
r = f;
|
|
|
|
}
|
|
|
|
r = l;
|
|
|
|
l = f;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Do final permutation (inverse of IP).
|
|
|
|
*/
|
|
|
|
*l_out = fp_maskl[0][l >> 24]
|
|
|
|
| fp_maskl[1][(l >> 16) & 0xff]
|
|
|
|
| fp_maskl[2][(l >> 8) & 0xff]
|
|
|
|
| fp_maskl[3][l & 0xff]
|
|
|
|
| fp_maskl[4][r >> 24]
|
|
|
|
| fp_maskl[5][(r >> 16) & 0xff]
|
|
|
|
| fp_maskl[6][(r >> 8) & 0xff]
|
|
|
|
| fp_maskl[7][r & 0xff];
|
|
|
|
*r_out = fp_maskr[0][l >> 24]
|
|
|
|
| fp_maskr[1][(l >> 16) & 0xff]
|
|
|
|
| fp_maskr[2][(l >> 8) & 0xff]
|
|
|
|
| fp_maskr[3][l & 0xff]
|
|
|
|
| fp_maskr[4][r >> 24]
|
|
|
|
| fp_maskr[5][(r >> 16) & 0xff]
|
|
|
|
| fp_maskr[6][(r >> 8) & 0xff]
|
|
|
|
| fp_maskr[7][r & 0xff];
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
des_cipher(const char *in, char *out, u_long salt, int count)
|
|
|
|
{
|
|
|
|
u_int32_t l_out, r_out, rawl, rawr;
|
|
|
|
int retval;
|
|
|
|
union {
|
|
|
|
u_int32_t *ui32;
|
|
|
|
const char *c;
|
|
|
|
} trans;
|
|
|
|
|
|
|
|
if (!des_initialised)
|
|
|
|
des_init();
|
|
|
|
|
|
|
|
setup_salt(salt);
|
|
|
|
|
|
|
|
trans.c = in;
|
|
|
|
rawl = ntohl(*trans.ui32++);
|
|
|
|
rawr = ntohl(*trans.ui32);
|
|
|
|
|
|
|
|
retval = do_des(rawl, rawr, &l_out, &r_out, count);
|
|
|
|
|
|
|
|
trans.c = out;
|
|
|
|
*trans.ui32++ = htonl(l_out);
|
|
|
|
*trans.ui32 = htonl(r_out);
|
|
|
|
return(retval);
|
|
|
|
}
|
|
|
|
|
|
|
|
char *
|
|
|
|
crypt_des(const char *key, const char *setting)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
u_int32_t count, salt, l, r0, r1, keybuf[2];
|
|
|
|
u_char *p, *q;
|
|
|
|
static char output[21];
|
|
|
|
|
|
|
|
if (!des_initialised)
|
|
|
|
des_init();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy the key, shifting each character up by one bit
|
|
|
|
* and padding with zeros.
|
|
|
|
*/
|
|
|
|
q = (u_char *)keybuf;
|
|
|
|
while (q - (u_char *)keybuf - 8) {
|
|
|
|
*q++ = *key << 1;
|
|
|
|
if (*key != '\0')
|
|
|
|
key++;
|
|
|
|
}
|
|
|
|
if (des_setkey((char *)keybuf))
|
|
|
|
return(NULL);
|
|
|
|
|
|
|
|
if (*setting == _PASSWORD_EFMT1) {
|
|
|
|
/*
|
|
|
|
* "new"-style:
|
|
|
|
* setting - underscore, 4 bytes of count, 4 bytes of salt
|
|
|
|
* key - unlimited characters
|
|
|
|
*/
|
|
|
|
for (i = 1, count = 0L; i < 5; i++)
|
|
|
|
count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
|
|
|
|
|
|
|
|
for (i = 5, salt = 0L; i < 9; i++)
|
|
|
|
salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
|
|
|
|
|
|
|
|
while (*key) {
|
|
|
|
/*
|
|
|
|
* Encrypt the key with itself.
