/************************************************************************** * Implementation of crypt(3) using routines in libcrypto from openssl for * use on Android in Termux. * * https://www.freebsd.org/cgi/man.cgi?crypt(3) * http://man7.org/linux/man-pages/man3/crypt.3.html * * Relevant code is from FreeBSD with license given below. **************************************************************************/ /* * Copyright (c) 2011 The FreeBSD Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <arpa/inet.h> #include <errno.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #include <openssl/sha.h> #include <openssl/md5.h> /* START: Freebsd compat */ typedef unsigned long u_long; #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #define MD5_SIZE 16 #define _PASSWORD_EFMT1 '_' #define DES_SALT_ALPHABET \ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" #define MD5Init MD5_Init #define MD5Update MD5_Update #define MD5Final MD5_Final /* END: Freebsd compat */ /* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/misc.c */ static char itoa64[] = /* 0 ... 63 => ascii - 64 */ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; void _crypt_to64(char *s, u_long v, int n) { while (--n >= 0) { *s++ = itoa64[v&0x3f]; v >>= 6; } } void b64_from_24bit(uint8_t B2, uint8_t B1, uint8_t B0, int n, int *buflen, char **cp) { uint32_t w; int i; w = (B2 << 16) | (B1 << 8) | B0; for (i = 0; i < n; i++) { **cp = itoa64[w&0x3f]; (*cp)++; if ((*buflen)-- < 0) break; w >>= 6; } } /* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/misc.c */ /* START: https://github.com/freebsd/freebsd/blob/master/secure/lib/libcrypt/crypt-des.c */ #if defined(__GNUC__) && !defined(lint) #define INLINE inline #else #define INLINE #endif static u_char IP[64] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; static u_char inv_key_perm[64]; static u_char key_perm[56] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; static u_char key_shifts[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; static u_char inv_comp_perm[56]; static u_char comp_perm[48] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* * No E box is used, as it's replaced by some ANDs, shifts, and ORs. */ static u_char u_sbox[8][64]; static u_char sbox[8][64] = { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }, { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }, { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }, { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }, { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }, { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }, { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }, { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } }; static u_char un_pbox[32]; static u_char pbox[32] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; static u_int32_t bits32[32] = { 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static u_int32_t saltbits; static u_int32_t old_salt; static u_int32_t *bits28, *bits24; static u_char init_perm[64], final_perm[64]; static u_int32_t en_keysl[16], en_keysr[16]; static u_int32_t de_keysl[16], de_keysr[16]; static int des_initialised = 0; static u_char m_sbox[4][4096]; static u_int32_t psbox[4][256]; static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; static u_int32_t old_rawkey0, old_rawkey1; static u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; /* 0000000000111111111122222222223333333333444444444455555555556666 */ /* 0123456789012345678901234567890123456789012345678901234567890123 */ static INLINE int ascii_to_bin(char ch) { if (ch > 'z') return(0); if (ch >= 'a') return(ch - 'a' + 38); if (ch > 'Z') return(0); if (ch >= 'A') return(ch - 'A' + 12); if (ch > '9') return(0); if (ch >= '.') return(ch - '.'); return(0); } static void des_init(void) { int i, j, b, k, inbit, obit; u_int32_t *p, *il, *ir, *fl, *fr; old_rawkey0 = old_rawkey1 = 0L; saltbits = 0L; old_salt = 0L; bits24 = (bits28 = bits32 + 4) + 4; /* * Invert the S-boxes, reordering the input bits. */ for (i = 0; i < 8; i++) for (j = 0; j < 64; j++) { b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); u_sbox[i][j] = sbox[i][b]; } /* * Convert the inverted S-boxes into 4 arrays of 8 bits. * Each will handle 12 bits of the S-box