Wei Lu
11 years ago
1 changed files with 0 additions and 118 deletions
@ -1,118 +0,0 @@ |
|||
/** |
|||
* Implement the Paillier cryptosystem in JavaScript. |
|||
* |
|||
* Paillier is useful for multiparty calculation. It is not currently part of any |
|||
* BitcoinJS-lib distribution, but it is included here for experimental use. |
|||
*/ |
|||
Bitcoin.Paillier = (function () { |
|||
var rng = new SecureRandom(); |
|||
var TWO = BigInteger.valueOf(2); |
|||
|
|||
var Paillier = { |
|||
generate: function (bitLength) { |
|||
var p, q; |
|||
do { |
|||
p = new BigInteger(bitLength, 1, rng); |
|||
q = new BigInteger(bitLength, 1, rng); |
|||
} while (p.equals(q)); |
|||
|
|||
var n = p.multiply(q); |
|||
|
|||
// p - 1
|
|||
var p1 = p.subtract(BigInteger.ONE); |
|||
// q - 1
|
|||
var q1 = q.subtract(BigInteger.ONE); |
|||
|
|||
var nSq = n.multiply(n); |
|||
|
|||
// lambda
|
|||
var l = p1.multiply(q1).divide(p1.gcd(q1)); |
|||
|
|||
var coprimeBitLength = n.bitLength() - Math.floor(Math.random()*10); |
|||
|
|||
var alpha = new BigInteger(coprimeBitLength, 1, rng); |
|||
var beta = new BigInteger(coprimeBitLength, 1, rng); |
|||
|
|||
var g = alpha.multiply(n).add(BigInteger.ONE) |
|||
.multiply(beta.modPow(n,nSq)).mod(nSq); |
|||
|
|||
// mu
|
|||
var m = g.modPow(l,nSq).mod(nSq) |
|||
.subtract(BigInteger.ONE).divide(n).modInverse(n); |
|||
|
|||
return new Paillier.PrivateKey(n,g,l,m,nSq); |
|||
} |
|||
}; |
|||
|
|||
Paillier.PublicKey = function (n,g,nSq) { |
|||
this.n = n; |
|||
this.g = g; |
|||
this.nSq = nSq || n.multiply(n); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.encrypt = function (i, r) { |
|||
if (!r) { |
|||
var coprimeBitLength = this.n.bitLength() - Math.floor(Math.random()*10); |
|||
r = new BigInteger(coprimeBitLength, 1, rng); |
|||
} |
|||
return this.g.modPow(i,this.nSq).multiply(r.modPow(this.n,this.nSq)) |
|||
.mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.add = function (c, f) { |
|||
return c.multiply(this.encrypt(f)).mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.addCrypt = function (c, f) { |
|||
return c.multiply(f).mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.multiply = function (c, f) { |
|||
return c.modPow(f, this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.rerandomize = function (c, r) { |
|||
if (!r) { |
|||
var coprimeBitLength = this.n.bitLength() - Math.floor(Math.random()*10); |
|||
r = new BigInteger(coprimeBitLength, 1, rng); |
|||
} |
|||
return c.multiply(r.modPow(this.n, this.nSq)).mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PrivateKey = function (n,g,l,m,nSq) { |
|||
this.l = l; |
|||
this.m = m; |
|||
this.n = n; |
|||
this.nSq = nSq || n.multiply(n); |
|||
this.pub = new Paillier.PublicKey(n,g,this.nSq); |
|||
}; |
|||
|
|||
Paillier.PrivateKey.prototype.decrypt = function (c) { |
|||
return c.modPow(this.l, this.nSq).subtract(BigInteger.ONE) |
|||
.divide(this.n).multiply(this.m).mod(this.n); |
|||
}; |
|||
|
|||
Paillier.PrivateKey.prototype.decryptR = function (c, i) { |
|||
if (!i) { |
|||
i = this.decrypt(c); |
|||
} |
|||
var rn = c.multiply(this.pub.g.modPow(i, this.nSq).modInverse(this.nSq)) |
|||
.mod(this.nSq); |
|||
var a = this.l.modInverse(this.n).multiply(this.n.subtract(BigInteger.ONE)); |
|||
var e = a.multiply(this.l).add(BigInteger.ONE).divide(this.n); |
|||
return rn.modPow(e, this.n); |
|||
}; |
|||
|
|||
function createProxyMethod(name) { |
|||
return function () { |
|||
return this.pub[name].apply(this.pub, |
|||
Array.prototype.slice.apply(arguments)); |
|||
}; |
|||
}; |
|||
var a = ["add", "addCrypt", "multiply", "rerandomize", "encrypt"]; |
|||
for (var i = 0, l = a.length; i < l; i++) { |
|||
Paillier.PrivateKey.prototype[a[i]] = createProxyMethod(a[i]); |
|||
} |
|||
|
|||
return Paillier; |
|||
})(); |
Loading…
Reference in new issue