|
|
|
|
*/
|
|
|
|
if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
|
|
|
|
return(NULL);
|
|
|
|
/*
|
|
|
|
* And XOR with the next 8 characters of the key.
|
|
|
|
*/
|
|
|
|
q = (u_char *)keybuf;
|
|
|
|
while (q - (u_char *)keybuf - 8 && *key)
|
|
|
|
*q++ ^= *key++ << 1;
|
|
|
|
|
|
|
|
if (des_setkey((char *)keybuf))
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
strncpy(output, setting, 9);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Double check that we weren't given a short setting.
|
|
|
|
* If we were, the above code will probably have created
|
|
|
|
* wierd values for count and salt, but we don't really care.
|
|
|
|
* Just make sure the output string doesn't have an extra
|
|
|
|
* NUL in it.
|
|
|
|
*/
|
|
|
|
output[9] = '\0';
|
|
|
|
p = (u_char *)output + strlen(output);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* "old"-style:
|
|
|
|
* setting - 2 bytes of salt
|
|
|
|
* key - up to 8 characters
|
|
|
|
*/
|
|
|
|
count = 25;
|
|
|
|
|
|
|
|
salt = (ascii_to_bin(setting[1]) << 6)
|
|
|
|
| ascii_to_bin(setting[0]);
|
|
|
|
|
|
|
|
output[0] = setting[0];
|
|
|
|
/*
|
|
|
|
* If the encrypted password that the salt was extracted from
|
|
|
|
* is only 1 character long, the salt will be corrupted. We
|
|
|
|
* need to ensure that the output string doesn't have an extra
|
|
|
|
* NUL in it!
|
|
|
|
*/
|
|
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
|
|
|
|
p = (u_char *)output + 2;
|
|
|
|
}
|
|
|
|
setup_salt(salt);
|
|
|
|
/*
|
|
|
|
* Do it.
|
|
|
|
*/
|
|
|
|
if (do_des(0L, 0L, &r0, &r1, (int)count))
|
|
|
|
return(NULL);
|
|
|
|
/*
|
|
|
|
* Now encode the result...
|
|
|
|
*/
|
|
|
|
l = (r0 >> 8);
|
|
|
|
*p++ = ascii64[(l >> 18) & 0x3f];
|
|
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
|
|
|
*p++ = ascii64[(l >> 18) & 0x3f];
|
|
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
|
|
|
|
l = r1 << 2;
|
|
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
*p = 0;
|
|
|
|
|
|
|
|
return(output);
|
|
|
|
}
|
|
|
|
/* END: https://github.com/freebsd/freebsd/blob/master/secure/lib/libcrypt/crypt-des.c */
|
|
|
|
|
|
|
|
|
|
|
|
/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-md5.c */
|
|
|
|
char *
|
|
|
|
crypt_md5(const char *pw, const char *salt)
|
|
|
|
{
|
|
|
|
MD5_CTX ctx,ctx1;
|
|
|
|
unsigned long l;
|
|
|
|
int sl, pl;
|
|
|
|
u_int i;
|
|
|
|
u_char final[MD5_SIZE];
|
|
|
|
static const char *sp, *ep;
|
|
|
|
static char passwd[120], *p;
|
|
|
|
static const char *magic = "$1$";
|
|
|
|
|
|
|
|
/* Refine the Salt first */
|
|
|
|
sp = salt;
|
|
|
|
|
|
|
|
/* If it starts with the magic string, then skip that */
|
|
|
|
if(!strncmp(sp, magic, strlen(magic)))
|
|
|
|
sp += strlen(magic);
|
|
|
|
|
|
|
|
/* It stops at the first '$', max 8 chars */
|
|
|
|
for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* get the length of the true salt */
|
|
|
|
sl = ep - sp;
|
|
|
|
|
|
|
|
MD5Init(&ctx);
|
|
|
|
|
|
|
|
/* The password first, since that is what is most unknown */
|
|
|
|
MD5Update(&ctx, (const u_char *)pw, strlen(pw));
|
|
|
|
|
|
|
|
/* Then our magic string */
|
|
|
|
MD5Update(&ctx, (const u_char *)magic, strlen(magic));
|
|
|
|
|
|
|
|
/* Then the raw salt */
|
|
|
|
MD5Update(&ctx, (const u_char *)sp, (u_int)sl);
|
|
|
|