input. */ for (b = 0; b < 4; b++) for (i = 0; i < 64; i++) for (j = 0; j < 64; j++) m_sbox[b][(i << 6) | j] = (u_char)((u_sbox[(b << 1)][i] << 4) | u_sbox[(b << 1) + 1][j]); /* * Set up the initial & final permutations into a useful form, and * initialise the inverted key permutation. */ for (i = 0; i < 64; i++) { init_perm[final_perm[i] = IP[i] - 1] = (u_char)i; inv_key_perm[i] = 255; } /* * Invert the key permutation and initialise the inverted key * compression permutation. */ for (i = 0; i < 56; i++) { inv_key_perm[key_perm[i] - 1] = (u_char)i; inv_comp_perm[i] = 255; } /* * Invert the key compression permutation. */ for (i = 0; i < 48; i++) { inv_comp_perm[comp_perm[i] - 1] = (u_char)i; } /* * Set up the OR-mask arrays for the initial and final permutations, * and for the key initial and compression permutations. */ for (k = 0; k < 8; k++) { for (i = 0; i < 256; i++) { *(il = &ip_maskl[k][i]) = 0L; *(ir = &ip_maskr[k][i]) = 0L; *(fl = &fp_maskl[k][i]) = 0L; *(fr = &fp_maskr[k][i]) = 0L; for (j = 0; j < 8; j++) { inbit = 8 * k + j; if (i & bits8[j]) { if ((obit = init_perm[inbit]) < 32) *il |= bits32[obit]; else *ir |= bits32[obit-32]; if ((obit = final_perm[inbit]) < 32) *fl |= bits32[obit]; else *fr |= bits32[obit - 32]; } } } for (i = 0; i < 128; i++) { *(il = &key_perm_maskl[k][i]) = 0L; *(ir = &key_perm_maskr[k][i]) = 0L; for (j = 0; j < 7; j++) { inbit = 8 * k + j; if (i & bits8[j + 1]) { if ((obit = inv_key_perm[inbit]) == 255) continue; if (obit < 28) *il |= bits28[obit]; else *ir |= bits28[obit - 28]; } } *(il = &comp_maskl[k][i]) = 0L; *(ir = &comp_maskr[k][i]) = 0L; for (j = 0; j < 7; j++) { inbit = 7 * k + j; if (i & bits8[j + 1]) { if ((obit=inv_comp_perm[inbit]) == 255) continue; if (obit < 24) *il |= bits24[obit]; else *ir |= bits24[obit - 24]; } } } } /* * Invert the P-box permutation, and convert into OR-masks for * handling the output of the S-box arrays setup above. */ for (i = 0; i < 32; i++) un_pbox[pbox[i] - 1] = (u_char)i; for (b = 0; b < 4; b++) for (i = 0; i < 256; i++) { *(p = &psbox[b][i]) = 0L; for (j = 0; j < 8; j++) { if (i & bits8[j]) *p |= bits32[un_pbox[8 * b + j]]; } } des_initialised = 1; } static void setup_salt(u_int32_t salt) { u_int32_t obit, saltbit; int i; if (salt == old_salt) return; old_salt = salt; saltbits = 0L; saltbit = 1; obit = 0x800000; for (i = 0; i < 24; i++) { if (salt & saltbit) saltbits |= obit; saltbit <<= 1; obit >>= 1; } } static int des_setkey(const char *key) { u_int32_t k0, k1, rawkey0, rawkey1; int shifts, round; if (!des_initialised) des_init(); rawkey0 = ntohl(*(const u_int32_t *) key); rawkey1 = ntohl(*(const u_int32_t *) (key + 4)); if ((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1) { /* * Already setup for this key. * This optimisation fails on a zero key (which is weak and * has bad parity anyway) in order to simplify the starting * conditions. */ return(0); } old_rawkey0 = rawkey0; old_rawkey1 = rawkey1; /* * Do key permutation and split into two 28-bit subkeys. */ k0 = key_perm_maskl[0][rawkey0 >> 25] | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskl[4][rawkey1 >> 25] | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; k1 = key_perm_maskr[0][rawkey0 >> 25] | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskr[4][rawkey1 >> 25] | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; /* * Rotate subkeys and do compression permutation. */ shifts = 0; for (round = 0; round < 16; round++) { u_int32_t t0, t1; shifts += key_shifts[round]; t0 = (k0 << shifts) | (k0 >> (28 - shifts)); t1 = (k1 << shifts) | (k1 >> (28 - shifts)); de_keysl[15 - round] = en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | comp_maskl[1][(t0 >> 14) & 0x7f] | comp_maskl[2][(t0 >> 7) & 0x7f] | comp_maskl[3][t0 & 0x7f] | comp_maskl[4][(t1 >> 21) & 0x7f] | comp_maskl[5][(t1 >> 14) & 0x7f] | comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f]; de_keysr[15 - round] = en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | comp_maskr[1][(t0 >> 14) & 0x7f] | comp_maskr[2][(t0 >> 7) & 0x7f] | comp_maskr[3][t0 & 0x7f] | comp_maskr[4][(t1 >> 21) & 0x7f] | comp_maskr[5][(t1 >> 14) & 0x7f] | comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f]; } return(0); } static int