|
|
|
|
/* Then just as many characters of the MD5(pw,salt,pw) */
|
|
|
|
MD5Init(&ctx1);
|
|
|
|
MD5Update(&ctx1, (const u_char *)pw, strlen(pw));
|
|
|
|
MD5Update(&ctx1, (const u_char *)sp, (u_int)sl);
|
|
|
|
MD5Update(&ctx1, (const u_char *)pw, strlen(pw));
|
|
|
|
MD5Final(final, &ctx1);
|
|
|
|
for(pl = (int)strlen(pw); pl > 0; pl -= MD5_SIZE)
|
|
|
|
MD5Update(&ctx, (const u_char *)final,
|
|
|
|
(u_int)(pl > MD5_SIZE ? MD5_SIZE : pl));
|
|
|
|
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
|
|
memset(final, 0, sizeof(final));
|
|
|
|
|
|
|
|
/* Then something really weird... */
|
|
|
|
for (i = strlen(pw); i; i >>= 1)
|
|
|
|
if(i & 1)
|
|
|
|
MD5Update(&ctx, (const u_char *)final, 1);
|
|
|
|
else
|
|
|
|
MD5Update(&ctx, (const u_char *)pw, 1);
|
|
|
|
|
|
|
|
/* Now make the output string */
|
|
|
|
strcpy(passwd, magic);
|
|
|
|
strncat(passwd, sp, (u_int)sl);
|
|
|
|
strcat(passwd, "$");
|
|
|
|
|
|
|
|
MD5Final(final, &ctx);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* and now, just to make sure things don't run too fast
|
|
|
|
* On a 60 Mhz Pentium this takes 34 msec, so you would
|
|
|
|
* need 30 seconds to build a 1000 entry dictionary...
|
|
|
|
*/
|
|
|
|
for(i = 0; i < 1000; i++) {
|
|
|
|
MD5Init(&ctx1);
|
|
|
|
if(i & 1)
|
|
|
|
MD5Update(&ctx1, (const u_char *)pw, strlen(pw));
|
|
|
|
else
|
|
|
|
MD5Update(&ctx1, (const u_char *)final, MD5_SIZE);
|
|
|
|
|
|
|
|
if(i % 3)
|
|
|
|
MD5Update(&ctx1, (const u_char *)sp, (u_int)sl);
|
|
|
|
|
|
|
|
if(i % 7)
|
|
|
|
MD5Update(&ctx1, (const u_char *)pw, strlen(pw));
|
|
|
|
|
|
|
|
if(i & 1)
|
|
|
|
MD5Update(&ctx1, (const u_char *)final, MD5_SIZE);
|
|
|
|
else
|
|
|
|
MD5Update(&ctx1, (const u_char *)pw, strlen(pw));
|
|
|
|
MD5Final(final, &ctx1);
|
|
|
|
}
|
|
|
|
|
|
|
|
p = passwd + strlen(passwd);
|
|
|
|
|
|
|
|
l = (final[ 0]<<16) | (final[ 6]<<8) | final[12];
|
|
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
|
|
l = (final[ 1]<<16) | (final[ 7]<<8) | final[13];
|
|
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
|
|
l = (final[ 2]<<16) | (final[ 8]<<8) | final[14];
|
|
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
|
|
l = (final[ 3]<<16) | (final[ 9]<<8) | final[15];
|
|
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
|
|
l = (final[ 4]<<16) | (final[10]<<8) | final[ 5];
|
|
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
|
|
l = final[11];
|
|
|
|
_crypt_to64(p, l, 2); p += 2;
|
|
|
|
*p = '\0';
|
|
|
|
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
|
|
memset(final, 0, sizeof(final));
|
|
|
|
|
|
|
|
return (passwd);
|
|
|
|
}
|
|
|
|
/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-md5.c */
|
|
|
|
|
|
|
|
|
|
|
|
/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha256.c */
|
|
|
|
static const char sha256_salt_prefix[] = "$5$";
|
|
|
|
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
|
|
static const char sha256_rounds_prefix[] = "rounds=";
|
|
|
|
|
|
|
|
/* Maximum salt string length. */
|
|
|
|
#define SALT_LEN_MAX 16
|
|
|
|
/* Default number of rounds if not explicitly specified. */
|
|
|
|
#define ROUNDS_DEFAULT 5000
|
|
|
|
/* Minimum number of rounds. */
|
|
|
|
#define ROUNDS_MIN 1000
|
|
|
|
/* Maximum number of rounds. */
|
|
|
|
#define ROUNDS_MAX 999999999
|
|
|
|
|
|
|
|
static char *
|
|
|
|
crypt_sha256_r(const char *key, const char *salt, char *buffer, int buflen)
|
|
|
|
{
|
|
|
|
u_long srounds;
|
|
|
|
int n;
|
|
|
|
uint8_t alt_result[32], temp_result[32];
|
|
|
|
SHA256_CTX ctx, alt_ctx;
|
|
|
|
size_t salt_len, key_len, cnt, rounds;
|
|
|
|
char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
|
|
|
|
const char *num;
|
|
|
|
bool rounds_custom;
|
|
|
|
|
|
|
|
copied_key = NULL;
|
|
|
|
copied_salt = NULL;
|
|
|
|
|
|
|
|
/* Default number of rounds. */
|
|
|
|
rounds = ROUNDS_DEFAULT;
|
|
|
|
rounds_custom = false;
|
|
|
|
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
|
|
* be present. Just in case it is not. */
|
|
|
|
if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
|
|
|
|
/* Skip salt prefix. */
|
|
|
|
salt += sizeof(sha256_salt_prefix) - 1;
|
|
|
|
|
|
|
|
if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
|
|
|
|
== 0) {
|
|
|
|
num = salt + sizeof(sha256_rounds_prefix) - 1;
|
|
|
|
srounds = strtoul(num, &endp, 10);
|
|
|
|
|
|
|
|
if (*endp == '$') {
|
|
|
|
salt = endp + 1;
|
|
|
|
rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
|
|
|
|
rounds_custom = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
|
|
|
|
key_len = strlen(key);
|
|
|
|
|
|
|
|
/* Prepare for the real work. */
|
|
|
|
SHA256_Init(&ctx);
|
|
|
|
|
|
|
|
/* Add the key string. */
|
|
|
|
SHA256_Update(&ctx, key, key_len);
|
|
|
|
|
|
|
|
/* The last part is the salt string. This must be at most 8
|
|
|
|
* characters and it ends at the first `$' character (for
|
|
|
|
* compatibility with existing implementations). */
|
|
|
|
SHA256_Update(&ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
|
|
|
|
* final result will be added to the first context. */
|
|
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* Add key. */
|
|
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Add salt. */
|
|
|
|
SHA256_Update(&alt_ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Add key again. */
|
|
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Now get result of this (32 bytes) and add it to the other context. */
|
|
|
|
SHA256_Final(alt_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
|
|
for (cnt = key_len; cnt > 32; cnt -= 32)
|
|
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
|
|
SHA256_Update(&ctx, alt_result, cnt);
|
|
|
|
|
|
|
|
/* Take the binary representation of the length of the key and for
|
|
|
|
* every 1 add the alternate sum, for every 0 the key. */
|
|
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
|
|
else
|
|
|
|
SHA256_Update(&ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Create intermediate result. */
|
|
|
|
SHA256_Final(alt_result, &ctx);
|
|
|
|
|
|
|
|
/* Start computation of P byte sequence. */
|
|
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* For every character in the password add the entire password. */
|
|
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Finish the digest. */
|
|
|
|
SHA256_Final(temp_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Create byte sequence P. */
|
|
|
|
cp = p_bytes = alloca(key_len);
|
|
|
|
for (cnt = key_len; cnt >= 32; cnt -= 32) {
|
|
|
|
memcpy(cp, temp_result, 32);
|
|
|
|
cp += 32;
|
|
|
|
}
|
|
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