do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) { /* * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ u_int32_t l, r, *kl, *kr, *kl1, *kr1; u_int32_t f, r48l, r48r; int round; if (count == 0) { return(1); } else if (count > 0) { /* * Encrypting */ kl1 = en_keysl; kr1 = en_keysr; } else { /* * Decrypting */ count = -count; kl1 = de_keysl; kr1 = de_keysr; } /* * Do initial permutation (IP). */ l = ip_maskl[0][l_in >> 24] | ip_maskl[1][(l_in >> 16) & 0xff] | ip_maskl[2][(l_in >> 8) & 0xff] | ip_maskl[3][l_in & 0xff] | ip_maskl[4][r_in >> 24] | ip_maskl[5][(r_in >> 16) & 0xff] | ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff]; r = ip_maskr[0][l_in >> 24] | ip_maskr[1][(l_in >> 16) & 0xff] | ip_maskr[2][(l_in >> 8) & 0xff] | ip_maskr[3][l_in & 0xff] | ip_maskr[4][r_in >> 24] | ip_maskr[5][(r_in >> 16) & 0xff] | ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff]; while (count--) { /* * Do each round. */ kl = kl1; kr = kr1; round = 16; while (round--) { /* * Expand R to 48 bits (simulate the E-box). */ r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) | ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15); r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) | ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31); /* * Do salting for crypt() and friends, and * XOR with the permuted key. */ f = (r48l ^ r48r) & saltbits; r48l ^= f ^ *kl++; r48r ^= f ^ *kr++; /* * Do sbox lookups (which shrink it back to 32 bits) * and do the pbox permutation at the same time. */ f = psbox[0][m_sbox[0][r48l >> 12]] | psbox[1][m_sbox[1][r48l & 0xfff]] | psbox[2][m_sbox[2][r48r >> 12]] | psbox[3][m_sbox[3][r48r & 0xfff]]; /* * Now that we've permuted things, complete f(). */ f ^= l; l = r; r = f; } r = l; l = f; } /* * Do final permutation (inverse of IP). */ *l_out = fp_maskl[0][l >> 24] | fp_maskl[1][(l >> 16) & 0xff] | fp_maskl[2][(l >> 8) & 0xff] | fp_maskl[3][l & 0xff] | fp_maskl[4][r >> 24] | fp_maskl[5][(r >> 16) & 0xff] | fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff]; *r_out = fp_maskr[0][l >> 24] | fp_maskr[1][(l >> 16) & 0xff] | fp_maskr[2][(l >> 8) & 0xff] | fp_maskr[3][l & 0xff] | fp_maskr[4][r >> 24] | fp_maskr[5][(r >> 16) & 0xff] | fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff]; return(0); } static int des_cipher(const char *in, char *out, u_long salt, int count) { u_int32_t l_out, r_out, rawl, rawr; int retval; union { u_int32_t *ui32; const char *c; } trans; if (!des_initialised) des_init(); setup_salt(salt); trans.c = in; rawl = ntohl(*trans.ui32++); rawr = ntohl(*trans.ui32); retval = do_des(rawl, rawr, &l_out, &r_out, count); trans.c = out; *trans.ui32++ = htonl(l_out); *trans.ui32 = htonl(r_out); return(retval); } char * crypt_des(const char *key, const char *setting) { int i; u_int32_t count, salt, l, r0, r1, keybuf[2]; u_char *p, *q; static char output[21]; if (!des_initialised) des_init(); /* * Copy the key, shifting each character up by one bit * and padding with zeros. */ q = (u_char *)keybuf; while (q - (u_char *)keybuf - 8) { *q++ = *key << 1; if (*key != '\0') key++; } if (des_setkey((char *)keybuf)) return(NULL); if (*setting == _PASSWORD_EFMT1) { /* * "new"-style: * setting - underscore, 4 bytes of count, 4 bytes of salt * key - unlimited characters */ for (i = 1, count = 0L; i < 5; i++) count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); for (i = 5, salt = 0L; i < 9; i++) salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); while (*key) { /* * Encrypt the key with itself. */ if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) return(NULL); /* * And XOR with the next 8 characters of the key. */ q = (u_char *)keybuf; while (q - (u_char *)keybuf - 8 && *key) *q++ ^= *key++ << 1; if (des_setkey((char *)keybuf)) return(NULL); } strncpy(output, setting, 9); /* * Double check that we weren't given a short setting. * If we were, the above code will probably have created * wierd values for count and salt, but we don't really care. * Just make sure the output string doesn't have an extra * NUL in it. */ output[9] = '\0'; p = (u_char *)output + strlen(output); } else { /* * "old"-style: * setting - 2 bytes of salt * key - up to 8 characters */ count = 25; salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]); output[0] = setting[0]; /* * If