|
|
|
|
/* Start computation of S byte sequence. */
|
|
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* For every character in the password add the entire password. */
|
|
|
|
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
|
|
|
|
SHA256_Update(&alt_ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Finish the digest. */
|
|
|
|
SHA256_Final(temp_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Create byte sequence S. */
|
|
|
|
cp = s_bytes = alloca(salt_len);
|
|
|
|
for (cnt = salt_len; cnt >= 32; cnt -= 32) {
|
|
|
|
memcpy(cp, temp_result, 32);
|
|
|
|
cp += 32;
|
|
|
|
}
|
|
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
|
|
|
|
/* Repeatedly run the collected hash value through SHA256 to burn CPU
|
|
|
|
* cycles. */
|
|
|
|
for (cnt = 0; cnt < rounds; ++cnt) {
|
|
|
|
/* New context. */
|
|
|
|
SHA256_Init(&ctx);
|
|
|
|
|
|
|
|
/* Add key or last result. */
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
else
|
|
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
|
|
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
|
|
if (cnt % 3 != 0)
|
|
|
|
SHA256_Update(&ctx, s_bytes, salt_len);
|
|
|
|
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
|
|
if (cnt % 7 != 0)
|
|
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
|
|
|
|
/* Add key or last result. */
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
|
|
else
|
|
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
|
|
|
|
/* Create intermediate result. */
|
|
|
|
SHA256_Final(alt_result, &ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
|
|
* parts. */
|
|
|
|
cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
|
|
|
|
buflen -= sizeof(sha256_salt_prefix) - 1;
|
|
|
|
|
|
|
|
if (rounds_custom) {
|
|
|
|
n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
|
|
sha256_rounds_prefix, rounds);
|
|
|
|
|
|
|
|
cp += n;
|
|
|
|
buflen -= n;
|
|
|
|
}
|
|
|
|
|
|
|
|
cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
|
|
|
|
buflen -= MIN((size_t)MAX(0, buflen), salt_len);
|
|
|
|
|
|
|
|
if (buflen > 0) {
|
|
|
|
*cp++ = '$';
|
|
|
|
--buflen;
|
|
|
|
}
|
|
|
|
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp);
|
|
|
|
if (buflen <= 0) {
|
|
|
|
errno = ERANGE;
|
|
|
|
buffer = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
|
|
* attaching to processes or reading core dumps cannot get any
|
|
|
|
* information. We do it in this way to clear correct_words[] inside
|
|
|
|
* the SHA256 implementation as well. */
|
|
|
|
SHA256_Init(&ctx);
|
|
|
|
SHA256_Final(alt_result, &ctx);
|
|
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
|
|
memset(p_bytes, '\0', key_len);
|
|
|
|
memset(s_bytes, '\0', salt_len);
|
|
|
|
memset(&ctx, '\0', sizeof(ctx));
|
|
|
|
memset(&alt_ctx, '\0', sizeof(alt_ctx));
|
|
|
|
if (copied_key != NULL)
|
|
|
|
memset(copied_key, '\0', key_len);
|
|
|
|
if (copied_salt != NULL)
|
|
|
|
memset(copied_salt, '\0', salt_len);
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This entry point is equivalent to crypt(3). */
|
|
|
|
char* crypt_sha256(const char *key, const char *salt)
|
|
|
|
{
|
|
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
|
|
* password. We can compute an upper bound for the size of the
|
|
|
|
* result in advance and so we can prepare the buffer we pass to
|
|
|
|
* `crypt_sha256_r'. */
|
|
|
|
static char *buffer;
|
|
|
|
static int buflen;
|
|
|
|
int needed;
|
|
|
|
char *new_buffer;
|
|
|
|
|
|
|
|
needed = (sizeof(sha256_salt_prefix) - 1
|
|
|
|
+ sizeof(sha256_rounds_prefix) + 9 + 1
|
|
|
|
+ strlen(salt) + 1 + 43 + 1);
|
|
|
|
|
|
|
|
if (buflen < needed) {
|
|
|
|
new_buffer = (char *)realloc(buffer, needed);
|
|
|
|
|
|
|
|
if (new_buffer == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
buffer = new_buffer;
|
|
|
|
buflen = needed;
|
|
|
|
}
|
|
|
|
|
|
|
|
return crypt_sha256_r(key, salt, buffer, buflen);
|
|
|
|
}
|
|
|
|
/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha256.c */
|
|
|
|
|
|
|
|
|
|
|
|
/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha512.c */
|
|
|
|
/* Define our magic string to mark salt for SHA512 "encryption" replacement. */
|
|
|
|
static const char sha512_salt_prefix[] = "$6$";
|
|
|
|
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
|
|
static const char sha512_rounds_prefix[] = "rounds=";
|
|
|
|
|
|
|
|
/* Maximum salt string length. */
|
|
|
|
#define SALT_LEN_MAX 16
|
|
|
|
/* Default number of rounds if not explicitly specified. */
|
|
|
|
#define ROUNDS_DEFAULT 5000
|
|
|
|
/* Minimum number of rounds. */
|
|
|
|
#define ROUNDS_MIN 1000
|
|
|
|
/* Maximum number of rounds. */
|
|
|
|
#define ROUNDS_MAX 999999999
|
|
|
|
|
|
|
|
static char *
|
|
|
|
crypt_sha512_r(const char *key, const char *salt, char *buffer, int buflen)
|
|
|
|
{
|
|
|
|
u_long srounds;
|
|
|
|
int n;
|
|
|
|
uint8_t alt_result[64], temp_result[64];
|
|
|
|
SHA512_CTX ctx, alt_ctx;
|
|
|
|
size_t salt_len, key_len, cnt, rounds;
|
|
|
|
char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
|
|
|
|
const char *num;
|
|
|
|
bool rounds_custom;
|
|
|
|
|
|
|
|
copied_key = NULL;
|
|
|
|
copied_salt = NULL;
|
|
|
|
|
|
|
|
/* Default number of rounds. */
|
|
|
|
rounds = ROUNDS_DEFAULT;
|
|
|
|
rounds_custom = false;
|
|
|
|
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
|
|
* be present. Just in case it is not. */
|
|
|
|
if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0)
|
|
|
|
/* Skip salt prefix. */
|
|
|
|
salt += sizeof(sha512_salt_prefix) - 1;
|
|
|
|
|
|
|
|
if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1)
|
|
|
|
== 0) {
|
|
|
|
num = salt + sizeof(sha512_rounds_prefix) - 1;
|
|
|
|
srounds = strtoul(num, &endp, 10);
|
|
|
|
|
|
|
|
if (*endp == '$') {
|
|
|
|
salt = endp + 1;
|
|
|
|
rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
|
|
|
|
rounds_custom = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
|
|
|
|
key_len = strlen(key);
|
|
|
|
|
|
|
|
/* Prepare for the real work. */
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
|
|
|
|
/* Add the key string. */
|
|
|
|
SHA512_Update(&ctx, key, key_len);
|
|
|
|
|
|
|
|
/* The last part is the salt string. This must be at most 8
|
|
|
|
* characters and it ends at the first `$' character (for
|
|
|
|
* compatibility with existing implementations). */
|
|
|
|
SHA512_Update(&ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
|
|
|
|
* final result will be added to the first context. */
|
|
|
|
SHA512_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* Add key. */
|
|
|
|
SHA512_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Add salt. */