the encrypted password that the salt was extracted from * is only 1 character long, the salt will be corrupted. We * need to ensure that the output string doesn't have an extra * NUL in it! */ output[1] = setting[1] ? setting[1] : output[0]; p = (u_char *)output + 2; } setup_salt(salt); /* * Do it. */ if (do_des(0L, 0L, &r0, &r1, (int)count)) return(NULL); /* * Now encode the result... */ l = (r0 >> 8); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = (r0 << 16) | ((r1 >> 16) & 0xffff); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = r1 << 2; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; *p = 0; return(output); } /* END: https://github.com/freebsd/freebsd/blob/master/secure/lib/libcrypt/crypt-des.c */ /* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-md5.c */ char * crypt_md5(const char *pw, const char *salt) { MD5_CTX ctx,ctx1; unsigned long l; int sl, pl; u_int i; u_char final[MD5_SIZE]; static const char *sp, *ep; static char passwd[120], *p; static const char *magic = "$1$"; /* Refine the Salt first */ sp = salt; /* If it starts with the magic string, then skip that */ if(!strncmp(sp, magic, strlen(magic))) sp += strlen(magic); /* It stops at the first '$', max 8 chars */ for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++) continue; /* get the length of the true salt */ sl = ep - sp; MD5Init(&ctx); /* The password first, since that is what is most unknown */ MD5Update(&ctx, (const u_char *)pw, strlen(pw)); /* Then our magic string */ MD5Update(&ctx, (const u_char *)magic, strlen(magic)); /* Then the raw salt */ MD5Update(&ctx, (const u_char *)sp, (u_int)sl); /* Then just as many characters of the MD5(pw,salt,pw) */ MD5Init(&ctx1); MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); MD5Update(&ctx1, (const u_char *)sp, (u_int)sl); MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); MD5Final(final, &ctx1); for(pl = (int)strlen(pw); pl > 0; pl -= MD5_SIZE) MD5Update(&ctx, (const u_char *)final, (u_int)(pl > MD5_SIZE ? MD5_SIZE : pl)); /* Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); /* Then something really weird... */ for (i = strlen(pw); i; i >>= 1) if(i & 1) MD5Update(&ctx, (const u_char *)final, 1); else MD5Update(&ctx, (const u_char *)pw, 1); /* Now make the output string */ strcpy(passwd, magic); strncat(passwd, sp, (u_int)sl); strcat(passwd, "$"); MD5Final(final, &ctx); /* * and now, just to make sure things don't run too fast * On a 60 Mhz Pentium this takes 34 msec, so you would * need 30 seconds to build a 1000 entry dictionary... */ for(i = 0; i < 1000; i++) { MD5Init(&ctx1); if(i & 1) MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); else MD5Update(&ctx1, (const u_char *)final, MD5_SIZE); if(i % 3) MD5Update(&ctx1, (const u_char *)sp, (u_int)sl); if(i % 7) MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); if(i & 1) MD5Update(&ctx1, (const u_char *)final, MD5_SIZE); else MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); MD5Final(final, &ctx1); } p = passwd + strlen(passwd); l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; _crypt_to64(p, l, 4); p += 4; l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; _crypt_to64(p, l, 4); p += 4; l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; _crypt_to64(p, l, 4); p += 4; l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; _crypt_to64(p, l, 4); p += 4; l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; _crypt_to64(p, l, 4); p += 4; l = final[11]; _crypt_to64(p, l, 2); p += 2; *p = '\0'; /* Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); return (passwd); } /* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-md5.c */ /* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha256.c */ static const char sha256_salt_prefix[] = "$5$"; /* Prefix for optional rounds specification. */ static const char sha256_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 static char * crypt_sha256_r(const char *key, const char *salt, char *buffer, int buflen) { u_long srounds; int n; uint8_t alt_result[32], temp_result[32]; SHA256_CTX ctx, alt_ctx; size_t salt_len, key_len, cnt, rounds; char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; const char *num; bool rounds_custom; copied_key = NULL; copied_salt = NULL; /* Default