|
|
|
|
SHA512_Update(&alt_ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Add key again. */
|
|
|
|
SHA512_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Now get result of this (64 bytes) and add it to the other context. */
|
|
|
|
SHA512_Final(alt_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
|
|
for (cnt = key_len; cnt > 64; cnt -= 64)
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
SHA512_Update(&ctx, alt_result, cnt);
|
|
|
|
|
|
|
|
/* Take the binary representation of the length of the key and for
|
|
|
|
* every 1 add the alternate sum, for every 0 the key. */
|
|
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
else
|
|
|
|
SHA512_Update(&ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Create intermediate result. */
|
|
|
|
SHA512_Final(alt_result, &ctx);
|
|
|
|
|
|
|
|
/* Start computation of P byte sequence. */
|
|
|
|
SHA512_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* For every character in the password add the entire password. */
|
|
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
|
|
SHA512_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Finish the digest. */
|
|
|
|
SHA512_Final(temp_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Create byte sequence P. */
|
|
|
|
cp = p_bytes = alloca(key_len);
|
|
|
|
for (cnt = key_len; cnt >= 64; cnt -= 64) {
|
|
|
|
memcpy(cp, temp_result, 64);
|
|
|
|
cp += 64;
|
|
|
|
}
|
|
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
|
|
|
|
/* Start computation of S byte sequence. */
|
|
|
|
SHA512_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* For every character in the password add the entire password. */
|
|
|
|
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
|
|
|
|
SHA512_Update(&alt_ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Finish the digest. */
|
|
|
|
SHA512_Final(temp_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Create byte sequence S. */
|
|
|
|
cp = s_bytes = alloca(salt_len);
|
|
|
|
for (cnt = salt_len; cnt >= 64; cnt -= 64) {
|
|
|
|
memcpy(cp, temp_result, 64);
|
|
|
|
cp += 64;
|
|
|
|
}
|
|
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
|
|
|
|
/* Repeatedly run the collected hash value through SHA512 to burn CPU
|
|
|
|
* cycles. */
|
|
|
|
for (cnt = 0; cnt < rounds; ++cnt) {
|
|
|
|
/* New context. */
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
|
|
|
|
/* Add key or last result. */
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA512_Update(&ctx, p_bytes, key_len);
|
|
|
|
else
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
|
|
if (cnt % 3 != 0)
|
|
|
|
SHA512_Update(&ctx, s_bytes, salt_len);
|
|
|
|
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
|
|
if (cnt % 7 != 0)
|
|
|
|
SHA512_Update(&ctx, p_bytes, key_len);
|
|
|
|
|
|
|
|
/* Add key or last result. */
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
else
|
|
|
|
SHA512_Update(&ctx, p_bytes, key_len);
|
|
|
|
|
|
|
|
/* Create intermediate result. */
|
|
|
|
SHA512_Final(alt_result, &ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
|
|
* parts. */
|
|
|
|
cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen));
|
|
|
|
buflen -= sizeof(sha512_salt_prefix) - 1;
|
|
|
|
|
|
|
|
if (rounds_custom) {
|
|
|
|
n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