number of rounds. */ rounds = ROUNDS_DEFAULT; rounds_custom = false; /* Find beginning of salt string. The prefix should normally always * be present. Just in case it is not. */ if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha256_salt_prefix) - 1; if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) { num = salt + sizeof(sha256_rounds_prefix) - 1; srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); /* Prepare for the real work. */ SHA256_Init(&ctx); /* Add the key string. */ SHA256_Update(&ctx, key, key_len); /* The last part is the salt string. This must be at most 8 * characters and it ends at the first `$' character (for * compatibility with existing implementations). */ SHA256_Update(&ctx, salt, salt_len); /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The * final result will be added to the first context. */ SHA256_Init(&alt_ctx); /* Add key. */ SHA256_Update(&alt_ctx, key, key_len); /* Add salt. */ SHA256_Update(&alt_ctx, salt, salt_len); /* Add key again. */ SHA256_Update(&alt_ctx, key, key_len); /* Now get result of this (32 bytes) and add it to the other context. */ SHA256_Final(alt_result, &alt_ctx); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 32; cnt -= 32) SHA256_Update(&ctx, alt_result, 32); SHA256_Update(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for * every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA256_Update(&ctx, alt_result, 32); else SHA256_Update(&ctx, key, key_len); /* Create intermediate result. */ SHA256_Final(alt_result, &ctx); /* Start computation of P byte sequence. */ SHA256_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) SHA256_Update(&alt_ctx, key, key_len); /* Finish the digest. */ SHA256_Final(temp_result, &alt_ctx); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 32; cnt -= 32) { memcpy(cp, temp_result, 32); cp += 32; } memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ SHA256_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) SHA256_Update(&alt_ctx, salt, salt_len); /* Finish the digest. */ SHA256_Final(temp_result, &alt_ctx); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 32; cnt -= 32) { memcpy(cp, temp_result, 32); cp += 32; } memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA256 to burn CPU * cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA256_Init(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) SHA256_Update(&ctx, p_bytes, key_len); else SHA256_Update(&ctx, alt_result, 32); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) SHA256_Update(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) SHA256_Update(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) SHA256_Update(&ctx, alt_result, 32); else SHA256_Update(&ctx, p_bytes, key_len); /* Create intermediate result. */ SHA256_Final(alt_result, &ctx); } /* Now we can construct the result string. It consists of three * parts. */ cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); buflen -= sizeof(sha256_salt_prefix) - 1; if (rounds_custom) { n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha256_rounds_prefix, rounds); cp += n; buflen -= n; } cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); buflen -= MIN((size_t)MAX(0, buflen), salt_len); if (buflen > 0) { *cp++ = '$'; --buflen; } b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp); b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp); b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp); b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp); b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp); b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp); b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp); b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp); b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp); b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp); b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp); if (buflen <= 0) { errno = ERANGE; buffer = NULL; } else *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people * attaching to processes or reading core dumps cannot get any * information. We do it in this way to clear correct_words[] inside * the SHA256 implementation as well. */ SHA256_Init(&ctx); SHA256_Final(alt_result, &ctx); memset(temp_result, '\0', sizeof(temp_result)); memset(p_bytes, '\0', key_len); memset(s_bytes, '\0', salt_len); memset(&ctx, '\0', sizeof(ctx)); memset(&alt_ctx, '\0', sizeof(alt_ctx)); if (copied_key != NULL) memset(copied_key, '\0', key_len); if (copied_salt != NULL) memset(copied_salt, '\0', salt_len); return buffer; } /* This entry point is equivalent to crypt(3). */ char* crypt_sha256(const char *key, const char *salt) { /* We don't want to have an arbitrary limit in the size of the * password. We can compute an upper bound for the size of the * result in advance and so we can prepare the buffer we pass to * `crypt_sha256_r'. */ static char *buffer; static int buflen; int needed; char *new_buffer; needed = (sizeof(sha256_salt_prefix) - 1 + sizeof(sha256_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 43 + 1); if (buflen < needed) { new_buffer = (char *)realloc(buffer, needed); if (new_buffer == NULL) return NULL; buffer = new_buffer; buflen = needed; } return crypt_sha256_r(key, salt, buffer, buflen); } /* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha256.c */ /* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha512.c */ /* Define our magic string to mark salt for SHA512 "encryption" replacement. */ static const char sha512_salt_prefix[] = "$6$"; /* Prefix for optional rounds specification. */ static const char sha512_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 static char * crypt_sha512_r(const char *key, const char *salt, char *buffer, int buflen) { u_long srounds; int n; uint8_t alt_result[64], temp_result[64]; SHA512_CTX ctx, alt_ctx; size_t salt_len, key_len, cnt, rounds; char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; const char *num; bool rounds_custom; copied_key = NULL; copied_salt = NULL; /* Default number of rounds. */ rounds = ROUNDS_DEFAULT; rounds_custom = false; /* Find beginning of salt string. The prefix should normally always * be present. Just in case it is not. */ if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha512_salt_prefix) - 1; if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0) { num = salt + sizeof(sha512_rounds_prefix) - 1; srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); /* Prepare for the real work. */ SHA512_Init(&ctx); /* Add the key string. */ SHA512_Update(&ctx, key, key_len); /* The last part is the salt string. This must be at most 8 * characters and it ends at the first `$' character (for * compatibility with existing implementations). */ SHA512_Update(&ctx, salt, salt_len); /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The * final result will be added to the first context. */ SHA512_Init(&alt_ctx); /* Add key. */ SHA512_Update(&alt_ctx, key, key_len); /* Add salt. */ SHA512_Update(&alt_ctx, salt, salt_len); /* Add key again. */ SHA512_Update(&alt_ctx, key, key_len); /* Now get result of this (64 bytes) and add it to the other context. */ SHA512_Final(alt_result, &alt_ctx); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 64; cnt -= 64) SHA512_Update(&ctx, alt_result, 64); SHA512_Update(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for * every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA512_Update(&ctx, alt_result, 64); else SHA512_Update(&ctx, key, key_len); /* Create intermediate result. */ SHA512_Final(alt_result, &ctx); /* Start computation of P byte sequence. */ SHA512_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) SHA512_Update(&alt_ctx, key, key_len); /* Finish the digest. */ SHA512_Final(temp_result, &alt_ctx); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 64; cnt -= 64) { memcpy(cp, temp_result, 64); cp += 64; } memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ SHA512_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) SHA512_Update(&alt_ctx, salt, salt_len); /* Finish the digest. */ SHA512_Final(temp_result, &alt_ctx); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 64; cnt -= 64) { memcpy(cp, temp_result, 64); cp += 64; } memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA512 to burn CPU * cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA512_Init(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) SHA512_Update(&ctx, p_bytes, key_len); else SHA512_Update(&ctx, alt_result, 64); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) SHA512_Update(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) SHA512_Update(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) SHA512_Update(&ctx, alt_result, 64); else SHA512_Update(&ctx, p_bytes, key_len); /* Create intermediate result. */ SHA512_Final(alt_result, &ctx); } /* Now we can construct the result string. It consists of three * parts. */ cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); buflen -= sizeof(sha512_salt_prefix) - 1; if (rounds_custom) { n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha512_rounds_prefix, rounds); cp += n; buflen -= n; } cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); buflen -= MIN((size_t)MAX(0, buflen), salt_len); if (buflen > 0) { *cp++ = '$'; --buflen; } b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp); b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp); b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp); b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp); b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp); b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp); b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp); b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp); b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp); b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp); b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp); b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp); b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp); b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp); b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp); b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp); b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp); b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp); b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp); b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp); b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp); b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp); if (buflen <= 0) { errno = ERANGE; buffer = NULL; } else *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people * attaching to processes or reading core dumps cannot get any * information. We do it in this way to clear correct_words[] inside * the SHA512 implementation as well. */ SHA512_Init(&ctx); SHA512_Final(alt_result, &ctx); memset(temp_result, '\0', sizeof(temp_result)); memset(p_bytes, '\0', key_len); memset(s_bytes, '\0', salt_len); memset(&ctx, '\0', sizeof(ctx)); memset(&alt_ctx, '\0', sizeof(alt_ctx)); if (copied_key != NULL) memset(copied_key, '\0', key_len); if (copied_salt != NULL) memset(copied_salt, '\0', salt_len); return buffer; } /* This entry point is equivalent to crypt(3). */ char * crypt_sha512(const char *key, const char *salt) { /* We don't want to have an arbitrary limit in the size of the * password. We can compute an upper bound for the size of the * result in advance and so we can prepare the buffer we pass to * `crypt_sha512_r'. */ static char *buffer; static int buflen; int needed; char *new_buffer; needed = (sizeof(sha512_salt_prefix) - 1 + sizeof(sha512_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 86 + 1); if (buflen < needed) { new_buffer = (char *)realloc(buffer, needed); if (new_buffer == NULL) return NULL; buffer = new_buffer; buflen = needed; } return crypt_sha512_r(key, salt, buffer, buflen); } /* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha512.c */ /** From https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt.c */ static const struct crypt_format { const char* const name; const char* const magic; char* (*const func)(char const*, char const*); } crypt_formats[] = { { "des", "_", crypt_des }, { "md5", "$1$", crypt_md5 }, { "sha256", "$5$", crypt_sha256 }, { "sha512", "$6$", crypt_sha512 }, { NULL, NULL, NULL } }; char* crypt(const char* key, const char* salt) { size_t len; const struct crypt_format *cf; for (cf = crypt_formats; cf->name != NULL; ++cf) { if (cf->magic != NULL && strstr(salt, cf->magic) == salt) { return cf->func(key, salt); } } len = strlen(salt); if ((len == 13 || len == 2) && strspn(salt, DES_SALT_ALPHABET) == len) { return (crypt_des(key, salt)); } return crypt_formats[0].func(key, salt); }