|
|
sha512_rounds_prefix, rounds);
|
|
|
|
|
|
|
|
cp += n;
|
|
|
|
buflen -= n;
|
|
|
|
}
|
|
|
|
|
|
|
|
cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
|
|
|
|
buflen -= MIN((size_t)MAX(0, buflen), salt_len);
|
|
|
|
|
|
|
|
if (buflen > 0) {
|
|
|
|
*cp++ = '$';
|
|
|
|
--buflen;
|
|
|
|
}
|
|
|
|
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp);
|
|
|
|
|
|
|
|
if (buflen <= 0) {
|
|
|
|
errno = ERANGE;
|
|
|
|
buffer = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
|
|
* attaching to processes or reading core dumps cannot get any
|
|
|
|
* information. We do it in this way to clear correct_words[] inside
|
|
|
|
* the SHA512 implementation as well. */
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
SHA512_Final(alt_result, &ctx);
|
|
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
|
|
memset(p_bytes, '\0', key_len);
|
|
|
|
memset(s_bytes, '\0', salt_len);
|
|
|
|
memset(&ctx, '\0', sizeof(ctx));
|
|
|
|
memset(&alt_ctx, '\0', sizeof(alt_ctx));
|
|
|
|
if (copied_key != NULL)
|
|
|
|
memset(copied_key, '\0', key_len);
|
|
|
|
if (copied_salt != NULL)
|
|
|
|
memset(copied_salt, '\0', salt_len);
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This entry point is equivalent to crypt(3). */
|
|
|
|
char *
|
|
|
|
crypt_sha512(const char *key, const char *salt)
|
|
|
|
{
|
|
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
|
|
* password. We can compute an upper bound for the size of the
|
|
|
|
* result in advance and so we can prepare the buffer we pass to
|
|
|
|
* `crypt_sha512_r'. */
|
|
|
|
static char *buffer;
|
|
|
|
static int buflen;
|
|
|
|
int needed;
|
|
|
|
char *new_buffer;
|
|
|
|
|
|
|
|
needed = (sizeof(sha512_salt_prefix) - 1
|
|
|
|
+ sizeof(sha512_rounds_prefix) + 9 + 1
|
|
|
|
+ strlen(salt) + 1 + 86 + 1);
|
|
|
|
|
|
|
|
if (buflen < needed) {
|
|
|
|
new_buffer = (char *)realloc(buffer, needed);
|
|
|
|
|
|
|
|
if (new_buffer == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
buffer = new_buffer;
|
|
|
|
buflen = needed;
|
|
|
|
}
|
|
|
|
|
|
|
|
return crypt_sha512_r(key, salt, buffer, buflen);
|
|
|
|
}
|
|
|
|
/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha512.c */
|
|
|
|
|
|
|
|
|
|
|
|
/** From https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt.c */
|
|
|
|
static const struct crypt_format {
|
|
|
|
const char* const name;
|
|
|
|
const char* const magic;
|
|
|
|
char* (*const func)(char const*, char const*);
|
|
|
|
} crypt_formats[] = {
|
|
|
|
{ "des", "_", crypt_des },
|
|
|
|
{ "md5", "$1$", crypt_md5 },
|
|
|
|
{ "sha256", "$5$", crypt_sha256 },
|
|
|
|
{ "sha512", "$6$", crypt_sha512 },
|
|
|
|
{ NULL, NULL, NULL }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
char* crypt(const char* key, const char* salt)
|
|
|
|
{
|
|
|
|
int len;
|
|
|
|
const struct crypt_format *cf;
|
|
|
|
|
|
|
|
for (cf = crypt_formats; cf->name != NULL; ++cf) {
|
|
|
|
if (cf->magic != NULL && strstr(salt, cf->magic) == salt) {
|
|
|
|
return cf->func(key, salt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
len = strlen(salt);
|
|
|
|
if ((len == 13 || len == 2) && strspn(salt, DES_SALT_ALPHABET) == len) {
|
|
|
|
return (crypt_des(key, salt));
|
|
|
|
}
|
|
|
|
|
|
|
|
return crypt_formats[0].func(key, salt);
|
|
|
|
}
|